1
|
Friedrichs GS, Abernathy MM, Ackley D, Clark M, DaSilva JK, Foley CM, Greiter-Wilke A, Henderson KA, Kremer JJ, Morimoto BH, Paglialunga S, Pugsley MK, Regan CP, Rossman EI, Segretti JA, Traebert M, Vargas HM, Wisialowski TA. Reevaluating safety pharmacology respiratory studies within the ICH S7A core battery: A multi-company evaluation of preclinical utility and clinical translation. Regul Toxicol Pharmacol 2024; 153:105706. [PMID: 39293707 DOI: 10.1016/j.yrtph.2024.105706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/09/2024] [Accepted: 09/16/2024] [Indexed: 09/20/2024]
Abstract
Optimization of ICH safety guideline studies for inclusion into regulatory submissions is critical for resource conservation, animal use reduction, and efficient drug development. The ICH S7A guidance for Safety Pharmacology (SP) studies adopted in 2001 identified the core battery of studies to evaluate the acute safety of putative pharmaceutical molecules prior to First in Human (FIH) trials. To assess the utility of respiratory studies in predicting clinical AE's, seven pharmaceutical companies pooled preclinical and clinical respiratory findings. A large database of novel molecules included all relevant data from standard S7A respiratory (n = 459) and FIH studies (n = 309). The data were analyzed with respect to the progression of these molecules, clinical adverse event reporting of these same molecules, and achieved exposures. These S7A respiratory assay findings had no impact on compound progression, and only 12 of 309 drug candidates were 'positive' preclinically and reported a respiratory-related AE in clinical trials (i.e. cough, dyspnea, etc.), an overall incidence rate of 3.9%. Contingency tables/statistics support a lack of concordance of these preclinical assays. Overall, our extensive analysis clearly indicated that the preclinical respiratory assay fails to provide any prognostic value for detecting clinically relevant respiratory adverse events.
Collapse
Affiliation(s)
- G S Friedrichs
- Novartis Biomedical Research, 1 Health Plaza, East Hanover, NJ 07936-1080, USA.
| | - M M Abernathy
- Eli Lilly Corporate Center, 893 Delaware St, Indianapolis, IN 46225, USA
| | - D Ackley
- Eli Lilly Corporate Center, 893 Delaware St, Indianapolis, IN 46225, USA
| | - M Clark
- Ability Biologics, 3 Place Ville-Marie Suite 400, Montréal, Québec H3B 4W8, Canada
| | - J K DaSilva
- Pfizer Research and Development, 445 Eastern Point Rd Groton, CT 06340, USA
| | - C M Foley
- Abbvie Inc, North Chicago, IL, 60064, USA
| | - A Greiter-Wilke
- Roche Innovation Center Basel, Grenzacherstr. 124, CH 4070 Basel, Switzerland
| | - K A Henderson
- Amgen Inc., Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA 91320, USA
| | - J J Kremer
- Novartis BioMedical Research, 220 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - B H Morimoto
- Alto Neuroscience, Inc. 369 S San Antonio Rd, Los Altos CA 94022, USA
| | | | - M K Pugsley
- Cytokinetics, 350 Oyster Point Blvd, South San Francisco, CA 94080, USA
| | - C P Regan
- Merck & Co., Inc., West Point, PA 19486, USA
| | - E I Rossman
- GSK, 1250 Collegeville Avenue, Collegeville, PA 19426, USA
| | | | - M Traebert
- Novartis BioMedical Research, Postfach, 4002 Basel, Switzerland
| | - H M Vargas
- Amgen Inc., Translational Safety & Bioanalytical Sciences, Thousand Oaks, CA 91320, USA
| | - T A Wisialowski
- Pfizer Research and Development, 445 Eastern Point Rd Groton, CT 06340, USA
| |
Collapse
|
2
|
Morris CJ, Rolf MG, Starnes L, Villar IC, Pointon A, Kimko H, Di Veroli GY. Modelling hemodynamics regulation in rats and dogs to facilitate drugs safety risk assessment. Front Pharmacol 2024; 15:1402462. [PMID: 39534082 PMCID: PMC11555398 DOI: 10.3389/fphar.2024.1402462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/28/2024] [Indexed: 11/16/2024] Open
Abstract
Pharmaceutical companies routinely screen compounds for hemodynamics related safety risk. In vitro secondary pharmacology is initially used to prioritize compounds while in vivo studies are later used to quantify and translate risk to humans. This strategy has shown limitations but could be improved via the incorporation of molecular findings in the animal-based toxicological risk assessment. The aim of this study is to develop a mathematical model for rat and dog species that can integrate secondary pharmacology modulation and therefore facilitate the overall pre-clinical safety translation assessment. Following an extensive literature review, we built two separate models recapitulating known regulation processes in dogs and rats. We describe the resulting models and show that they can reproduce a variety of interventions in both species. We also show that the models can incorporate the mechanisms of action of a pre-defined list of 50 pharmacological mechanisms whose modulation predict results consistent with known pharmacology. In conclusion, a mechanistic model of hemodynamics regulations in rat and dog species has been developed to support mechanism-based safety translation in drug discovery and development.
Collapse
Affiliation(s)
- Christopher J. Morris
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Michael G. Rolf
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Linda Starnes
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Gothenburg, Sweden
| | - Inmaculada C. Villar
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Amy Pointon
- Safety Sciences, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Holly Kimko
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Giovanni Y. Di Veroli
- Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology and Safety Science, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
3
|
Hale E, Storer D, Smith N, McCarthy A, Skinner M. The rat telemetry assay and venous catheter access buttons for use in cardiovascular safety pharmacology assessments - Surgical methods, refinements and colony maintenance. J Pharmacol Toxicol Methods 2024; 127:107517. [PMID: 38797367 DOI: 10.1016/j.vascn.2024.107517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION Rat telemetry is the assay of choice to assess the potential effects of novel drug candidates on cardiovascular parameters during early drug discovery. Telemetry device implantation can be combined with venous catheter and access button implantation when intravenous administration of the drug substance is required. METHODS Rats (Sprague Dawley or Han Wistar) were implanted with telemetry devices for arterial blood pressure measurement using either direct aortic catheterisation (n = 131) or aortic catheterisation via the femoral artery (n = 17). Bipolar leads for ECG recording were also implanted in some of the animals (n = 102). Femoral vein catheters and access buttons were implanted as a separate surgery after the initial telemetry implantation (n = 43). RESULTS 128 animals (86%) were implanted successfully with telemetry devices without any notable surgical or post-surgical problems. When considering the 2 different catheterisation methods separately, the success rate of the direct aortic approach was 88% compared to 76% with the aortic placement via the femoral artery. Lameness was the most common post-surgical problem. Blood loss during surgery and ischaemic patches on the tail were also observed at a low incidence with the direct aortic approach. Catheter pull-out occurred in some rats before the first signal check reducing the overall success rate for blood pressure measurement using the direct aortic approach to 85%. A 95% success rate was observed for catheter and access button implantation. DISCUSSION A high success rate is possible when implanting telemetry devices in rats with and without venous catheters and access buttons. We have attempted to provide solutions to problems and describe refinements to the procedure which may further improve surgical outcomes.
Collapse
Affiliation(s)
- Ed Hale
- Vivonics Preclinical Ltd, Bio Support Unit, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Diane Storer
- Vivonics Preclinical Ltd, Bio Support Unit, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Nastarsia Smith
- Vivonics Preclinical Ltd, Bio Support Unit, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | - Alan McCarthy
- AM Pre-clinical Services Ltd, Macclesfield, Cheshire, UK
| | - Matt Skinner
- Vivonics Preclinical Ltd, Bio Support Unit, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK.
| |
Collapse
|
4
|
Bhatt LK, Shah CR, Patel SD, Patel SR, Patel VA, Patel RJ, Joshi NM, Shah NA, Patel JH, Dwivedi P, Sundar R, Jain MR. A Retrospective Comparison of Electrocardiographic Parameters in Ketamine and Tiletamine-Zolazepam Anesthetized Indian Rhesus Monkeys ( Macaca mulatta). Int J Toxicol 2024; 43:184-195. [PMID: 38108647 DOI: 10.1177/10915818231221276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Electrocardiographic evaluation is performed in rhesus monkeys to establish the cardiovascular safety of candidate molecules before progressing to clinical trials. These animals are usually immobilized chemically by ketamine (KTM) and tiletamine-zolazepam (TZ) to obtain a steady-state heart rate and to ensure adequate human safety. The present study aimed to evaluate the effect of these anesthetic regimens on different electrocardiographic parameters. Statistically significant lower HR and higher P-wave duration, RR, QRS, and QT intervals were observed in the KTM-anesthetized group in comparison to TZ-anesthetized animals. No significant changes were noticed in the PR interval and p-wave amplitude. Sex-based significance amongst these parameters was observed in male and female animals of TZ- and KTM-anesthetized groups. Regression analysis of four QTc formulas in TZ-anesthetized rhesus monkeys revealed that QTcNAK (Nakayama) better corrected the QT interval than QTcHAS (Hassimoto), QTcBZT (Bazett), and QTcFRD (Fridericia) formulas. QTcNAK exhibited the least correlation with the RR interval (slope closest to zero and r = .01) and displayed no statistical significance between male and female animals. These data will prove useful in the selection of anesthetic regimens for chemical restraint of rhesus monkeys in nonclinical safety evaluation studies.
Collapse
|
5
|
Kulesh V, Vasyutin I, Volkova A, Peskov K, Kimko H, Sokolov V, Alluri R. A tutorial for model-based evaluation and translation of cardiovascular safety in preclinical trials. CPT Pharmacometrics Syst Pharmacol 2024; 13:5-22. [PMID: 37950388 PMCID: PMC10787214 DOI: 10.1002/psp4.13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023] Open
Abstract
Assessment of drug-induced effects on the cardiovascular (CV) system remains a critical component of the drug discovery process enabling refinement of the therapeutic index. Predicting potential drug-related unintended CV effects in the preclinical stage is necessary for first-in-human dose selection and preclusion of adverse CV effects in the clinical stage. According to the current guidelines for small molecules, nonclinical CV safety assessment conducted via telemetry analyses should be included in the safety pharmacology core battery studies. However, the manual for quantitative evaluation of the CV safety signals in animals is available only for electrocardiogram parameters (i.e., QT interval assessment), not for hemodynamic parameters (i.e., heart rate, blood pressure, etc.). Various model-based approaches, including empirical pharmacokinetic-toxicodynamic analyses and systems pharmacology modeling could be used in the framework of telemetry data evaluation. In this tutorial, we provide a comprehensive workflow for the analysis of nonclinical CV safety on hemodynamic parameters with a sequential approach, highlight the challenges associated with the data, and propose respective solutions, complemented with a reproducible example. The work is aimed at helping researchers conduct model-based analyses of the CV safety in animals with subsequent translation of the effect to humans seamlessly and efficiently.
Collapse
Affiliation(s)
- Victoria Kulesh
- Modeling & Simulation Decisions FZ‐LLCDubaiUnited Arab Emirates
- Research Center of Model‐Informed Drug DevelopmentSechenov First Moscow State Medical UniversityMoscowRussia
| | - Igor Vasyutin
- Modeling & Simulation Decisions FZ‐LLCDubaiUnited Arab Emirates
| | - Alina Volkova
- Modeling & Simulation Decisions FZ‐LLCDubaiUnited Arab Emirates
- Sirius University of Science and TechnologySiriusRussia
| | - Kirill Peskov
- Modeling & Simulation Decisions FZ‐LLCDubaiUnited Arab Emirates
- Research Center of Model‐Informed Drug DevelopmentSechenov First Moscow State Medical UniversityMoscowRussia
- Sirius University of Science and TechnologySiriusRussia
| | - Holly Kimko
- CPQP, CPSS, BioPharmaceuticals R&DAstraZenecaGaithersburgMarylandUSA
| | - Victor Sokolov
- Modeling & Simulation Decisions FZ‐LLCDubaiUnited Arab Emirates
- Sirius University of Science and TechnologySiriusRussia
| | | |
Collapse
|
6
|
Hotek JC, Detwiler TJ, Chirinos JA, Regan CP. A generalized canine transfer function accurately reconstructs central aortic pressure waveforms to enable enhanced pulse wave analysis. J Pharmacol Toxicol Methods 2023; 124:107476. [PMID: 37931824 DOI: 10.1016/j.vascn.2023.107476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/20/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Routine preclinical blood pressure evaluation is an important risk assessment tool. Although proximal aortic pressure is most relevant for key target organs, abdominal aortic pressures are more commonly recorded. Pulse pressure amplification and waveform distortion in abdominal waveforms make it inappropriate for central hemodynamic analytical methods without the use of a mathematical transfer function. Clinical transfer functions have been developed to estimate ascending aortic waveforms from brachial or radial artery waveforms in humans, but no preclinical analogues exist. The aim of this study was to develop a canine-specific transfer function to reconstruct thoracic aortic pressure waveforms from abdominal aortic data to enable the application of central hemodynamic analytical methods. Simultaneous abdominal and thoracic blood pressures were recorded from seven conscious, male beagle dogs administered 3 well-characterized pharmacologic standards and animals were appointed to a training (n = 3) or validation (n = 4) group at baseline and during dosing. A generalized transfer function was developed from the training group data and evaluated for its ability to synthesize thoracic pressure waves in the training and validation groups. Select hemodynamic parameters were evaluated in measured and synthesized thoracic data. There was a high degree of correlation between measured and synthesized thoracic parameters (r2 = 0.74-0.99). There was no difference between indices computed from synthesized or actual thoracic waveforms at baseline or after administration of pharmacologic standards. This work demonstrates that a generalized preclinical transfer function can reproduce thoracic pressure waves across a range of hemodynamic responses thus enabling the application of central hemodynamic analytical methods.
Collapse
Affiliation(s)
- Julia C Hotek
- Safety & Exploratory Pharmacology (SEP), Merck & Co., Inc., Rahway, NJ, USA.
| | | | - Julio A Chirinos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
7
|
Lightfoot HL, Smith GF. Targeting RNA with small molecules-A safety perspective. Br J Pharmacol 2023. [PMID: 36631428 DOI: 10.1111/bph.16027] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/30/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
RNA is a major player in cellular function, and consequently can drive a number of disease pathologies. Over the past several years, small molecule-RNA targeting (smRNA targeting) has developed into a promising drug discovery approach. Numerous techniques, tools, and assays have been developed to support this field, and significant investments have been made by pharmaceutical and biotechnology companies. To date, the focus has been on identifying disease validated primary targets for smRNA drug development, yet RNA as a secondary (off) target for all small molecule drug programs largely has been unexplored. In this perspective, we discuss structure, target, and mechanism-driven safety aspects of smRNAs and highlight how these parameters can be evaluated in drug discovery programs to produce potentially safer drugs.
Collapse
Affiliation(s)
- Helen L Lightfoot
- Safety and Mechanistic Pharmacology, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Graham F Smith
- Data Science and AI, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
8
|
Wallman M, Borghardt JM, Martel E, Pairet N, Markert M, Jirstrand M. An integrative pharmacokinetic-cardiovascular physiology modelling approach based on in vivo dog studies including five reference compounds. J Pharmacol Toxicol Methods 2022; 115:107171. [DOI: 10.1016/j.vascn.2022.107171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/14/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
|
9
|
Parvez MM, Basit A, Jariwala PB, Gáborik Z, Kis E, Heyward S, Redinbo MR, Prasad B. Quantitative Investigation of Irinotecan Metabolism, Transport, and Gut Microbiome Activation. Drug Metab Dispos 2021; 49:683-693. [PMID: 34074730 PMCID: PMC8407663 DOI: 10.1124/dmd.121.000476] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
The anticancer drug irinotecan shows serious dose-limiting gastrointestinal toxicity regardless of intravenous dosing. Although enzymes and transporters involved in irinotecan disposition are known, quantitative contributions of these mechanisms in complex in vivo disposition of irinotecan are poorly understood. We explained intestinal disposition and toxicity of irinotecan by integrating 1) in vitro metabolism and transport data of irinotecan and its metabolites, 2) ex vivo gut microbial activation of the toxic metabolite SN-38, and 3) the tissue protein abundance data of enzymes and transporters relevant to irinotecan and its metabolites. Integration of in vitro kinetics data with the tissue enzyme and transporter abundance predicted that carboxylesterase (CES)-mediated hydrolysis of irinotecan is the rate-limiting process in the liver, where the toxic metabolite formed is rapidly deactivated by glucuronidation. In contrast, the poor SN-38 glucuronidation rate as compared with its efficient formation by CES2 in the enterocytes is the key mechanism of the intestinal accumulation of the toxic metabolite. The biliary efflux and organic anion transporting polypeptide-2B1-mediated enterocyte uptake can also synergize buildup of SN-38 in the enterocytes, whereas intestinal P-glycoprotein likely facilitates SN-38 detoxification in the enterocytes. The higher SN-38 concentration in the intestine can be further nourished by β-d-glucuronidases. Understanding the quantitative significance of the key metabolism and transport processes of irinotecan and its metabolites can be leveraged to alleviate its intestinal side effects. Further, the proteomics-informed quantitative approach to determine intracellular disposition can be extended to determine susceptibility of cancer cells over normal cells for precision irinotecan therapy. SIGNIFICANCE STATEMENT: This work provides a deeper insight into the quantitative relevance of irinotecan hydrolysis (activation), conjugation (deactivation), and deconjugation (reactivation) by human or gut microbial enzymes or transporters. The results of this study explain the characteristic intestinal exposure and toxicity of irinotecan. The quantitative tissue-specific in vitro to in vivo extrapolation approach presented in this study can be extended to cancer cells.
Collapse
Affiliation(s)
- Md Masud Parvez
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Abdul Basit
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Parth B Jariwala
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Zsuzsanna Gáborik
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Emese Kis
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Scott Heyward
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Matthew R Redinbo
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.M.P., A.B., B.P.); Departments of Chemistry, Biochemistry, and Microbiology, and the Integrated Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (P.B.J., M.R.R.); SOLVO Biotechnology, Budapest, Hungary (Z.G., E.K.); and BioIVT Inc., Baltimore, Maryland (S.H.)
| |
Collapse
|
10
|
Is there a role for the no observed adverse effect level in safety pharmacology? J Pharmacol Toxicol Methods 2020; 105:106917. [DOI: 10.1016/j.vascn.2020.106917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
|
11
|
Guns PJD, Guth BD, Braam S, Kosmidis G, Matsa E, Delaunois A, Gryshkova V, Bernasconi S, Knot HJ, Shemesh Y, Chen A, Markert M, Fernández MA, Lombardi D, Grandmont C, Cillero-Pastor B, Heeren RMA, Martinet W, Woolard J, Skinner M, Segers VFM, Franssen C, Van Craenenbroeck EM, Volders PGA, Pauwelyn T, Braeken D, Yanez P, Correll K, Yang X, Prior H, Kismihók G, De Meyer GRY, Valentin JP. INSPIRE: A European training network to foster research and training in cardiovascular safety pharmacology. J Pharmacol Toxicol Methods 2020; 105:106889. [PMID: 32565326 DOI: 10.1016/j.vascn.2020.106889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/27/2020] [Accepted: 06/11/2020] [Indexed: 02/05/2023]
Abstract
Safety pharmacology is an essential part of drug development aiming to identify, evaluate and investigate undesirable pharmacodynamic properties of a drug primarily prior to clinical trials. In particular, cardiovascular adverse drug reactions (ADR) have halted many drug development programs. Safety pharmacology has successfully implemented a screening strategy to detect cardiovascular liabilities, but there is room for further refinement. In this setting, we present the INSPIRE project, a European Training Network in safety pharmacology for Early Stage Researchers (ESRs), funded by the European Commission's H2020-MSCA-ITN programme. INSPIRE has recruited 15 ESR fellows that will conduct an individual PhD-research project for a period of 36 months. INSPIRE aims to be complementary to ongoing research initiatives. With this as a goal, an inventory of collaborative research initiatives in safety pharmacology was created and the ESR projects have been designed to be complementary to this roadmap. Overall, INSPIRE aims to improve cardiovascular safety evaluation, either by investigating technological innovations or by adding mechanistic insight in emerging safety concerns, as observed in the field of cardio-oncology. Finally, in addition to its hands-on research pillar, INSPIRE will organize a number of summer schools and workshops that will be open to the wider community as well. In summary, INSPIRE aims to foster both research and training in safety pharmacology and hopes to inspire the future generation of safety scientists.
Collapse
Affiliation(s)
- Pieter-Jan D Guns
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium.
| | - Brian D Guth
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Annie Delaunois
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | - Vitalina Gryshkova
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| | | | | | - Yair Shemesh
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Chen
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Markert
- Boehringer Ingelheim Pharma GmbH & Co KG, Drug Discovery Sciences, Biberach an der Riss, Germany
| | | | | | | | - Berta Cillero-Pastor
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Ron M A Heeren
- The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, the Netherlands
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jeanette Woolard
- Division of Physiology, Pharmacology and Neuroscience, Centre of Membrane Proteins and Receptors (COMPARE), School of Life Sciences, University of Nottingham, United Kingdom
| | - Matt Skinner
- Vivonics Preclinical Ltd, BioCity, Nottingham, United Kingdom
| | - Vincent F M Segers
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium; Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium
| | - Constantijn Franssen
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Emeline M Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, Antwerp, Belgium; Cardiovascular Diseases, GENCOR, University of Antwerp, Antwerp, Belgium
| | - Paul G A Volders
- Department of Cardiology, CARIM, Maastricht University Medical Center+, Maastricht, the Netherlands
| | | | | | - Paz Yanez
- Department of Research Affairs & Innovation, University of Antwerp, Antwerp, Belgium
| | - Krystle Correll
- Safety Pharmacology Society, Reston, Virginia, United States
| | - Xi Yang
- Division of Cardiovascular and Renal Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Helen Prior
- National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), London, UK
| | - Gábor Kismihók
- Leibniz Information Centre for Science and Technology, Hannover, Germany; Marie Curie Alumni Association, Brussels, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Jean-Pierre Valentin
- UCB Biopharma SRL, Early Solutions, Development Science, Non-Clinical Safety Evaluation, Braine-l'Alleud, Belgium
| |
Collapse
|
12
|
Adeyemi O, Parker N, Pointon A, Rolf M. A pharmacological characterization of electrocardiogram PR and QRS intervals in conscious telemetered rats. J Pharmacol Toxicol Methods 2020; 102:106679. [PMID: 32014539 DOI: 10.1016/j.vascn.2020.106679] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/20/2019] [Accepted: 01/28/2020] [Indexed: 12/01/2022]
Abstract
INTRODUCTION The conscious telemetered rat is widely used as an early in vivo screening model for assessing the cardiovascular safety of novel pharmacological agents. The current study aimed to identify its utility in assessing electrocardiogram (ECG) PR and QRS interval changes. METHOD Male Han-Wistar rats (~250 g) were implanted with radio-telemetry devices for the recording of ECG and haemodynamic parameters. Animals (n = 4-8) were treated with single doses of calcium (nifedipine, diltiazem or verapamil; CCBs) or sodium channel blockers (quinidine or flecainide; SCBs) or their corresponding vehicles in an ascending dose design. Data was recorded continuously up to 24 h post-dose. Pharmacokinetic analysis of blood samples was performed to allow comparison of effects to published data in other species. RESULTS Of the CCBs, only diltiazem (300 mg/kg) prolonged the PR interval (49 ± 2 versus vehicle: 43 ± 1 ms), although this was not statistically significant (p = .11). QA interval decreased with nifedipine (30 ± 1 versus 24 ± 0 ms) and diltiazem (34 ± 1 versus 27 ± 1 ms) but increased with verapamil (30 ± 0 versus 37 ± 1 ms) demonstrating pharmacological activity of each agent. Both SCBs, caused statistically significant (p < .05) increases in both intervals - quinidine (100 mg/kg; PR: 50 ± 2 versus 43 ± 1 ms; QRS: 22 ± 2 versus 18 ± 1 ms) and flecainide (9 mg/kg; PR: 56 ± 1 versus 46 ± 1 ms; QRS: 27 ± 1 versus 21 ± 1 ms). Drug plasma exposure was confirmed in all animals. DISCUSSION At similar plasma concentrations to other species, the conscious telemetered rat demonstrates limited utility in assessing PR interval prolongation by CCBs, despite significant contractility effects being observed. However, results with SCBs demonstrate a potential application for evaluating drug-induced QRS prolongation.
Collapse
Affiliation(s)
- Oladipupo Adeyemi
- AstraZeneca, R&D Biopharmaceuticals, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire CB22 3AT, United Kingdom.
| | - Nicole Parker
- AstraZeneca, R&D Oncology, Fleming Building (B623), Babraham Research Park, Babraham, Cambridgeshire CB22 3AT, United Kingdom
| | - Amy Pointon
- AstraZeneca, R&D Biopharmaceuticals, Darwin Building, Unit 310, Cambridge Science Park, Milton Road, United Kingdom
| | - Mike Rolf
- AstraZeneca, R&D Biopharmaceuticals, Pepparedsleden 1, 431 83 Mölndal, Sweden
| |
Collapse
|