1
|
Grosso MF, Řehůřková E, Virmani I, Sychrová E, Sovadinová I, Babica P. Impact of endocrine disruptors on key events of hepatic steatosis in HepG2 cells. Food Chem Toxicol 2025; 197:115241. [PMID: 39778647 DOI: 10.1016/j.fct.2025.115241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) may contribute to the rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD). We investigated the potential of 10 environmentally relevant EDCs to affect key events of hepatic steatosis in HepG2 human hepatoblastoma cells. Increased lipid droplet formation, a key marker of steatosis, was induced by PFOA, bisphenol F, DDE, butylparaben, and DEHP, within the non-cytotoxic concentration range of 1 nM-25 μM. Cadmium also induced this effect, but at concentrations impairing cell viability (>1 μM). At non-cytotoxic concentrations, these compounds, along with bisphenol A, dysregulated major genes controlling lipid homeostasis. Cadmium, PFOA, DDE, and DEHP significantly upregulated the DGAT1 gene involved in triglyceride synthesis, while butylparaben increased the expression of the FAT/CD36 gene responsible for fatty acid uptake. Bisphenol A downregulated the CPT1A gene involved in fatty acid oxidation. No significant effects on lipid droplet accumulation or lipid metabolism-related genes were observed for PFOS, bisphenol S, and dibutyl phthalate. Among the tested EDCs, lipid accumulation positively correlated with the expression of SREBF1, DGAT1, and CPT1A. These findings provide additional evidence that EDCs can affect MASLD and highlight the utility of in vitro methods in the screening of EDCs with hazardous steatogenic and metabolism-disrupting properties.
Collapse
Affiliation(s)
- Marina F Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Řehůřková
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Ishita Virmani
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Eliška Sychrová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
2
|
Chowdhury RR, Grosso MF, Gadara DC, Spáčil Z, Vidová V, Sovadinová I, Babica P. Cyanotoxin cylindrospermopsin disrupts lipid homeostasis and metabolism in a 3D in vitro model of the human liver. Chem Biol Interact 2024; 397:111046. [PMID: 38735451 DOI: 10.1016/j.cbi.2024.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Cylindrospermopsin, a potent hepatotoxin produced by harmful cyanobacterial blooms, poses environmental and human health concerns. We used a 3D human liver in vitro model based on spheroids of HepG2 cells, in combination with molecular and biochemical assays, automated imaging, targeted LC-MS-based proteomics, and lipidomics, to explore cylindrospermopsin effects on lipid metabolism and the processes implicated in hepatic steatosis. Cylindrospermopsin (1 μM, 48 h) did not significantly affect cell viability but partially reduced albumin secretion. However, it increased neutral lipid accumulation in HepG2 spheroids while decreasing phospholipid levels. Simultaneously, cylindrospermopsin upregulated genes for lipogenesis regulation (SREBF1) and triacylglycerol synthesis (DGAT1/2) and downregulated genes for fatty acid synthesis (ACLY, ACCA, FASN, SCD1). Fatty acid uptake, oxidation, and lipid efflux genes were not significantly affected. Targeted proteomics revealed increased levels of perilipin 2 (adipophilin), a major hepatocyte lipid droplet-associated protein. Lipid profiling quantified 246 lipid species in the spheroids, with 28 significantly enriched and 15 downregulated by cylindrospermopsin. Upregulated species included neutral lipids, sphingolipids (e.g., ceramides and dihexosylceramides), and some glycerophospholipids (phosphatidylethanolamines, phosphatidylserines), while phosphatidylcholines and phosphatidylinositols were mostly reduced. It suggests that cylindrospermopsin exposures might contribute to developing and progressing towards hepatic steatosis or metabolic dysfunction-associated steatotic liver disease (MASLD).
Collapse
Affiliation(s)
- Riju Roy Chowdhury
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Marina Felipe Grosso
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | - Zdeněk Spáčil
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Veronika Vidová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic.
| |
Collapse
|
3
|
de Sabóia-Morais SMT, de Lima Faria JM, da Silva Rabelo JC, Hanusch AL, Mesquita LA, de Andrade Silva R, de Oliveira JM, de Jesus LWO. Cylindrospermopsin exposure promotes redox unbalance and tissue damage in the liver of Poecilia reticulata, a neotropical fish species. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:120-132. [PMID: 37969104 DOI: 10.1080/15287394.2023.2282530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
There is a growing concern regarding the adverse risks exposure to cylindrospermopsin (CYN) might exert on animals and humans. However, data regarding the toxicity of this cyanotoxin to neotropical fish species are scarce. Using the fish species Poecilia reticulata, the influence of CYN concentrations equal to and above the tolerable for drinking water may produce on liver was determined by assessing biomarkers of antioxidant defense mechanisms and correlated to qualitative and semiquantitative histopathological observations. Adult females were exposed to 0.0 (Control); 0.5, 1 and 1.5 μg/L pure CYN for 24 or 96 hr, in triplicate. Subsequently the livers were extracted for biochemical assays and histopathological evaluation. Catalase (CAT) activity was significantly increased only by 1.5 μg/L CYN-treatment, at both exposure times. Glutathione -S-transferase (GST) activity presented a biphasic response for both exposure times. It was markedly decreased after exposure by 0.5 μg/L CYN treatment but significantly elevated by 1.5 μg/L CYN treatment. All CYN treatments produced histopathological alterations, as evidenced by hepatocyte cords degeneration, steatosis, inflammatory infiltration, melanomacrophage centers, vessel congestion, and areas with necrosis. Further, an IORG >35 was achieved for all treatments, indicative of the presence of severe histological alterations in P. reticulata hepatic parenchyma and stroma. Taken together, data demonstrated evidence that CYN-induced hepatotoxicity in P. reticulata appears to be associated with an imbalance of antioxidant defense mechanisms accompanied by histopathological liver alterations. It is worthy to note that exposure to low environmentally-relevant CYN concentrations might constitute a significant risk to health of aquatic organisms.
Collapse
Affiliation(s)
| | - João Marcos de Lima Faria
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jéssica Custódio da Silva Rabelo
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | | | - Lorena Alves Mesquita
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Raquel de Andrade Silva
- Laboratory of Cellular Behavior, Department of Morphology, Biological Sciences Institute, Federal University of Goiás, Goiânia, Brazil
| | - Jerusa Maria de Oliveira
- Rede Nordeste de Biotecnologia (RENORBIO), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| | - Lázaro Wender Oliveira de Jesus
- Laboratory of Applied Animal Morphophysiology, Histology and Embryology Section, Institute of Biological Sciences and Health, Federal University of Alagoas, Maceió, AL, Brazil
| |
Collapse
|
4
|
Kim JH, Kang M, Jung JH, Lee SJ, Hong SH. Human Pluripotent Stem Cell-Derived Alveolar Epithelial Cells as a Tool to Assess Cytotoxicity of Particulate Matter and Cigarette Smoke Extract. Dev Reprod 2022; 26:155-163. [PMID: 36817355 PMCID: PMC9925186 DOI: 10.12717/dr.2022.26.4.155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/02/2022] [Accepted: 12/16/2022] [Indexed: 01/18/2023]
Abstract
Human pluripotent stem cells (hPSCs) can give rise to a vast array of differentiated derivatives, which have gained great attention in the field of in vitro toxicity evaluation. We have previously demonstrated that hPSC-derived alveolar epithelial cells (AECs) are phenotypically and functionally similar to primary AECs and could be more biologically relevant alternatives for assessing the potential toxic materials including in fine dust and cigarette smoking. Therefore, in this study, we employed hPSC-AECs to evaluate their responses to exposure of various concentrations of diesel particulate matter (dPM), cigarette smoke extract (CSE) and nicotine for 48 hrs in terms of cell death, inflammation, and oxidative stress. We found that all of these toxic materials significantly upregulated the transcription of pro-inflammatory cytokines such as IL-1α, IL-β, IL-6, and TNF-α. Furthermore, the exposure of dPM (100 μg/mL) strongly induced upregulation of genes related with cell death, inflammation, and oxidative stress compared with other concentrations of CSE and nicotine. These results suggest that hPSC-AECs could be a robust in vitro platform to evaluate pulmotoxicity of various air pollutants and harmful chemicals.
Collapse
Affiliation(s)
- Jung-Hyun Kim
- Department of Internal Medicine, School
of Medicine, Kangwon National University, Chuncheon
24341, Korea
| | - Minje Kang
- Department of Internal Medicine, School
of Medicine, Kangwon National University, Chuncheon
24341, Korea
| | - Ji-Hye Jung
- Department of Internal Medicine, School
of Medicine, Kangwon National University, Chuncheon
24341, Korea
| | - Seung-Joon Lee
- Department of Internal Medicine, School
of Medicine, Kangwon National University, Chuncheon
24341, Korea
| | - Seok-Ho Hong
- Department of Internal Medicine, School
of Medicine, Kangwon National University, Chuncheon
24341, Korea,Institute of Medical Science, Kangwon
National University, Chuncheon 24341,
Korea,KW-Bio Co., Ltd,
Wonju 26487, Korea,Corresponding author Seok-Ho
Hong, Department of Internal Medicine, School, of Medicine, Kangwon National
University, Chuncheon 24431, Korea., Tel: +82-33-250-7819,
Fax: +82-33-244-2367, E-mail:
| |
Collapse
|
5
|
Cyanotoxins uptake and accumulation in crops: Phytotoxicity and implications on human health. Toxicon 2022; 211:21-35. [DOI: 10.1016/j.toxicon.2022.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 12/16/2022]
|
6
|
Yang Y, Yu G, Chen Y, Jia N, Li R. Four decades of progress in cylindrospermopsin research: The ins and outs of a potent cyanotoxin. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124653. [PMID: 33321325 DOI: 10.1016/j.jhazmat.2020.124653] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
The cyanotoxin cylindrospermopsin (CYN), a toxic metabolite from cyanobacteria, is of particular concern due to its cosmopolitan occurrence, aquatic bioaccumulation, and multi-organ toxicity. CYN is the second most often recorded cyanotoxin worldwide, and cases of human morbidity and animal mortality are associated with ingestion of CYN contaminated water. The toxin poses a great challenge for drinking water treatment plants and public health authorities. CYN, with the major toxicity manifested in the liver, is cytotoxic, genotoxic, immunotoxic, neurotoxic and may be carcinogenic. Adverse effects are also reported for endocrine and developmental processes. We present a comprehensive review of CYN over the past four decades since its first reported poisoning event, highlighting its global occurrence, biosynthesis, toxicology, removal, and monitoring. In addition, current data gaps are identified, and future directions for CYN research are outlined. This review is beneficial for understanding the ins and outs of this environmental pollutant, and for robustly assessing health hazards posed by CYN exposure to humans and other organisms.
Collapse
Affiliation(s)
- Yiming Yang
- Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, Guangdong 510182, China
| | - Gongliang Yu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Youxin Chen
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China
| | - Nannan Jia
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Renhui Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
7
|
Schneider M, Rataj R, Kolb JF, Bláha L. Cylindrospermopsin is effectively degraded in water by pulsed corona-like and dielectric barrier discharges. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115423. [PMID: 32829127 DOI: 10.1016/j.envpol.2020.115423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
Cylindrospermopsin (CYN) is an important cyanobacterial toxin posing a major threat to surface waters during cyanobacterial blooms. Hence, methods for cyanotoxin removal are required to confront seasonal or local incidences to sustain the safety of potable water reservoirs. Non-thermal plasmas provide the possibility for an environmentally benign treatment which can be adapted to specific concentrations and environmental conditions without the need of additional chemicals. We therefore investigated the potential of two different non-thermal plasma approaches for CYN degradation, operated either in a water mist, i.e. in air, or submerged in water. A degradation efficacy of 0.03 ± 0.00 g kWh-1 L-1 was found for a dielectric barrier discharge (DBD) operated in air, while a submerged pulsed corona-like discharge resulted in an efficacy of 0.24 ± 0.02 g kWh-1 L-1. CYN degradation followed a pseudo zeroth order or pseudo first order reaction kinetic, respectively. Treatment efficacy of the corona-like discharge submerged in water increased with pH values of the initial solution changing from 5.0 to 7.5. Notably, a pH-depending residual oxidative effect was observed for the submerged discharge, resulting in ongoing CYN degradation, even without further plasma treatment. In this case hydroxyl radicals were identified as the dominant oxidants of CYN at acidic pH values. In comparison, degradation by the DBD could be related primarily to the generation of ozone.
Collapse
Affiliation(s)
- Marcel Schneider
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Raphael Rataj
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Straße 2, 17489, Greifswald, Germany.
| | - Juergen F Kolb
- Leibniz Institute for Plasma Science and Technology e.V. (INP Greifswald), Felix-Hausdorff-Straße 2, 17489, Greifswald, Germany.
| | - Luděk Bláha
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| |
Collapse
|
8
|
Structure-Dependent Effects of Phthalates on Intercellular and Intracellular Communication in Liver Oval Cells. Int J Mol Sci 2020; 21:ijms21176069. [PMID: 32842520 PMCID: PMC7504421 DOI: 10.3390/ijms21176069] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023] Open
Abstract
Humans are exposed to phthalates released from plastics, cosmetics, or food on a daily basis. Phthalates have low acute liver toxicity, but their chronic exposures could induce molecular and cellular effects linked to adverse health outcomes, such as liver tumor promotion or chronic liver diseases. The alternation of gap junctional intercellular communication (GJIC) and MAPK-Erk1/2 pathways in liver progenitor or oval cells can disrupt liver tissue homeostatic mechanisms and affect the development and severity of these adverse outcomes. Our study with 20 different phthalates revealed their structurally dependent effects on liver GJIC and MAPK-Erk1/2 signaling in rat liver WB-F344 cell line with characteristics of liver oval cells. The phthalates with a medium-length side chain (3–6 C) were the most potent dysregulators of GJIC and activators of MAPK-Erk1/2. The effects occurred rapidly, suggesting the activation of non-genomic (non-transcriptional) mechanisms directly by the parental compounds. Short-chain phthalates (1–2 C) did not dysregulate GJIC even after longer exposures and did not activate MAPK-Erk1/2. Longer chain (≥7 C) phthalates, such as DEHP or DINP, moderately activated MAPK-Erk1/2, but inhibited GJIC only after prolonged exposures (>12 h), suggesting that GJIC dysregulation occurs via genomic mechanisms, or (bio)transformation. Overall, medium-chain phthalates rapidly affected the key tissue homeostatic mechanisms in the liver oval cell population via non-genomic pathways, which might contribute to the development of chronic liver toxicity and diseases.
Collapse
|
9
|
Raška J, Čtveráčková L, Dydowiczová A, Sovadinová I, Bláha L, Babica P. Cylindrospermopsin induces cellular stress and activation of ERK1/2 and p38 MAPK pathways in adult human liver stem cells. CHEMOSPHERE 2019; 227:43-52. [PMID: 30981969 DOI: 10.1016/j.chemosphere.2019.03.131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 03/16/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Cyanobacterial toxin cylindrospermopsin (CYN) is an emerging freshwater contaminant, whose expanding environmental occurrence might result into increased human health risks. CYN is potent hepatotoxin, with cytotoxicity and genotoxicity documented in primary hepatocytes or hepatoma cell lines. However, there is only limited information about CYN effects on adult human liver stem cells (LSCs), which play an important role in liver tissue development, regeneration and repair. In our study with human liver cell line HL1-hT1 which expresses characteristics of LSCs, CYN was found to be cytotoxic and increasing cell death after 24-48 h exposure to concentrations >1 μM. Subcytotoxic 1 μM concentration did not induce cell death or membrane damage, but inhibited cellular processes related to energy production, leading to a growth stagnation after >72 h. Interestingly, these effects were not associated with increased DNA damage, reactive oxygen species production, or endoplasmic reticulum stress. However, CYN induced a sustained (24-48 h) activation of mitogen-activated protein kinases ERK1/2 and p38, and increased expression of stress-related transcription factor ATF3. Thus, LSCs were not primarily affected by CYN-induced genotoxicity and oxidative stress, but via activation of signaling and transcriptional pathways critical for regulation of cell proliferation, stress responses, cell survival and inflammation. Alterations of LSCs during CYN-induced liver injury, including the role of nongenotoxic mechanisms, should be therefore considered in mechanistic assessments of chronic CYN hepatotoxicity and hepatocarcinogenicity.
Collapse
Affiliation(s)
- Jan Raška
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Lucie Čtveráčková
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Aneta Dydowiczová
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Iva Sovadinová
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Luděk Bláha
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, MasarykUniversity, Kamenice 753/5, 625 00, Brno, Czech Republic.
| |
Collapse
|