1
|
Stossi F, Singh PK, Mistry RM, Johnson HL, Dandekar RD, Mancini MG, Szafran AT, Rao AU, Mancini MA. Quality Control for Single Cell Imaging Analytics Using Endocrine Disruptor-Induced Changes in Estrogen Receptor Expression. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:27008. [PMID: 35167326 PMCID: PMC8846386 DOI: 10.1289/ehp9297] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Diverse toxicants and mixtures that affect hormone responsive cells [endocrine disrupting chemicals (EDCs)] are highly pervasive in the environment and are directly linked to human disease. They often target the nuclear receptor family of transcription factors modulating their levels and activity. Many high-throughput assays have been developed to query such toxicants; however, single-cell analysis of EDC effects on endogenous receptors has been missing, in part due to the lack of quality control metrics to reproducibly measure cell-to-cell variability in responses. OBJECTIVE We began by developing single-cell imaging and informatic workflows to query whether the single cell distribution of the estrogen receptor-α (ER), used as a model system, can be used to measure effects of EDCs in a sensitive and reproducible manner. METHODS We used high-throughput microscopy, coupled with image analytics to measure changes in single cell ER nuclear levels on treatment with ∼100 toxicants, over a large number of biological and technical replicates. RESULTS We developed a two-tiered quality control pipeline for single cell analysis and tested it against a large set of biological replicates, and toxicants from the EPA and Agency for Toxic Substances and Disease Registry lists. We also identified a subset of potentially novel EDCs that were active only on the endogenous ER level and activity as measured by single molecule RNA fluorescence in situ hybridization (RNA FISH). DISCUSSION We demonstrated that the distribution of ER levels per cell, and the changes upon chemical challenges were remarkably stable features; and importantly, these features could be used for quality control and identification of endocrine disruptor toxicants with high sensitivity. When coupled with orthogonal assays, ER single cell distribution is a valuable resource for high-throughput screening of environmental toxicants. https://doi.org/10.1289/EHP9297.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Pankaj K. Singh
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| | - Ragini M. Mistry
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | - Hannah L. Johnson
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
| | | | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Arvind U. Rao
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
- Department of Computational Medicine and Bioinformatics, Biostatistics, Biomedical Engineering & Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas, USA
- Integrated Microscopy Core, Baylor College of Medicine, Houston, Texas, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
- GCC Center for Advanced Microscopy and Image Informatics, Houston, Texas, USA
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas, USA
| |
Collapse
|
2
|
Bolt MJ, Singh P, Obkirchner CE, Powell RT, Mancini MG, Szafran AT, Stossi F, Mancini MA. Endocrine disrupting chemicals differentially alter intranuclear dynamics and transcriptional activation of estrogen receptor-α. iScience 2021; 24:103227. [PMID: 34712924 PMCID: PMC8529556 DOI: 10.1016/j.isci.2021.103227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/30/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022] Open
Abstract
Transcription is a highly regulated sequence of stochastic processes utilizing many regulators, including nuclear receptors (NR) that respond to stimuli. Endocrine disrupting chemicals (EDCs) in the environment can compete with natural ligands for nuclear receptors to alter transcription. As nuclear dynamics can be tightly linked to transcription, it is important to determine how EDCs affect NR mobility. We use an EPA-assembled set of 45 estrogen receptor-α (ERα) ligands and EDCs in our engineered PRL-Array model to characterize their effect upon transcription using fluorescence in situ hybridization and fluorescence recovery after photobleaching (FRAP). We identified 36 compounds that target ERα-GFP to a transcriptionally active, visible locus. Using a novel method for multi-region FRAP analysis we find a strong negative correlation between ERα mobility and inverse agonists. Our findings indicate that ERα mobility is not solely tied to transcription but affected highly by the chemical class binding the receptor.
Collapse
Affiliation(s)
- Michael J. Bolt
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Pankaj Singh
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Caroline E. Obkirchner
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Reid T. Powell
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Maureen G. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Adam T. Szafran
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| | - Michael A. Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Advanced Microscopy and Image Informatics, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
- Center for Translational Cancer Research, Institute of Biosciences & Technology, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
3
|
Screening for androgen agonists using autonomously bioluminescent HEK293 reporter cells. Biotechniques 2021; 71:403-415. [PMID: 34350768 PMCID: PMC8371548 DOI: 10.2144/btn-2021-0017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Due to the public health concerns of endocrine-disrupting chemicals, there is an increasing demand to develop improved high-throughput detection assays for enhanced exposure control and risk assessment. A substrate-free, autobioluminescent HEK293ARE/Gal4-Lux assay was developed to screen compounds for their ability to induce androgen receptor (AR)-mediated transcriptional activation. The assay was validated against a group of 40 recommended chemicals and achieved an overall 87.5% accuracy in qualitatively classifying positive and negative AR agonists. The HEK293ARE/Gal4-Lux assay was demonstrated as a suitable tool for Tier 1 AR agonist screening. By eliminating exogenous substrate, this assay provided a significant advantage over traditional reporter assays by enabling higher-throughput screening with reduced testing costs while maintaining detection accuracy. A human optimized version of the bacterial luciferase gene cassette was developed such that bioluminescence is controlled by exposure to androgen-disruptor chemicals. This cassette, along with the androgen receptor gene, was co-transfected into an HEK293 human cell host that naturally lacks hormone receptors. The resulting reporter cell line was used to screen compounds for androgenic activity in a low cost, high throughput format.
Collapse
|
4
|
Gheorghiu M, Polonschii C, Popescu O, Gheorghiu E. Advanced Optogenetic-Based Biosensing and Related Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4151. [PMID: 34361345 PMCID: PMC8347019 DOI: 10.3390/ma14154151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/12/2021] [Accepted: 07/20/2021] [Indexed: 02/07/2023]
Abstract
The ability to stimulate mammalian cells with light, brought along by optogenetic control, has significantly broadened our understanding of electrically excitable tissues. Backed by advanced (bio)materials, it has recently paved the way towards novel biosensing concepts supporting bio-analytics applications transversal to the main biomedical stream. The advancements concerning enabling biomaterials and related novel biosensing concepts involving optogenetics are reviewed with particular focus on the use of engineered cells for cell-based sensing platforms and the available toolbox (from mere actuators and reporters to novel multifunctional opto-chemogenetic tools) for optogenetic-enabled real-time cellular diagnostics and biosensor development. The key advantages of these modified cell-based biosensors concern both significantly faster (minutes instead of hours) and higher sensitivity detection of low concentrations of bioactive/toxic analytes (below the threshold concentrations in classical cellular sensors) as well as improved standardization as warranted by unified analytic platforms. These novel multimodal functional electro-optical label-free assays are reviewed among the key elements for optogenetic-based biosensing standardization. This focused review is a potential guide for materials researchers interested in biosensing based on light-responsive biomaterials and related analytic tools.
Collapse
Affiliation(s)
- Mihaela Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Cristina Polonschii
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| | - Octavian Popescu
- Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai-University, 400084 Cluj-Napoca, Romania;
- Institute of Biology Bucharest, Romanian Academy, 296 Splaiul Independentei, 060031 Bucharest, Romania
| | - Eugen Gheorghiu
- International Centre of Biodynamics, 1B Intrarea Portocalelor, 060101 Bucharest, Romania;
| |
Collapse
|
5
|
El-Fatyany A, Wang H, Abd El-Atty SM. Efficient Framework Analysis for Targeted Drug Delivery Based on Internet of Bio-NanoThings. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021; 46:9965-9980. [PMID: 33907662 PMCID: PMC8061466 DOI: 10.1007/s13369-021-05651-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 04/03/2021] [Indexed: 11/24/2022]
Abstract
The Internet of Bio-NanoThings (IoBNTs) is a novel paradigm that derives from synthetic biology and advances in nanotechnology for controlling the embedded nanodevices in various medical applications. However, numerous studies have focused on communication efficiency among the nanodevices in a given network, the challenges such as the design and the development of the nanodevices, and the coordination of molecular communication within the wireless body area network (BAN), and the interface connection between the BAN and the Internet are yet to be addressed. Therefore, in this study, we present a framework analysis comprising of the compartmental model, for studying the effects and variances in drug concentration that occur inside intra-body nanonetworks through IoBNT, while taking into account the properties of target cells as well as the ligand-receptor binding mechanism. A performance analysis of the proposed framework for the forward link (i.e., from the Internet to the intra-body nanonetwork) and reverse link (i.e., from the intra-body nanonetwork to the Internet) is presented. The simulation results of the developed framework reveal its ability to enhance the delivery of therapeutic drugs to the target cell while minimizing the side effects in healthy cells.
Collapse
Affiliation(s)
- Aya El-Fatyany
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China.,Department of Mathematics, Faculty of Science, Menoufia University, Shebin El‑Kom, Egypt
| | - Hongzhi Wang
- School of Computer Science and Technology, Harbin Institute of Technology (HIT), Harbin, China
| | - Saied M Abd El-Atty
- Department of Electronics and Electrical Communications Engineering, Menoufia University, Menouf, 32952 Egypt
| |
Collapse
|
6
|
Yip D, Kirkpatrick A, Xu T, Masi T, Stephenson S, Ripp S, Close D. Continuous and Real-Time In Vivo Autobioluminescent Imaging in a Mouse Model. Methods Mol Biol 2020; 2081:191-201. [PMID: 31721126 PMCID: PMC7179073 DOI: 10.1007/978-1-4939-9940-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2024]
Abstract
In vivo small animal bioluminescent imaging has become an indispensable technique for interrogating the localization, health, and functionality of implanted cells within the complex environment of a living organism. However, this task can be daunting for even the most experienced researchers because it requires multiple animal handling steps and produces differential output signal characteristics in response to a number of experimental design variables. The recent emergence of autobioluminescent cells, which autonomously and continuously produce bioluminescent output signals without external stimulation, has the potential to simplify this process, reduce variability by removing human-induced error, and improve animal welfare by reducing the number of required needlesticks per procedure. This protocol details the implantation and imaging of autobioluminescent cells within a mouse model to demonstrate how cells implanted from a single injection can be imaged repeatedly across any post-implantation timescale without the need for further human-animal interaction or signal activation steps. This approach provides a facile means to continuously monitor implanted cellular output signals in real-time for extended time periods.
Collapse
Affiliation(s)
- Derek Yip
- 490 BioTech Inc., Knoxville, TN, USA
| | | | - Tingting Xu
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Tom Masi
- Department of Surgery, Graduate School of Medicine, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Stacy Stephenson
- Department of Surgery, Graduate School of Medicine, The University of Tennessee Medical Center, Knoxville, TN, USA
| | - Steven Ripp
- 490 BioTech Inc., Knoxville, TN, USA
- The Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- 490 BioTech Inc., Knoxville, TN, USA.
| |
Collapse
|
7
|
Osipova Z, Shcheglov A, Yampolsky I. Autonomous bioluminescent systems: prospects for use in the imaging of living organisms. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioluminescent systems are increasingly being used for the development of highly sensitive optical imaging techniques in vivo. However, it is necessary to inject expensive and unstable synthetic substrates (luciferins) before each analysis for most of the systems applied. Autonomous bacterial and fungal bioluminescent systems, that recently have become available for implementation in eukaryotic cells, in our opinion, may be developed into an effective tool in new technologies of bioluminescent imaging.
Collapse
Affiliation(s)
- Z.M. Osipova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - A.S. Shcheglov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| | - I.V. Yampolsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russia
| |
Collapse
|