1
|
Griffith JA, King RD, Dunn AC, Lewis SE, Maxwell BA, Nurkiewicz TR, Goldsmith WT, Kelley EE, Bowdridge EC. Maternal nano-titanium dioxide inhalation exposure alters placental cyclooxygenase and oxidant balance in a sexually dimorphic manner. ADVANCES IN REDOX RESEARCH 2024; 10:10.1016/j.arres.2023.100090. [PMID: 38562524 PMCID: PMC10979698 DOI: 10.1016/j.arres.2023.100090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulation, and thus impacts fetal growth and development. We have previously shown that nano-titanium dioxide (nano-TiO2) inhalation exposure during gestation decreased fetal female pup and placenta mass [1], which persists in the following generation [2]. In utero exposed females, once mated, their offspring's placentas had increased capacity for H2O2 production. Generation of oxidants such as hydrogen peroxide (H2O2), have been shown to impact cyclooxygenase activity, specifically metabolites such as prostacyclin (PGI2) or thromboxane (TXA2). Therefore, we hypothesized that maternal nano-TiO2 inhalation exposure during gestation results in alterations in placental production of prostacyclin and thromboxane mediated by enhanced H2O2 production in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed to nano-TiO2 aerosols or filtered air (sham--control) from gestational day (GD) 10-19. Dams were euthanized on GD 20, and fetal serum and placental tissue were collected based on fetal sex. Fetal placental zones (junctional zone (JZ) and labyrinth zone (LZ)) were assessed for xanthine oxidoreductase (XOR) activity, H2O2, and catalase activity, as well as 6-keto-PGF1α and TXB2 levels. Nano-TiO2 exposed fetal female LZ demonstrated significantly greater XOR activity compared to exposed males. Exposed fetal female LZ also demonstrated significantly diminished catalase activity compared to sham-control females. Exposed fetal female LZ had significantly increased abundance of 6-keto-PGF1α compared to sham-control females and increased TXB2 compared to exposed males. In the aggregate these data indicate that maternal nano-TiO2 inhalation exposure has a greater impact on redox homeostasis and PGI2/TXA2 balance in the fetal female LZ. Future studies need to address if treatment with an XO inhibitor during gestation can prevent diminished fetal female growth during maternal nano-TiO2 inhalation exposure.
Collapse
Affiliation(s)
- Julie A. Griffith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Rachel D. King
- Department of Biochemistry, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Allison C. Dunn
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Sara E. Lewis
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Brooke A. Maxwell
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R. Nurkiewicz
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T. Goldsmith
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Eric E. Kelley
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C. Bowdridge
- Department of Physiology, Pharmacology and Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
2
|
AFŞAR O, OLTULU Ç. Evaluation of the cytotoxic effect of titanium dioxide nanoparticles in human embryonic lung cells. Turk J Med Sci 2023; 53:1648-1657. [PMID: 38813501 PMCID: PMC10760577 DOI: 10.55730/1300-0144.5733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 12/12/2023] [Accepted: 10/12/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Titanium dioxide nanoparticles are widely used in a variety of products, including sunscreens, paints, and ceramics. However, their increasing use has raised concerns about their potential health risks. Titanium dioxide nanoparticles have been shown to have the ability to enter the bloodstream and accumulate in various tissues, reaching the fetus via the placenta. The aim of this study was to investigate the cytotoxic effects of titanium dioxide nanoparticles on a human embryonic lung cell line (HEL 299/An1) and the formation of oxidative DNA damage. Materials and methods The cytotoxic effects of brookite-based titanium dioxide nanoparticles (<100 nm) were assessed using the 3-(4,5-dimethyldiazol-2-yl)-2,5 diphenyl tetrazolium bromide (MTT) assay for 24 and 48 h. Cell titanium levels were determined using inductively coupled plasma mass spectrometry. Oxidative DNA damage was assessed by measuring the levels of 8-hydroxy-2-deoxyguanosine (8-OHdG) as a biomarker. Results Titanium dioxide nanoparticles caused dose-dependent cytotoxicity in HEL 299/An1 cells. The IC50 values were 25.93 μM and 0.054 μM after 24 h and 48 h of exposure, respectively. Cell titanium levels were found to be 25,967 ppb after 24 h and 210,353 ppb after 48 h (p < 0.01). 8-OHdG was detected at 32.96 ng/mL after 24 h of exposure and 17.89 ng/mL after 48 h of exposure. Conclusion In our study, it was shown that titanium nanoparticles caused dose-dependent cytotoxicity and oxidative DNA damage in human embryonic lung cells. The nanoparticles also accumulated in cells and were taken up in higher amounts after 48 h of exposure. These findings suggest that titanium dioxide nanoparticles may pose a health risk, especially for pregnant women who may not be aware of their pregnancy. Therefore, it is important to take preventive measures to reduce exposure to these nanoparticles.
Collapse
Affiliation(s)
- Olkan AFŞAR
- Department of Pharmaceutical Nanotechnology, Institute of Health Sciences, Trakya University, Edirne,
Turkiye
| | - Çağatay OLTULU
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| |
Collapse
|
3
|
Harris TR, Griffith JA, Clarke CEC, Garner KL, Bowdridge EC, DeVallance E, Engles KJ, Batchelor TP, Goldsmith WT, Wix K, Nurkiewicz TR, Rand AA. Distinct profiles of oxylipid mediators in liver, lung, and placenta after maternal nano-TiO 2 nanoparticle inhalation exposure. ENVIRONMENTAL SCIENCE. ADVANCES 2023; 2:740-748. [PMID: 37181648 PMCID: PMC10167894 DOI: 10.1039/d2va00300g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/02/2023] [Indexed: 05/16/2023]
Abstract
Nano-titanium dioxide (nano-TiO2) is a widely used nanomaterial found in several industrial and consumer products, including surface coatings, paints, sunscreens and cosmetics, among others. Studies have linked gestational exposure to nano-TiO2 with negative maternal and fetal health outcomes. For example, maternal pulmonary exposure to nano-TiO2 during gestation has been associated not only with maternal, but also fetal microvascular dysfunction in a rat model. One mediator of this altered vascular reactivity and inflammation is oxylipid signaling. Oxylipids are formed from dietary lipids through several enzyme-controlled pathways as well as through oxidation by reactive oxygen species. Oxylipids have been linked to control of vascular tone, inflammation, pain and other physiological and disease processes. In this study, we use a sensitive UPLC-MS/MS based analysis to probe the global oxylipid response in liver, lung, and placenta of pregnant rats exposed to nano-TiO2 aerosols. Each organ presented distinct patterns in oxylipid signaling, as assessed by principal component and hierarchical clustering heatmap analysis. In general, pro-inflammatory mediators, such as 5-hydroxyeicosatetraenoic acid (1.6 fold change) were elevated in the liver, while in the lung, anti-inflammatory and pro-resolving mediators such as 17-hydroxy docosahexaenoic acid (1.4 fold change) were elevated. In the placenta the levels of oxylipid mediators were generally decreased, both inflammatory (e.g. PGE2, 0.52 fold change) and anti-inflammatory (e.g. Leukotriene B4, 0.49 fold change). This study, the first to quantitate the levels of these oxylipids simultaneously after nano-TiO2 exposure, shows the complex interplay of pro- and anti-inflammatory mediators from multiple lipid classes and highlights the limitations of monitoring the levels of oxylipid mediators in isolation.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| | - Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Colleen E C Clarke
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Kim Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine Morgantown WV 26506 USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine Morgantown WV USA
| | - Amy A Rand
- Department of Chemistry and Institute of Biochemistry, Carleton University Ottawa ON K1S5B6 Canada
| |
Collapse
|
4
|
Cary CM, Seymore TN, Singh D, Vayas KN, Goedken MJ, Adams S, Polunas M, Sunil VR, Laskin DL, Demokritou P, Stapleton PA. Single inhalation exposure to polyamide micro and nanoplastic particles impairs vascular dilation without generating pulmonary inflammation in virgin female Sprague Dawley rats. Part Fibre Toxicol 2023; 20:16. [PMID: 37088832 PMCID: PMC10122824 DOI: 10.1186/s12989-023-00525-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Exposure to micro- and nanoplastic particles (MNPs) in humans is being identified in both the indoor and outdoor environment. Detection of these materials in the air has made inhalation exposure to MNPs a major cause for concern. One type of plastic polymer found in indoor and outdoor settings is polyamide, often referred to as nylon. Inhalation of combustion-derived, metallic, and carbonaceous aerosols generate pulmonary inflammation, cardiovascular dysfunction, and systemic inflammation. Additionally, due to the additives present in plastics, MNPs may act as endocrine disruptors. Currently there is limited knowledge on potential health effects caused by polyamide or general MNP inhalation. OBJECTIVE The purpose of this study is to assess the toxicological consequences of a single inhalation exposure of female rats to polyamide MNP during estrus by means of aerosolization of MNP. METHODS Bulk polyamide powder (i.e., nylon) served as a representative MNP. Polyamide aerosolization was characterized using particle sizers, cascade impactors, and aerosol samplers. Multiple-Path Particle Dosimetry (MPPD) modeling was used to evaluate pulmonary deposition of MNPs. Pulmonary inflammation was assessed by bronchoalveolar lavage (BAL) cell content and H&E-stained tissue sections. Mean arterial pressure (MAP), wire myography of the aorta and uterine artery, and pressure myography of the radial artery was used to assess cardiovascular function. Systemic inflammation and endocrine disruption were quantified by measurement of proinflammatory cytokines and reproductive hormones. RESULTS Our aerosolization exposure platform was found to generate particles within the micro- and nano-size ranges (thereby constituting MNPs). Inhaled particles were predicted to deposit in all regions of the lung; no overt pulmonary inflammation was observed. Conversely, increased blood pressure and impaired dilation in the uterine vasculature was noted while aortic vascular reactivity was unaffected. Inhalation of MNPs resulted in systemic inflammation as measured by increased plasma levels of IL-6. Decreased levels of 17β-estradiol were also observed suggesting that MNPs have endocrine disrupting activity. CONCLUSIONS These data demonstrate aerosolization of MNPs in our inhalation exposure platform. Inhaled MNP aerosols were found to alter inflammatory, cardiovascular, and endocrine activity. These novel findings will contribute to a better understanding of inhaled plastic particle toxicity.
Collapse
Affiliation(s)
- Chelsea M Cary
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Talia N Seymore
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Kinal N Vayas
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Samantha Adams
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Marianne Polunas
- Research Pathology Services, Rutgers University, 08854, Piscataway, NJ, USA
| | - Vasanthi R Sunil
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
| | - Debra L Laskin
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, 02115, Boston, MA, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA
- Department of Environmental and Occupational Health and Justice, Rutgers School of Public Health, Rutgers University, 08854, Piscataway, NJ, USA
| | - Phoebe A Stapleton
- Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy, Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Road, 08854, Piscataway, NJ, USA.
- Environmental and Occupational Health Sciences Institute (EOHSI), 08854, Piscataway, NJ, USA.
| |
Collapse
|
5
|
Griffith JA, Dunn A, DeVallance E, Schafner KJ, Engles KJ, Batchelor TP, Goldsmith WT, Wix K, Hussain S, Bowdridge EC, Nurkiewicz TR. Maternal nano-titanium dioxide inhalation alters fetoplacental outcomes in a sexually dimorphic manner. FRONTIERS IN TOXICOLOGY 2023; 5:1096173. [PMID: 36950144 PMCID: PMC10025460 DOI: 10.3389/ftox.2023.1096173] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
The placenta plays a critical role in nutrient-waste exchange between the maternal and fetal circulations, thus functioning as an interface that profoundly impacts fetal growth and development. The placenta has long been considered an asexual organ, but, due to its embryonic origin it shares the same sex as the fetus. Exposures to toxicant such as diesel exhaust, have been shown to result in sexually dimorphic outcomes like decreased placental mass in exposed females. Therefore, we hypothesize that maternal nano-TiO2 inhalation exposure during gestation alters placental hemodynamics in a sexually dimorphic manner. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.69 mg/m3) or filtered air (sham-control). Dams were euthanized on GD20, and fetal tissue was collected based on fetal sex: whole placentas, placental junctional zone (JZ), and placental labyrinth zone (LZ). Fetal mass, placental mass, and placental zone percent areas were assessed for sex-based differences. Exposed fetal females were significantly smaller compared to their exposed male counterparts (2.65 ± 0.03 g vs 2.78 ± 0.04 g). Nano-TiO2 exposed fetal females had a significantly decreased percent junctional zone area compared to the sham-control females (24.37 ± 1.30% vs 30.39 ± 1.54%). The percent labyrinth zone area was significantly increased for nano-TiO2 females compared to sham-control females (75.63 ± 1.30% vs 69.61 ± 1.54%). Placental flow and hemodynamics were assessed with a variety of vasoactive substances. It was found that nano-TiO2 exposed fetal females only had a significant decrease in outflow pressure in the presence of the thromboxane (TXA2) mimetic, U46619, compared to sham-control fetal females (3.97 ± 1.30 mm Hg vs 9.10 ± 1.07 mm Hg) and nano-TiO2 fetal males (9.96 ± 0.66 mm Hg). Maternal nano-TiO2 inhalation exposure has a greater effect on fetal female mass, placental zone mass and area, and adversely impacts placental vasoreactivity. This may influence the female growth and development later in life, future studies need to further study the impact of maternal nano-TiO2 inhalation exposure on zone specific mechanisms.
Collapse
Affiliation(s)
- Julie A. Griffith
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Allison Dunn
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Evan DeVallance
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kallie J. Schafner
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kevin J. Engles
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Thomas P. Batchelor
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - William T. Goldsmith
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Kimberley Wix
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Salik Hussain
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Elizabeth C. Bowdridge
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| | - Timothy R. Nurkiewicz
- Department of Physiology, Pharmacology, and Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, United States
| |
Collapse
|
6
|
Song F, Li S, Dai X, Yang F, Cao Y. Activation of KLF6 by titanate nanofibers and regulatory roles of KLF6 on ATF3 in the endothelial monolayer and mouse aortas. Mol Omics 2023; 19:150-161. [PMID: 36538054 DOI: 10.1039/d1mo00470k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Although titanium (Ti)-based nanomaterials (NMs) were traditionally considered as biologically inert materials, it was recently reported that Ti-based NMs induce adverse vascular effects by inhibiting Kruppel-like factor 2 (KLF2) and/or KLF4, vasoprotective KLFs with well-documented regulatory activity in NO signaling. However, the potential roles of other KLFs are not clear. KLF6 was recently identified as an important KLF involved in regulating endothelial dysfunction, inflammation, and angiogenesis, therefore, this study investigated the influence of titanate nanofibers (TiNFs) on KLF6-mediated events. Ingenuity pathway analysis (IPA) showed that TiNFs altered the expression of a panel of KLF6-related genes: KLF6-mediated gene ontology (GO) terms were altered, categories including cytokine-mediated signaling pathways, transcription factor (TF) functions and membrane-bound organelles. Additionally, RT-PCR confirmed that TiNFs increased KLF6 activating transcription factor 3 (ATF3), a TF involved in endoplasmic reticulum (ER) stress, and ELISA confirmed the increase of soluble monocyte chemotactic protein 1 (sMCP-1), a KLF6-related inflammatory cytokine. Interestingly, the activation of klf6, atf3 and C-C motif chemokine ligand 2 (ccl2; mcp-1 encoding gene) was observed in aortas of mice following one-time intravenous injection but not intratracheal instillation of TiNFs (100 μg per mouse), indicating a need for direct contact with NMs to activate klf6-mediated pathways in vivo. In endothelial cells, KLF6 knockdown inhibited the expression of ATF3 but not CCL2, suggesting the regulatory role of KLF6 in ATF3 expression. Overall, this study uncovered a previously unknown role of KLF6 in TiNF-induced vascular effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Fengmei Song
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Shuang Li
- Key Laboratory of Environment-Friendly Chemistry and Application of Ministry of Education, Laboratory of Biochemistry, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Xuyan Dai
- Economic College, Hunan Agricultural University, Changsha, 410128, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
7
|
Tang J, Bu W, Hu W, Zhao Z, Liu L, Luo C, Wang R, Fan S, Yu S, Wu Q, Wang X, Zhao X. Ferroptosis Is Involved in Sex-Specific Small Intestinal Toxicity in the Offspring of Adult Mice Exposed to Polystyrene Nanoplastics during Pregnancy. ACS NANO 2023; 17:2440-2449. [PMID: 36728677 DOI: 10.1021/acsnano.2c09729] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanoplastics are common contaminants in the living environment. Thus far, no investigations have focused on small intestinal injury in the offspring of adult mice that were exposed to nanoplastics through the respiratory system during pregnancy. Here, we evaluated potential intestinal injury in the offspring of adult mice that were subjected to maternal 80 nm polystyrene nanoparticle (PS-NP) exposure during gestation. PS-NP exposure significantly reduced the birth weight of female mice compared with male mice. However, the adult body weights of the female and male offspring were substantially greater in the PS-NP-exposed groups. Additionally, we found that exposure to PS-NPs during pregnancy caused histological changes in the small intestines of both female and male offspring. Mechanistic analysis revealed upregulation of reactive oxygen species in the small intestines, as indicated by changes in the levels of superoxide dismutase (SOD) and malondialdehyde (MDA). Furthermore, exposure to PS-NPs led to downregulation of GPx4, FTH1, and FTL protein levels, indicating initiation of ferroptosis. Notably, the changes in mRNA expression levels of GPx4, FTH1, and FTL differed between female and male offspring. Although all phenotypes failed to demonstrate classic dose-dependent effects, the data imply that small intestinal toxicity is greater in female offspring than in male offspring. Our results suggest that PS-NP exposure during pregnancy causes sex-specific small intestinal toxicity, which might contribute to reactive oxygen species activation and subsequent ferroptosis. Overall, this study showed toxic effects in offspring after PS-NP exposure during pregnancy.
Collapse
Affiliation(s)
- Juan Tang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxia Bu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Wenxuan Hu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Zixuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Lei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Chao Luo
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Rui Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Susu Fan
- Nantong University Analysis & Testing Center, Nantong 226019, China
| | - Shali Yu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Qiyun Wu
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xiaoke Wang
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| | - Xinyuan Zhao
- Department of Occupational Medicine and Environmental Toxicology, Nantong Key Laboratory of Environmental Toxicology, School of Public Health, Nantong University, Nantong 226019, China
| |
Collapse
|
8
|
Trembley JH, So SW, Nixon JP, Bowdridge EC, Garner KL, Griffith J, Engles KJ, Batchelor TP, Goldsmith WT, Tomáška JM, Hussain S, Nurkiewicz TR, Butterick TA. Whole-body inhalation of nano-sized carbon black: a surrogate model of military burn pit exposure. BMC Res Notes 2022; 15:275. [PMID: 35953874 PMCID: PMC9373276 DOI: 10.1186/s13104-022-06165-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE Chronic multisymptom illness (CMI) is an idiopathic disease affecting thousands of U.S. Veterans exposed to open-air burn pits emitting aerosolized particulate matter (PM) while serving in Central and Southwest Asia and Africa. Exposure to burn pit PM can result in profound biologic consequences including chronic fatigue, impaired cognition, and respiratory diseases. Dysregulated or unresolved inflammation is a possible underlying mechanism for CMI onset. We describe a rat model of whole-body inhalation exposure using carbon black nanoparticles (CB) as a surrogate for military burn pit-related exposure. Using this model, we measured biomarkers of inflammation in multiple tissues. RESULTS Male Sprague Dawley rats were exposed to CB aerosols by whole body inhalation (6 ± 0.83 mg/m3). Proinflammatory biomarkers were measured in multiple tissues including arteries, brain, lung, and plasma. Biomarkers of cardiovascular injury were also assayed in plasma. CB inhalation exposure increased CMI-related proinflammatory biomarkers such as IFN-γ and TNFα in multiple tissue samples. CB exposure also induced cardiovascular injury markers (adiponectin, MCP1, sE-Selectin, sICam-1 and TIMP1) in plasma. These findings support the validity of our animal exposure model for studies of burn pit-induced CMI. Future studies will model more complex toxicant mixtures as documented at multiple burn pit sites.
Collapse
Affiliation(s)
- Janeen H Trembley
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Simon W So
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Joshua P Nixon
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
- Burn Pits 360 Veterans Organization, Robstown, TX, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | | | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Tammy A Butterick
- Minneapolis Veterans Affairs Health Care System, Minneapolis, MN, USA.
- Department of Food Science and Nutrition, University of Minnesota, St Paul, MN, USA.
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA.
- Center for Veterans Research and Education, Minneapolis, MN, USA.
| |
Collapse
|
9
|
Griffith JA, Garner KL, Bowdridge EC, DeVallance E, Schafner KJ, Engles KJ, Batchelor TP, Goldsmith WT, Wix K, Hussain S, Nurkiewicz TR. Nanomaterial Inhalation During Pregnancy Alters Systemic Vascular Function in a Cyclooxygenase-Dependent Manner. Toxicol Sci 2022; 188:219-233. [PMID: 35642938 PMCID: PMC9333412 DOI: 10.1093/toxsci/kfac055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pregnancy requires rapid adaptations in the uterine microcirculation to support fetal development. Nanomaterial inhalation is associated with cardiovascular dysfunction, which may impair gestation. We have shown that maternal nano-titanium dioxide (nano-TiO2) inhalation impairs microvascular endothelial function in response to arachidonic acid and thromboxane (TXA2) mimetics. However, the mechanisms underpinning this process are unknown. Therefore, we hypothesize that maternal nano-TiO2 inhalation during gestation results in uterine microvascular prostacyclin (PGI2) and TXA2 dysfunction. Pregnant Sprague-Dawley rats were exposed from gestational day 10-19 to nano-TiO2 aerosols (12.17 ± 1.67 mg/m3) or filtered air (sham-control). Dams were euthanized on gestational day 20, and serum, uterine radial arterioles, implantation sites, and lungs were collected. Serum was assessed for PGI2 and TXA2 metabolites. TXB2, the stable TXA2 metabolite, was significantly decreased in nano-TiO2 exposed dams (597.3 ± 84.4 vs 667.6 ± 45.6 pg/ml), whereas no difference was observed for 6-keto-PGF1α, the stable PGI2 metabolite. Radial arteriole pressure myography revealed that nano-TiO2 exposure caused increased vasoconstriction to the TXA2 mimetic, U46619, compared with sham-controls (-41.3% ± 4.3% vs -16.8% ± 3.4%). Nano-TiO2 exposure diminished endothelium-dependent vasodilation to carbaprostacyclin, a PGI2 receptor agonist, compared with sham-controls (30.0% ± 9.0% vs 53.7% ± 6.0%). Maternal nano-TiO2 inhalation during gestation decreased nano-TiO2 female pup weight when compared with sham-control males (3.633 ± 0.064 vs 3.995 ± 0.124 g). Augmented TXA2 vasoconstriction and decreased PGI2 vasodilation may lead to decreased placental blood flow and compromise maternofetal exchange of waste and nutrients, which could ultimately impact fetal health outcomes.
Collapse
Affiliation(s)
- Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kallie J Schafner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kevin J Engles
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Kimberley Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Salik Hussain
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia 26505-9229, USA
| |
Collapse
|
10
|
Bowdridge EC, DeVallance E, Garner KL, Griffith JA, Schafner K, Seaman M, Engels KJ, Wix K, Batchelor TP, Goldsmith WT, Hussain S, Nurkiewicz TR. Nano-titanium dioxide inhalation exposure during gestation drives redox dysregulation and vascular dysfunction across generations. Part Fibre Toxicol 2022; 19:18. [PMID: 35260159 PMCID: PMC8905816 DOI: 10.1186/s12989-022-00457-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/24/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Pregnancy is associated with many rapid biological adaptations that support healthy development of the growing fetus. One of which is critical to fetal health and development is the coordination between maternal liver derived substrates and vascular delivery. This crucial adaptation can be potentially derailed by inhalation of toxicants. Engineered nanomaterials (ENM) are commonly used in household and industrial products as well as in medicinal applications. As such, the potential risk of exposure remains a concern, especially during pregnancy. We have previously reported that ENM inhalation leads to upregulation in the production of oxidative species. Therefore, we aimed to determine if F0 dam maternal nano-TiO2 inhalation exposure (exclusively) resulted in altered H2O2 production capacity and changes in downstream redox pathways in the F0 dams and subsequent F1 pups. Additionally, we investigated whether this persisted into adulthood within the F1 generation and how this impacted F1 gestational outcomes and F2 fetal health and development. We hypothesized that maternal nano-TiO2 inhalation exposure during gestation in the F0 dams would result in upregulated H2O2 production in the F0 dams as well as her F1 offspring. Additionally, this toxicological insult would result in gestational vascular dysfunction in the F1 dams yielding smaller F2 generation pups. RESULTS Our results indicate upregulation of hepatic H2O2 production capacity in F0 dams, F1 offspring at 8 weeks and F1 females at gestational day 20. H2O2 production capacity was accompanied by a twofold increase in phosphorylation of the redox sensitive transcription factor NF-κB. In cell culture, naïve hepatocytes exposed to F1-nano-TiO2 plasma increased H2O2 production. Overnight exposure of these hepatocytes to F1 plasma increased H2O2 production capacity in a partially NF-κB dependent manner. Pregnant F1- nano-TiO2 females exhibited estrogen disruption (12.12 ± 3.1 pg/ml vs. 29.81 ± 8.8 pg/ml sham-control) and vascular dysfunction similar to their directly exposed mothers. F1-nano-TiO2 uterine artery H2O2 production capacity was also elevated twofold. Dysfunctional gestational outcomes in the F1-nano-TiO2 dams resulted in smaller F1 (10.22 ± 0.6 pups vs. sham-controls 12.71 ± 0.96 pups) and F2 pups (4.93 ± 0.47 g vs. 5.78 ± 0.09 g sham-control pups), and fewer F1 male pups (4.38 ± 0.3 pups vs. 6.83 ± 0.84 sham-control pups). CONCLUSION In conclusion, this manuscript provides critical evidence of redox dysregulation across generations following maternal ENM inhalation. Furthermore, dysfunctional gestational outcomes are observed in the F1-nano-TiO2 generation and impact the development of F2 offspring. In total, this data provides strong initial evidence that maternal ENM exposure has robust biological impacts that persists in at least two generations.
Collapse
Affiliation(s)
- Elizabeth C. Bowdridge
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Evan DeVallance
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Krista L. Garner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Julie A. Griffith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Kallie Schafner
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Madison Seaman
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kevin J. Engels
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Kimberley Wix
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA
| | - Thomas P. Batchelor
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - William T. Goldsmith
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Salik Hussain
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| | - Timothy R. Nurkiewicz
- grid.268154.c0000 0001 2156 6140Department of Physiology and Pharmacology, 64 Medical Center Drive, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, West Virginia University, Morgantown, WV 26505-9229 USA ,grid.268154.c0000 0001 2156 6140Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV USA
| |
Collapse
|
11
|
D'Errico JN, Doherty C, Reyes George JJ, Buckley B, Stapleton PA. Maternal, placental, and fetal distribution of titanium after repeated titanium dioxide nanoparticle inhalation through pregnancy. Placenta 2022; 121:99-108. [PMID: 35305398 PMCID: PMC9010360 DOI: 10.1016/j.placenta.2022.03.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/07/2022] [Accepted: 03/03/2022] [Indexed: 12/11/2022]
Abstract
Epidemiological studies have associated ambient engineered nanomaterials or ultrafine particulate matter (PM0.1), collectively referred to as nanoparticles (NPs), with adverse pregnancy outcomes including miscarriage, preterm labor, and fetal growth restriction. Evidence from non-pregnant models demonstrate that NPs can cross the lung air-blood barrier and circulate systemically. Therefore, inhalation of NPs during pregnancy leading to fetoplacental exposure has garnered attention. The purpose of this study was to evaluate the distribution of inhaled titanium dioxide nanoparticles (nano-TiO2) from the maternal lung to maternal and fetal systemic tissues. Pregnant Sprague Dawley rats were administered whole-body exposure to filtered air or of nano-TiO2 aerosols (9.96 ± 0.06 mg/m3) between gestational day (GD) 4 and 19. On GD 20 maternal, placental, and fetal tissues were harvested then digested for ICP-MS analysis to measure concentrations of titanium (Ti). TEM was used to visualize particle internalization by the placental syncytium. The results demonstrate the extrapulmonary distribution of Ti to various maternal organs during pregnancy. Our study found Ti accumulation in the decidua/junctional and labyrinth zones of placentas embedded in all sections of uterine horns. Further, NPs deposited in the placenta, identified by TEM, were found intracellularly within nuclear, endoplasmic reticulum, and vesicle organelles. This study identified the systemic distribution and placental accumulation of Ti after nano-TiO2 aerosol inhalation in a pregnancy model. These findings arouse concerns for poor air quality for pregnant women and possible contributions to adverse pregnancy outcomes.
Collapse
Affiliation(s)
- J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - C Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - J J Reyes George
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - B Buckley
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
12
|
Garner KL, Bowdridge EC, Griffith JA, DeVallance E, Seman MG, Engels KJ, Groth CP, Goldsmith WT, Wix K, Batchelor TP, Nurkiewicz TR. Maternal Nanomaterial Inhalation Exposure: Critical Gestational Period in the Uterine Microcirculation is Angiotensin II Dependent. Cardiovasc Toxicol 2022; 22:167-180. [PMID: 35066857 PMCID: PMC9013006 DOI: 10.1007/s12012-021-09712-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/07/2021] [Indexed: 11/03/2022]
Abstract
Maternal inhalation exposure to engineered nanomaterials (ENM) has been associated with microvascular dysfunction and adverse cardiovascular responses. Pregnancy requires coordinated vascular adaptation and growth that are imperative for survival. Key events in pregnancy hallmark distinct periods of gestation such as implantation, spiral artery remodeling, placentation, and trophoblast invasion. Angiotensin II (Ang II) is a critical vasoactive mediator responsible for adaptations and is implicated in the pathology of preeclampsia. If perturbations occur during gestation, such as those caused by ENM inhalation exposure, then maternal-fetal health consequences may occur. Our study aimed to identify the period of gestation in which maternal microvascular functional and fetal health are most vulnerable. Additionally, we wanted to determine if Ang II sensitivity and receptor density is altered due to exposure. Dams were exposed to ENM aerosols (nano-titanium dioxide) during three gestational windows: early (EE, gestational day (GD) 2-6), mid (ME, GD 8-12) or late (LE, GD 15-19). Within the EE group dry pup mass decreased by 16.3% and uterine radial artery wall to lumen ratio (WLR) increased by 25.9%. Uterine radial artery response to Ang II sensitivity increased by 40.5% in the EE group. Ang II receptor density was altered in the EE and LE group with decreased levels of AT2R. We conclude that early gestational maternal inhalation exposures resulted in altered vascular anatomy and physiology. Exposure during this time-period results in altered vascular reactivity and changes to uterine radial artery WLR, leading to decreased perfusion to the fetus and resulting in lower pup mass.
Collapse
Affiliation(s)
- Krista L Garner
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Elizabeth C Bowdridge
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Julie A Griffith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Evan DeVallance
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Madison G Seman
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kevin J Engels
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Caroline P Groth
- Department of Epidemiology and Biostatistics, West Virginia University School of Public Health, Morgantown, WV, USA
| | - William T Goldsmith
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Kim Wix
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Thomas P Batchelor
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA
| | - Timothy R Nurkiewicz
- Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, USA.
- Center for Inhalation Toxicology (iTOX), West Virginia University School of Medicine, Morgantown, WV, USA.
- Department of Physiology and Pharmacology, Robert C. Byrd Health Sciences Center, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
13
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
14
|
Pritchard N, Kaitu’u-Lino T, Harris L, Tong S, Hannan N. Nanoparticles in pregnancy: the next frontier in reproductive therapeutics. Hum Reprod Update 2021; 27:280-304. [PMID: 33279994 PMCID: PMC9034208 DOI: 10.1093/humupd/dmaa049] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/26/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Nanotechnology involves the engineering of structures on a molecular level. Nanomedicine and nano-delivery systems have been designed to deliver therapeutic agents to a target site or organ in a controlled manner, maximizing efficacy while minimizing off-target effects of the therapeutic agent administered. In both reproductive medicine and obstetrics, developing innovative therapeutics is often tempered by fears of damage to the gamete, embryo or developing foetus or of negatively impacting a woman's reproductive potential. Thus, nanomedicine delivery systems may provide alternative targeted intervention strategies, treating the source of the disease and minimizing long-term consequences for the mother and/or her foetus. OBJECTIVE AND RATIONALE This review summarizes the current state of nanomedicine technology in reproductive medicine and obstetrics, including safety, potential applications, future directions and the hurdles for translation. SEARCH METHODS A comprehensive electronic literature search of PubMed and Web of Science databases was performed to identify studies published in English up until February 2020. Relevant keywords were used to obtain information regarding use of nanoparticle technology in fertility and gene therapy, early pregnancy complications (ectopic pregnancy and gestational trophoblastic disease) and obstetric complications (preeclampsia, foetal growth restriction, preterm birth and gestational diabetes) and for selective treatment of the mother or foetus. Safety of specific nanoparticles to the gamete, embryo and foetus was also investigated. OUTCOMES Pre-clinical research in the development of nanoparticle therapeutic delivery is being undertaken in many fields of reproductive medicine. Non-hormonal-targeted nanoparticle therapy for fibroids and endometriosis may provide fertility-sparing medical management. Delivery of interventions via nanotechnology provides opportunities for gene manipulation and delivery in mammalian gametes. Targeting cytotoxic treatments to early pregnancy tissue provides an alternative approach to manage ectopic pregnancies and gestational trophoblastic disease. In pregnancy, nanotherapeutic delivery offers options to stably deliver silencing RNA and microRNA inhibitors to the placenta to regulate gene expression, opening doors to novel genetic treatments for preeclampsia and foetal growth restriction. Restricting delivery of teratogenic drugs to the maternal compartment (such as warfarin) may reduce risks to the foetus. Alternatively, targeted delivery of drugs to the foetus (such as those to treat foetal arrythmias) may minimize side effects for the mother. WIDER IMPLICATIONS We expect that further development of targeted therapies using nanoparticles in a reproductive setting has promise to eventually allow safe and directed treatments for conditions impacting the health and reproductive capacity of women and for the management of pregnancy and serious pregnancy complications.
Collapse
Affiliation(s)
- Natasha Pritchard
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Tu’uhevaha Kaitu’u-Lino
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Department of Obstetrics and Gynaecology, Diagnostics Discovery and Reverse Translation, University of Melbourne, Heidelberg, Victoria, Australia
| | - Lynda Harris
- Division of Pharmacy and Optometry, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Maternal and Fetal Health Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, St Mary’s Hospital, Manchester, UK
| | - Stephen Tong
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Natalie Hannan
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria, Australia
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria, Australia
- Therapeutics Discovery and Vascular Function Group, Department of Obstetrics and Gynaecology, University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
15
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 226] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
16
|
Wu Y, Chen L, Chen F, Zou H, Wang Z. A key moment for TiO 2: Prenatal exposure to TiO 2 nanoparticles may inhibit the development of offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110911. [PMID: 32800246 DOI: 10.1016/j.ecoenv.2020.110911] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 05/12/2023]
Abstract
Applications of TiO2 nanoparticles (NPs) in food, personal care products and industries pose risks on human health, particularly on vulnerable populations including pregnant women and infants. Fetus, deficient in mature defense system, is more susceptible to NPs. Publications on the developmental toxicity of TiO2 NPs on the maternal-exposed progeny have emerged. This review presents the main exposure routes of TiO2 NPs during pregnancy, including skin penetration, ingestion and inhalation, followed by transport of TiO2 NPs to the placenta. Accumulation of TiO2 NPs in placenta may cause dysfunction in nutrient transfer. TiO2 NPs can be even transported to the fetus and generate toxicities, such as impairments of nervous and reproductive system, and failure in lung and cardiovascular development. The toxicities rely on the crystalline phase and concentrations, and the main mechanisms include the accumulation of excessive reactive oxygen species, DNA damage, and over-activation of signaling pathways such as MAPK which impairs neurotransmission. Finally, this review remarks on the significance for identifying TiO2 NPs dosage safe for both mother and fetus, and particular attention should be paid at TiO2 NPs concentrations safe for mother but toxic to fetus. Importantly, research on the epigenetic trans-generational inheritance of TiO2 NPs is urgently needed to provide insights for deciding the prospects of TiO2 NPs applications.
Collapse
Affiliation(s)
- Yi Wu
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Limei Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Feiran Chen
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Hua Zou
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, And School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Kunovac A, Hathaway QA, Pinti MV, Taylor AD, Hollander JM. Cardiovascular adaptations to particle inhalation exposure: molecular mechanisms of the toxicology. Am J Physiol Heart Circ Physiol 2020; 319:H282-H305. [PMID: 32559138 PMCID: PMC7473925 DOI: 10.1152/ajpheart.00026.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/12/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Ambient air, occupational settings, and the use and distribution of consumer products all serve as conduits for toxicant exposure through inhalation. While the pulmonary system remains a primary target following inhalation exposure, cardiovascular implications are exceptionally culpable for increased morbidity and mortality. The epidemiological evidence for cardiovascular dysfunction resulting from acute or chronic inhalation exposure to particulate matter has been well documented, but the mechanisms driving the resulting disturbances remain elusive. In the current review, we aim to summarize the cellular and molecular mechanisms that are directly linked to cardiovascular health following exposure to a variety of inhaled toxicants. The purpose of this review is to provide a comprehensive overview of the biochemical changes in the cardiovascular system following particle inhalation exposure and to highlight potential biomarkers that exist across multiple exposure paradigms. We attempt to integrate these molecular signatures in an effort to provide direction for future investigations. This review also characterizes how molecular responses are modified in at-risk populations, specifically the impact of environmental exposure during critical windows of development. Maternal exposure to particulate matter during gestation can lead to fetal epigenetic reprogramming, resulting in long-term deficits to the cardiovascular system. In both direct and indirect (gestational) exposures, connecting the biochemical mechanisms with functional deficits outlines pathways that can be targeted for future therapeutic intervention. Ultimately, future investigations integrating "omics"-based approaches will better elucidate the mechanisms that are altered by xenobiotic inhalation exposure, identify biomarkers, and guide in clinical decision making.
Collapse
Affiliation(s)
- Amina Kunovac
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| | - Mark V Pinti
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- West Virginia University School of Pharmacy, Morgantown, West Virginia
| | - Andrew D Taylor
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, West Virginia
- Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, West Virginia
| |
Collapse
|
18
|
Dugershaw BB, Aengenheister L, Hansen SSK, Hougaard KS, Buerki-Thurnherr T. Recent insights on indirect mechanisms in developmental toxicity of nanomaterials. Part Fibre Toxicol 2020; 17:31. [PMID: 32653006 PMCID: PMC7353685 DOI: 10.1186/s12989-020-00359-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/14/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Epidemiological and animal studies provide compelling indications that environmental and engineered nanomaterials (NMs) pose a risk for pregnancy, fetal development and offspring health later in life. Understanding the origin and mechanisms underlying NM-induced developmental toxicity will be a cornerstone in the protection of sensitive populations and the design of safe and sustainable nanotechnology applications. MAIN BODY Direct toxicity originating from NMs crossing the placental barrier is frequently assumed to be the key pathway in developmental toxicity. However, placental transfer of particles is often highly limited, and evidence is growing that NMs can also indirectly interfere with fetal development. Here, we outline current knowledge on potential indirect mechanisms in developmental toxicity of NMs. SHORT CONCLUSION Until now, research on developmental toxicity has mainly focused on the biodistribution and placental translocation of NMs to the fetus to delineate underlying processes. Systematic research addressing NM impact on maternal and placental tissues as potential contributors to mechanistic pathways in developmental toxicity is only slowly gathering momentum. So far, maternal and placental oxidative stress and inflammation, activation of placental toll-like receptors (TLRs), impairment of placental growth and secretion of placental hormones, and vascular factors have been suggested to mediate indirect developmental toxicity of NMs. Therefore, NM effects on maternal and placental tissue function ought to be comprehensively evaluated in addition to placental transfer in the design of future studies of developmental toxicity and risk assessment of NM exposure during pregnancy.
Collapse
Affiliation(s)
- Battuja Batbajar Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland
| | - Signe Schmidt Kjølner Hansen
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Biotech Research and Innovation Centre, University of Copenhagen, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, Empa, Lerchenfeldstrasse 5, 9014, St.Gallen, Switzerland.
| |
Collapse
|