1
|
Effect of Pesticides on Peroxisome Proliferator-Activated Receptors (PPARs) and Their Association with Obesity and Diabetes. PPAR Res 2023; 2023:1743289. [PMID: 36875280 PMCID: PMC9984265 DOI: 10.1155/2023/1743289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023] Open
Abstract
Obesity and diabetes mellitus are considered the most important diseases of the XXI century. Recently, many epidemiological studies have linked exposure to pesticides to the development of obesity and type 2 diabetes mellitus. The role of pesticides and their possible influence on the development of these diseases was investigated by examining the relationship between these compounds and one of the major nuclear receptor families controlling lipid and carbohydrate metabolism: the peroxisome proliferator-activated receptors (PPARs), PPARα, PPARβ/δ, and PPARγ; this was possible through in silico, in vitro, and in vivo assays. The present review aims to show the effect of pesticides on PPARs and their contribution to the changes in energy metabolism that enable the development of obesity and type 2 diabetes mellitus.
Collapse
|
2
|
Fukunaga S, Ogata K, Eguchi A, Matsunaga K, Sakurai K, Abe J, Cohen SM, Asano H. Evaluation of the mode of action and human relevance of liver tumors in male mice treated with epyrifenacil. Regul Toxicol Pharmacol 2022; 136:105268. [DOI: 10.1016/j.yrtph.2022.105268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/15/2022] [Accepted: 10/01/2022] [Indexed: 11/13/2022]
|
3
|
Lee HS, Song HJ, Park Y, Smolensky D, Lee SH. Permethrin inhibits tube formation and viability of endothelial cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:4079-4085. [PMID: 34997580 DOI: 10.1002/jsfa.11757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/11/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Exposure to environmental chemicals has been linked with endothelial dysfunction, which is a leading cause of human diseases, including atherosclerosis. Permethrin is a frequently used synthetic pyrethroid insecticide for which longer exposure may cause toxicity in several types of tissues and the development of metabolic diseases, including atherosclerosis, obesity and diabetes. The present study was designed to evaluate the potential adverse effect of permethrin on the function and activity of human endothelial cells. RESULTS Permethrin was found to repress migration and tube formation by human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, as well as to significantly repress their viability after 24 and 48 h of treatment. Furthermore, increased reactive oxygen species (ROS) production was observed in cells treated with permethrin, and the permethrin-induced repression of cell viability was ROS-dependent. Permethrin did not influence apoptosis, necrosis or mitochondrial membrane potential in HUVECs. CONCLUSION The results of the present study suggest that permethrin represses angiogenesis and viability through ROS-dependent and cell growth-, apoptosis- and necrosis-independent means. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hee-Seop Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Hee-Jung Song
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Dmitriy Smolensky
- Grain Quality and Structure Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Manhattan, KS, USA
| | - Seong-Ho Lee
- Department of Nutrition and Food Science, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, USA
| |
Collapse
|
4
|
Satoh H, Machino S, Fujii T, Yoshida M, Asano S, Yokoyama Y, Miyajima K. [Important Points at Interpretation ofNongenotoxic-Carcinogenicity Induced by Pesticidesin Rodent Bioassays]. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2022; 63:34-42. [PMID: 35264520 DOI: 10.3358/shokueishi.63.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Assessment of carcinogenicity is important for human health at dietary risk assessment of pesticide residues. This article indicated important points on interpretation of carcinogenicity in toxicological evaluation of pesticide residues based on principles of risk analysis in foods by CODEX to be a guide for risk assessors. This guidance was referred from the guidance on carcinogenicity evaluation by international and/or national organizations, and the interpretations of Food Safety Commissions of Japan (FSCJ) published in their risk assessment reports. We focused on carcinogenicity obtained from routine carcinogenicity bioassays in rodents. The guidance includes the purpose and usefulness of the bioassay studies, consideration points to be carcinogenicity and influencing factors to carcinogenicity in the test to judge carcinogenic hazard at hazard identification. Considering on human relevance as carcinogenic hazard also was proposed using practical case examples. Next, a carcinogenic hazard is evaluated on dose-response relationship to judge points of departure on carcinogenicity. At the end of this article, we challenged our recommendation on future assessment of carcinogenicity to progress from hazard to risk.
Collapse
|
5
|
Yamada T, Lake BG, Cohen SM. Evaluation of the human hazard of the liver and lung tumors in mice treated with permethrin based on mode of action. Crit Rev Toxicol 2022; 52:1-31. [PMID: 35275035 DOI: 10.1080/10408444.2022.2035316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The non-genotoxic synthetic pyrethroid insecticide permethrin produced hepatocellular adenomas and bronchiolo-alveolar adenomas in female CD-1 mice, but not in male CD-1 mice or in female or male Wistar rats. Studies were performed to evaluate possible modes of action (MOAs) for permethrin-induced female CD-1 mouse liver and lung tumor formation. The MOA for liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), increased hepatocellular proliferation, development of altered hepatic foci, and ultimately liver tumors. This MOA is similar to that established for other PPARα activators and is considered to be qualitatively not plausible for humans. The MOA for lung tumor formation by permethrin involves interaction with Club cells, followed by a mitogenic effect resulting in Club cell proliferation, with prolonged administration producing Club cell hyperplasia and subsequently formation of bronchiolo-alveolar adenomas. Although the possibility that permethrin exposure may potentially result in enhancement of Club cell proliferation in humans cannot be completely excluded, there is sufficient information on differences in basic lung anatomy, physiology, metabolism, and biologic behavior of tumors in the general literature to conclude that humans are quantitatively less sensitive to agents that increase Club cell proliferation and lead to tumor formation in mice. The evidence strongly indicates that Club cell mitogens are not likely to lead to increased susceptibility to lung tumor development in humans. Overall, based on MOA evaluation it is concluded that permethrin does not pose a tumorigenic hazard for humans, this conclusion being supported by negative data from permethrin epidemiological studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Brian G Lake
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Ogata K, Liu Y, Ohara A, Kawamoto K, Kondo M, Kobayashi K, Fukuda T, Asano H, Kitamoto S, Lake BG, Cohen SM, Yamada T. Club Cells Are the Primary Target for Permethrin-Induced Mouse Lung Tumor Formation. Toxicol Sci 2021; 184:15-32. [PMID: 34427685 DOI: 10.1093/toxsci/kfab103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Permethrin has been shown to increase lung adenomas in female CD-1 mice, but not in male mice or Wistar rats. The proposed mode of action (MOA) for permethrin-induced female mouse lung tumor formation involves morphological changes in Club cells; increased Club cell proliferation; increased Club cell hyperplasia, and lung tumor formation. In this study, the treatment of female CD-1 mice with tumorigenic doses (2500 and 5000 ppm) of permethrin, but not with a nontumorigenic dose (20 ppm), for 14 and/or 28 days increased Club cell replicative DNA synthesis. Global gene expression analysis of female mouse lung samples demonstrated that permethrin treatment up-regulated 3 genes associated with cell proliferation, namely aldehyde dehydrogenase 3a1 (Aldh3a1), oxidative stress-induced growth inhibitor 1, and thioredoxin reductase 1. Treatment with 2500 and 5000 ppm, but not 20 ppm, permethrin for 7 days produced significant increases in mRNA levels of these 3 genes. Immunohistochemical analysis demonstrated that Club cell secretory protein, CYP2F2, and ALDH3A1 colocalized in Club cells; confirmed by flow cytometry analysis of lung cells employing KI67 as a cell proliferation marker. Overall, the present data extend the proposed MOA by demonstrating that Club cells are the primary initial target of permethrin administration in female mouse lungs. As humans are quantitatively much less sensitive to agents that increase Club cell proliferation and lung tumor formation in mice, it is most likely that permethrin could not produce lung tumors in humans. This conclusion is supported by available negative epidemiological data from several studies.
Collapse
Affiliation(s)
- Keiko Ogata
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Yang Liu
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Ayako Ohara
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kensuke Kawamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Kumiko Kobayashi
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Takako Fukuda
- Bioscience Research Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Hiroyuki Asano
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Sachiko Kitamoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, Nebraska 68198-3135, USA
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Osaka 554-8558, Japan
| |
Collapse
|
7
|
Kondo M, Kikumoto H, Osimitz TG, Cohen SM, Lake BG, Yamada T. An Evaluation of the Human Relevance of the Liver Tumors Observed in Female Mice Treated With Permethrin Based on Mode of Action. Toxicol Sci 2021; 175:50-63. [PMID: 32040184 DOI: 10.1093/toxsci/kfaa017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In 2-year studies, the nongenotoxic pyrethroid insecticide permethrin produced hepatocellular tumors in CD-1 mice but not in Wistar rats. Recently, we demonstrated that the mode of action (MOA) for mouse liver tumor formation by permethrin involves activation of the peroxisome proliferator-activated receptor alpha (PPARα), resulting in a mitogenic effect. In the present study, the effects of permethrin and 2 major permethrin metabolites, namely 3-phenoxybenzoic acid and trans-dichlorochrysanthemic acid, on cytochrome P450 mRNA levels and cell proliferation (determined as replicative DNA synthesis) were evaluated in cultured CD-1 mouse, Wistar rat, and human hepatocytes. Permethrin and 3-phenoxybenzoic acid induced CYP4A mRNA levels in both mouse and human hepatocytes, with trans-dichlorochrysanthemic acid also increasing CYP4A mRNA levels in mouse hepatocytes. 3-Phenoxybenzoic acid induced CYP4A mRNA levels in rat hepatocytes, with trans-dichlorochrysanthemic acid increasing both CYP4A mRNA levels and replicative DNA synthesis. Permethrin, 3-phenoxybenzoic acid, and trans-dichlorochrysanthemic acid stimulated replicative DNA synthesis in mouse hepatocytes but not in human hepatocytes, demonstrating that human hepatocytes are refractory to the mitogenic effects of permethrin and these 2 metabolites. Thus, although some of the key (eg, PPARα activation) and associative (eg, CYP4A induction) events in the established MOA for permethrin-induced mouse liver tumor formation could occur in human hepatocytes at high doses of permethrin, 3-phenoxybenzoic acid, and/or trans-dichlorochrysanthemic acid, increased cell proliferation (an essential step in carcinogenesis by nongenotoxic PPARα activators) was not observed. These results provide additional evidence that the established MOA for permethrin-induced mouse liver tumor formation is not plausible for humans.
Collapse
Affiliation(s)
- Miwa Kondo
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | - Hiroko Kikumoto
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| | | | - Samuel M Cohen
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-3135
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd, Konohana-ku, Osaka 554-8558, Japan
| |
Collapse
|
8
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
9
|
Cohen SM, Zhongyu Y, Bus JS. Relevance of mouse lung tumors to human risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:214-241. [PMID: 32452303 DOI: 10.1080/10937404.2020.1763879] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Mouse lung is a common site for chemical tumorigenicity, but the relevance to human risk remains debated. Long-term bioassays need to be assessed for appropriateness of the dose, neither exceeding Maximum Tolerated Dose (MTD) nor Kinetically based Maximum Dose (KMD). An example of the KMD issue is 1,3-dichloropropene (1,3-D), which only produced an increased incidence of lung tumors at a dose exceeding the KMD. In addition, since mouse lung tumors are common (>1% incidence), the appropriate statistical significance is p < .01. Numerous differences exist for mouse lung and tumors compared to humans, including anatomy, respiratory rate, metabolism, tumor histogenesis, and metastatic frequency. The recent demonstration of the critical role of mouse lung specific Cyp2 F2 metabolism in mouse lung carcinogenicity including styrene or fluensulfone indicates that this tumor response is not qualitatively or quantitatively relevant to humans. For non-DNA reactive and non-mutagenic carcinogens, the mode of action involves direct mitogenicity such as for isoniazid, styrene, fluensulfone, permethrin or cytotoxicity with regeneration such as for naphthalene. However, the possibility of mixed mitogenic and cytotoxic modes of action cannot always be excluded. The numerous differences between mouse and human, combined with epidemiologic evidence of no increased cancer risk for several of these chemicals make the relevance of mouse lung tumors for human cancer risk dubious.
Collapse
Affiliation(s)
- Samuel M Cohen
- Havlik-Wall Professor of Oncology, University of Nebraska Medical Center , Omaha, NE, USA
- University of Nebraska Medical Center , Omaha, NE, USA
| | | | | |
Collapse
|
10
|
Bhatt P, Huang Y, Zhan H, Chen S. Insight Into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front Microbiol 2019; 10:1778. [PMID: 31428072 PMCID: PMC6687851 DOI: 10.3389/fmicb.2019.01778] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 07/18/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrethroids are broad-spectrum insecticides and presence of chiral carbon differentiates among various forms of pyrethroids. Microbial approaches have emerged as a popular solution to counter pyrethroid toxicity to marine life and mammals. Bacterial and fungal strains can effectively degrade pyrethroids into non-toxic compounds. Different strains of bacteria and fungi such as Bacillus spp., Raoultella ornithinolytica, Psudomonas flourescens, Brevibacterium sp., Acinetobactor sp., Aspergillus sp., Candida sp., Trichoderma sp., and Candia spp., are used for the biodegradation of pyrethroids. Hydrolysis of ester bond by enzyme esterase/carboxyl esterase is the initial step in pyrethroid biodegradation. Esterase is found in bacteria, fungi, insect and mammalian liver microsome cells that indicates its hydrolysis ability in living cells. Biodegradation pattern and detected metabolites reveal microbial consumption of pyrethroids as carbon and nitrogen source. In this review, we aim to explore pyrethroid degrading strains, enzymes and metabolites produced by microbial strains. This review paper covers in-depth knowledge of pyrethroids and recommends possible solutions to minimize their environmental toxicity.
Collapse
Affiliation(s)
| | | | | | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Yamada T, Asano H, Miyata K, Rhomberg LR, Haseman JK, Greaves P, Greim H, Berry C, Cohen SM. Toxicological evaluation of carcinogenicity of the pyrethroid imiprothrin in rats and mice. Regul Toxicol Pharmacol 2019; 105:1-14. [DOI: 10.1016/j.yrtph.2019.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/09/2019] [Accepted: 03/17/2019] [Indexed: 01/07/2023]
|