1
|
Fort DJ, Leopold MA, Wolf JC, Todhunter KJ, Weterings PJJM. Importance of diet in amphibian metamorphosis-based studies designed to assess the risk of thyroid active substances. J Appl Toxicol 2023; 43:360-372. [PMID: 36053261 DOI: 10.1002/jat.4387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/18/2022] [Accepted: 08/29/2022] [Indexed: 11/09/2022]
Abstract
The present study evaluated the hypothesis that dietary quality used in historical studies may impact the effects of chemical stressors on premetamorphic development and metamorphosis due to suboptimal nutritional quality. A modified Amphibian Metamorphosis Assay (AMA) was performed in which Nieuwkoop and Faber (NF) Stage 47 tadpoles of Xenopus laevis were exposed for 32 days to iodide (I- )-deficient FETAX solution supplemented with <0.025, 0.17, 0.52, 1.58, and 4.80 μg I- /L (measured concentrations 0.061, 0.220, 0.614, 1.65, and 4.73 μg I- /L) and fed a pureed Frog Brittle (FB) diet. An AMA guideline benchmark group (four replicates) exposed to dechlorinated tap water and fed standard Sera Micron Nature® (SMN) diet was evaluated concurrently. Developmental delay, observed as changes in stage distribution or median developmental stage, occurred in FB treatments with 0.061, 0.220, and 0.614 μg/L I- , respectively. Developmental rates and hind limb length of the 1.65 and 4.73 μg/L I- groups were similar to each other, but both treatments fell short of the developmental rate achieved by the SMN benchmark. Iodide supplementation also had no impact on nonthyroidal growth endpoints, which were markedly reduced in FB-fed frogs compared with their SMN-fed counterparts. All larvae that received the FB diet had mildly to severely hypoplastic/atrophic thyroids, a condition for which iodine supplementation had little if any ameliorative effect. Collectively, these results suggested that nutritional deficiencies in the FB diet negatively affected both growth and metamorphic development, the latter of which was only compensated to a limited extent by iodine supplementation.
Collapse
Affiliation(s)
- Douglas J Fort
- Fort Environmental Laboratories, Inc., Stillwater, Oklahoma, USA
| | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| | | | | |
Collapse
|
2
|
Olker JH, Korte JJ, Haselman JT, Hornung MW, Degitz SJ. Cross-species comparison of chemical inhibition of human and Xenopus iodotyrosine deiodinase. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 249:106227. [PMID: 35767922 PMCID: PMC9887787 DOI: 10.1016/j.aquatox.2022.106227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 05/23/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The transition to include in vitro-based data in chemical hazard assessment has resulted in the development and implementation of screening assays to cover a diversity of biological pathways, including recently added assays to interrogate chemical disruption of proteins relevant to thyroid signaling pathways. Iodotyrosine deiodinase (IYD), the iodide recycling enzyme, is one such thyroid-relevant endpoint for which a human-based screening assay has recently been developed and used to screen large libraries of chemicals. Presented here is the development of an amphibian IYD inhibition assay and its implementation to conduct a cross-species comparison between chemical inhibition of mammalian and non-mammalian IYD enzyme activity. The successful development of an amphibian IYD inhibition assay was based on demonstration of sufficient IYD enzyme activity in several tissues collected from larval Xenopus laevis. With this new assay, 154 chemicals were tested in concentration-response to provide a basis for comparison of relative chemical potency to results obtained from the human IYD assay. Most chemicals exhibited similar inhibition in both assays, with less than 25% variation in median inhibition for 120 of 154 chemicals and 85% concordance in categorization of "active" (potential IYD inhibitor) versus "inactive". For chemicals that produced 50% or greater inhibition in both assays, rank-order potency was similar, with the majority of the IC50s varying by less than 2-fold (and all within an order of magnitude). Most differences resulted from greater maximum inhibition or higher chemical potency observed with human IYD. This strong cross-species agreement suggests that results from the human-based assay would be conservatively predictive of chemical effects on amphibian IYD.
Collapse
Affiliation(s)
- Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA.
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Jonathan T Haselman
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, Center for Computational Toxicology and Exposure, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| |
Collapse
|
3
|
Ren X, Ma L, Wang N, Zhou R, Wu J, Xie X, Zhang H, Liu D, Ma X, Dang C, Kang H, Zhou Z. Antioxidant Gene Signature Impacts the Immune Infiltration and Predicts the Prognosis of Kidney Renal Clear Cell Carcinoma. Front Genet 2021; 12:721252. [PMID: 34490047 PMCID: PMC8416991 DOI: 10.3389/fgene.2021.721252] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/30/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Oxidative stress is related to oncogenic transformation in kidney renal clear cell carcinoma (KIRC). We intended to identify a prognostic antioxidant gene signature and investigate its relationship with immune infiltration in KIRC. Methods: With the support of The Cancer Genome Atlas (TCGA) database, we researched the gene expression and clinical data of KIRC patients. Antioxidant related genes with significant differences in expression between KIRC and normal samples were then identified. Through univariate and multivariate Cox analysis, a prognostic gene model was established and all patients were divided into high- and low-risk subgroups. Single sample gene set enrichment analysis was adopted to analyze the immune infiltration, HLA expression, and immune checkpoint genes in different risk groups. Finally, the prognostic nomogram model was established and evaluated. Results: We identified six antioxidant genes significantly correlated with the outcome of KIRC patients as independent predictors, namely DPEP1 (HR = 0.97, P < 0.05), GSTM3 (HR = 0.97, P < 0.05), IYD (HR = 0.33, P < 0.05), KDM3B (HR = 0.96, P < 0.05), PRDX2 (HR = 0.99, P < 0.05), and PRXL2A (HR = 0.96, P < 0.05). The high- and low-risk subgroups of KIRC patients were grouped according to the six-gene signature. Patients with higher risk scores had poorer prognosis, more advanced grade and stage, and more abundance of M0 macrophages, regulatory T cells, and follicular helper T cells. There were statistically significant differences in HLA and checkpoint gene expression between the two risk subgroups. The performance of the nomogram was favorable (concordance index = 0.766) and reliably predicted the 3-year (AUC = 0.792) and 5-year (AUC = 0.766) survival of patients with KIRC. Conclusion: The novel six antioxidant related gene signature could effectively forecast the prognosis of patients with KIRC, supply insights into the interaction between cellular antioxidant mechanisms and cancer, and is an innovative tool for selecting potential patients and targets for immunotherapy.
Collapse
Affiliation(s)
- Xueting Ren
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Li Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruina Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianhua Wu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xin Xie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Zhang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Di Liu
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaobin Ma
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chengxue Dang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huafeng Kang
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Zhangjian Zhou
- Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Ortego LS, Olmstead AW, Weltje L, Wheeler JR, Bone AJ, Coady KK, Banman CS, Burden N, Lagadic L. The Extended Amphibian Metamorphosis Assay: A Thyroid-Specific and Less Animal-Intensive Alternative to the Larval Amphibian Growth and Development Assay. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:2135-2144. [PMID: 33939850 PMCID: PMC8362105 DOI: 10.1002/etc.5078] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/13/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
The amphibian metamorphosis assay (AMA; US Environmental Protection Agency [USEPA] test guideline 890.1100 and Organisation for Economic Co-Operation and Development test guideline 231) has been used for more than a decade to assess the potential thyroid-mediated endocrine activity of chemicals. In 2013, in the context of the Endocrine Disruptor Screening Program of the USEPA, a Scientific Advisory Panel reviewed the results from 18 studies and recommended changes to the AMA test guideline, including a modification to a fixed-stage design rather than a fixed-time (i.e., 21-d) design. We describe an extended test design for the AMA (or EAMA) that includes thyroid histopathology and time to metamorphosis (Nieuwkoop-Faber [NF] stage 62), to address both the issues with the fixed-time design and the specific question of thyroid-mediated adversity in a shorter assay than the larval amphibian growth and development assay (LAGDA; Organisation for Economic Co-Operation and Development test guideline 241), using fewer animals and resources. A demonstration study was conducted with the EAMA (up to NF stage 58) using sodium perchlorate. Data analyses and interpretation of the fixed-stage design of the EAMA are more straightforward than the fixed-time design because the fixed-stage design avoids confounded morphometric measurements and thyroid histopathology caused by varying developmental stages at test termination. It also results in greater statistical power to detect metamorphic delays than the fixed-time design. By preferentially extending the AMA to NF stage 62, suitable data can be produced to evaluate thyroid-mediated adversity and preclude the need to perform a LAGDA for thyroid mode of action analysis. The LAGDA remains of further interest should investigations of longer term effects related to sexual development modulated though the hypothalamus-pituitary-gonadal axis be necessary. However, reproduction assessment or life cycle testing is currently not addressed in the LAGDA study design. This is better addressed by higher tier studies in fish, which should then include specific thyroid-related endpoints. Environ Toxicol Chem 2021;40:2135-2144. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Lisa S. Ortego
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentCaryNorth CarolinaUSA
| | - Allen W. Olmstead
- BASF Corporation, Agricultural Solutions–EcotoxicologyResearch Triangle ParkNorth CarolinaUSA
| | - Lennart Weltje
- BASF SEAgricultural Solutions–EcotoxicologyLimburgerhofGermany
| | | | - Audrey J. Bone
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | - Katherine K. Coady
- Bayer U.S. LLC, Crop ScienceEnvironmental Effects and Risk AssessmentChesterfieldMissouriUSA
| | | | - Natalie Burden
- National Centre for the Replacement, Refinement, & Reduction of Animals in ResearchLondonUnited Kingdom
| | - Laurent Lagadic
- Bayer AG, Research and Development, Crop Science, Environmental SafetyMonheim am RheinGermany
| |
Collapse
|
5
|
Haselman JT, Olker JH, Kosian PA, Korte JJ, Swintek JA, Denny JS, Nichols JW, Tietge JE, Hornung MW, Degitz SJ. Targeted Pathway-based In Vivo Testing Using Thyroperoxidase Inhibition to Evaluate Plasma Thyroxine as a Surrogate Metric of Metamorphic Success in Model Amphibian Xenopus laevis. Toxicol Sci 2021; 175:236-250. [PMID: 32176285 DOI: 10.1093/toxsci/kfaa036] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Chemical safety evaluation is in the midst of a transition from traditional whole-animal toxicity testing to molecular pathway-based in vitro assays and in silico modeling. However, to facilitate the shift in reliance on apical effects for risk assessment to predictive surrogate metrics having characterized linkages to chemical mechanisms of action, targeted in vivo testing is necessary to establish these predictive relationships. In this study, we demonstrate a means to predict thyroid-related metamorphic success in the model amphibian Xenopus laevis using relevant biochemical measurements during early prometamorphosis. The adverse outcome pathway for thyroperoxidase inhibition leading to altered amphibian metamorphosis was used to inform a pathway-based in vivo study design that generated response-response relationships. These causal relationships were used to develop Bayesian probabilistic network models that mathematically determine conditional dependencies between biochemical nodes and support the predictive capability of the biochemical profiles. Plasma thyroxine concentrations were the most predictive of metamorphic success with improved predictivity when thyroid gland sodium-iodide symporter gene expression levels (a compensatory response) were used in conjunction with plasma thyroxine as an additional regressor. Although thyroid-mediated amphibian metamorphosis has been studied for decades, this is the first time a predictive relationship has been characterized between plasma thyroxine and metamorphic success. Linking these types of biochemical surrogate metrics to apical outcomes is vital to facilitate the transition to the new paradigm of chemical safety assessments.
Collapse
Affiliation(s)
- Jonathan T Haselman
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Jennifer H Olker
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Patricia A Kosian
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph J Korte
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph A Swintek
- Badger Technical Services, Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Jeffrey S Denny
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - John W Nichols
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Joseph E Tietge
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Michael W Hornung
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| | - Sigmund J Degitz
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Duluth, Minnesota 55804
| |
Collapse
|
6
|
Expanded high-throughput screening and chemotype-enrichment analysis of the phase II: e1k ToxCast library for human sodium-iodide symporter (NIS) inhibition. Arch Toxicol 2021; 95:1723-1737. [PMID: 33656581 DOI: 10.1007/s00204-021-03006-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/16/2021] [Indexed: 12/19/2022]
Abstract
The sodium-iodide symporter (NIS) mediates the uptake of iodide into the thyroid. Inhibition of NIS function by xenobiotics has been demonstrated to suppress circulating thyroid hormones and perturb related physiological functions. Until recently, few environmental chemicals had been screened for NIS inhibition activity. We previously screened over 1000 chemicals from the ToxCast Phase II (ph1v2 and ph2) libraries using an in vitro radioactive iodide uptake (RAIU) with the hNIS-HEK293T cell line to identify NIS inhibitors. Here, we broaden the chemical space by expanding screening to include the ToxCast e1k library (804 unique chemicals) with initial screening for RAIU at 1 × 10-4 M. Then 209 chemicals demonstrating > 20% RAIU inhibition were further tested in multiple-concentration, parallel RAIU and cell viability assays. This identified 55 chemicals as active, noncytotoxic RAIU inhibitors. Further cytotoxicity-adjusted potency scoring (with NaClO4 having a reference score of 200) revealed five chemicals with moderate to strong RAIU inhibition (scored > 100). These data were combined with our previous PhII screening data to produce binary hit-calls for ~ 1800 unique chemicals (PhII + e1k) with and without cytotoxicity filtering. Results were analyzed with a ToxPrint chemotype-enrichment workflow to identify substructural features significantly enriched in the NIS inhibition hit-call space. We assessed the applicability of enriched PhII chemotypes to prospectively predict NIS inhibition in the e1k dataset. Chemotype enrichments derived for the combined ~ 1800 dataset also identified additional enriched features, as well as chemotypes affiliated with cytotoxicity. These enriched chemotypes provide important new information that can support future data interpretation, structure-activity relationship, chemical use, and regulation.
Collapse
|
7
|
Olker JH, Korte JJ, Denny JS, Haselman JT, Hartig PC, Cardon MC, Hornung MW, Degitz SJ. In vitro screening for chemical inhibition of the iodide recycling enzyme, iodotyrosine deiodinase. Toxicol In Vitro 2020; 71:105073. [PMID: 33352258 DOI: 10.1016/j.tiv.2020.105073] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
The iodide recycling enzyme, iodotyrosine deiodinase (IYD), is a largely unstudied molecular mechanism through which environmental chemicals can potentially cause thyroid disruption. This highly conserved enzyme plays an essential role in maintaining adequate levels of free iodide for thyroid hormone synthesis. Thyroid disruption following in vivo IYD inhibition has been documented in mammalian and amphibian models; however, few chemicals have been tested for IYD inhibition in either in vivo or in vitro assays. Presented here are the development and application of a screening assay to assess susceptibility of IYD to chemical inhibition. With recombinant human IYD enzyme, a 96-well plate in vitro assay was developed and then used to screen over 1800 unique substances from the U.S. EPA ToxCast screening library. Through a tiered screening approach, 194 IYD inhibitors were identified (inhibited IYD enzyme activity by 20% or greater at target concentration of 200 μM). 154 chemicals were further tested in concentration-response (0.032-200 μM) to determine IC50 and rank-order potency. This work broadens the coverage of thyroid-relevant molecular targets for chemical screening, provides the largest set of chemicals tested for IYD inhibition, and aids in prioritizing chemicals for targeted in vivo testing to evaluate thyroid-related adverse outcomes.
Collapse
Affiliation(s)
- Jennifer H Olker
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA.
| | - Joseph J Korte
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Jeffrey S Denny
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Jonathan T Haselman
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Phillip C Hartig
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709, USA
| | - Mary C Cardon
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, North Carolina 27709, USA
| | - Michael W Hornung
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN 55804, USA
| |
Collapse
|
8
|
Evaluation of potential sodium-iodide symporter (NIS) inhibitors using a secondary Fischer rat thyroid follicular cell (FRTL-5) radioactive iodide uptake (RAIU) assay. Arch Toxicol 2020; 94:873-885. [PMID: 32065294 DOI: 10.1007/s00204-020-02664-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/03/2020] [Indexed: 12/29/2022]
Abstract
The Fischer rat thyroid follicular cell line (FRTL-5) endogenously expresses the sodium-iodide symporter (NIS) and has been used to identify environmental chemicals that perturb thyroid hormone homeostasis by disruption of NIS-mediated iodide uptake. Previously, a high-throughput radioactive iodide uptake (RAIU) screening assay incorporating the hNIS-HEK293T-EPA cell line was used to identify potential human NIS (hNIS) inhibitors in 1028 ToxCast Phase I (ph1_v2) and Phase II chemicals. In this study, the FRTL-5 cell line was evaluated and applied as a secondary RAIU assay coupled with cell viability assays to further prioritize highly active NIS inhibitors from the earlier screening. Assay validation with ten reference chemicals and performance assessment by chemical controls suggest the FRTL-5 based assays are robust and highly reproducible. Top-ranked chemicals from the ToxCast screening were then evaluated in both FRTL-5 and hNIS RAIU assays using newly sourced chemicals to strengthen the testing paradigm and to enable a rat vs. human species comparison. Eighteen of 29 test chemicals showed less than 1 order of magnitude difference in IC50 values between the two assays. Notably, two common perfluorinated compounds, perfluorooctanesulfonic acid (PFOS) and perfluorohexane sulfonate (PFHxS), demonstrated strong NIS inhibitory activity [IC50 - 6.45 (PFOS) and - 5.70 (PFHxS) log M in FRTL-5 RAIU assay]. In addition, several chemicals including etoxazole, methoxyfenozide, oxyfluorfen, triclocarban, mepanipyrim, and niclosamide also exhibited NIS inhibition with minimal cytotoxicity in both assays and are proposed for additional testing using short-term in vivo assays to characterize effects on thyroid hormone synthesis.
Collapse
|
9
|
Noyes PD, Friedman KP, Browne P, Haselman JT, Gilbert ME, Hornung MW, Barone S, Crofton KM, Laws SC, Stoker TE, Simmons SO, Tietge JE, Degitz SJ. Evaluating Chemicals for Thyroid Disruption: Opportunities and Challenges with in Vitro Testing and Adverse Outcome Pathway Approaches. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:95001. [PMID: 31487205 PMCID: PMC6791490 DOI: 10.1289/ehp5297] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 07/01/2019] [Accepted: 08/13/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND Extensive clinical and experimental research documents the potential for chemical disruption of thyroid hormone (TH) signaling through multiple molecular targets. Perturbation of TH signaling can lead to abnormal brain development, cognitive impairments, and other adverse outcomes in humans and wildlife. To increase chemical safety screening efficiency and reduce vertebrate animal testing, in vitro assays that identify chemical interactions with molecular targets of the thyroid system have been developed and implemented. OBJECTIVES We present an adverse outcome pathway (AOP) network to link data derived from in vitro assays that measure chemical interactions with thyroid molecular targets to downstream events and adverse outcomes traditionally derived from in vivo testing. We examine the role of new in vitro technologies, in the context of the AOP network, in facilitating consideration of several important regulatory and biological challenges in characterizing chemicals that exert effects through a thyroid mechanism. DISCUSSION There is a substantial body of knowledge describing chemical effects on molecular and physiological regulation of TH signaling and associated adverse outcomes. Until recently, few alternative nonanimal assays were available to interrogate chemical effects on TH signaling. With the development of these new tools, screening large libraries of chemicals for interactions with molecular targets of the thyroid is now possible. Measuring early chemical interactions with targets in the thyroid pathway provides a means of linking adverse outcomes, which may be influenced by many biological processes, to a thyroid mechanism. However, the use of in vitro assays beyond chemical screening is complicated by continuing limits in our knowledge of TH signaling in important life stages and tissues, such as during fetal brain development. Nonetheless, the thyroid AOP network provides an ideal tool for defining causal linkages of a chemical exerting thyroid-dependent effects and identifying research needs to quantify these effects in support of regulatory decision making. https://doi.org/10.1289/EHP5297.
Collapse
Affiliation(s)
- Pamela D Noyes
- National Center for Environmental Assessment, Office of Research and Development (ORD), U.S. Environmental Protection Agency (EPA), Washington, DC, USA
| | - Katie Paul Friedman
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Patience Browne
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Jonathan T Haselman
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Mary E Gilbert
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Michael W Hornung
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Stan Barone
- Office of Pollution Prevention and Toxics, Office of Chemical Safety and Pollution Prevention, U.S. EPA, Washington, DC, USA
| | - Kevin M Crofton
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Susan C Laws
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Tammy E Stoker
- Toxicity Assessment Division, NHEERL, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Steven O Simmons
- National Center for Computational Toxicology, ORD, U.S. EPA, Research Triangle Park, North Carolina, USA
| | - Joseph E Tietge
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory (NHEERL), ORD, U.S. EPA, Duluth, Minnesota, USA
| |
Collapse
|
10
|
Wang J, Hallinger DR, Murr AS, Buckalew AR, Lougee RR, Richard AM, Laws SC, Stoker TE. High-throughput screening and chemotype-enrichment analysis of ToxCast phase II chemicals evaluated for human sodium-iodide symporter (NIS) inhibition. ENVIRONMENT INTERNATIONAL 2019; 126:377-386. [PMID: 30826616 PMCID: PMC9082575 DOI: 10.1016/j.envint.2019.02.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/14/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
In support of the Endocrine Disruptor Screening Program (EDSP), the U.S.EPA's Office of Research and Development (ORD) is developing high-throughput screening (HTS) approaches to identify chemicals that alter target sites in the thyroid hormone (TH) pathway. The sodium iodide symporter (NIS) is a transmembrane glycoprotein that mediates iodide uptake into the thyroid as the initial step of TH biosynthesis. Previously, we screened 293 ToxCast chemicals (ph1v2) using a HEK293T cell line expressing human NIS in parallel radioactive iodide uptake (RAIU) and cell viability assays to identify potential environmental NIS inhibitors. Here, we expanded NIS inhibitor screening for a set of 768 ToxCast Phase II (ph2) chemicals, and applied a novel computational toxicology approach based on the ToxPrint chemotype to identify chemical substructures associated with NIS inhibition. Following single-concentration screening (at 1 × 10-4 M with a 20% inhibition cutoff), 235 samples (228 chemicals) were further tested in multiple-concentration (1 × 10-9 - 1 × 10-4 M) format in both RAIU and cell viability assays. The 167 chemicals that exhibited significant RAIU inhibition were then prioritized using combined RAIU and cell viability responses that were normalized relative to the known NIS inhibitor sodium perchlorate. Some of the highest ranked chemicals, such as PFOS, tributyltin chloride, and triclocarban, have been previously reported to be thyroid disruptors. In addition, several novel chemicals were identified as potent NIS inhibitors. The present results were combined with the previous ph1v2 screening results to produce two sets of binary hit-calls for 1028 unique chemicals, consisting of 273 positives exhibiting significant RAIU inhibition, and 63 positives following application of a cell viability filter. A ToxPrint chemotype-enrichment analysis identified >20 distinct chemical substructural features, represented in >60% of the active chemicals, as significantly enriched in each NIS inhibition hit-call space. A shared set of 9 chemotypes enriched in both hit-call sets indicates stable chemotype signals (insensitive to cytotoxicity filters) that can help guide structure-activity relationship (SAR) investigations and inform future research.
Collapse
Affiliation(s)
- Jun Wang
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA; Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Daniel R Hallinger
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ashley S Murr
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Angela R Buckalew
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ryan R Lougee
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA; National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Ann M Richard
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Susan C Laws
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| | - Tammy E Stoker
- Endocrine Toxicology Branch, Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA.
| |
Collapse
|