1
|
Wang C, Wang B, Wei Y, Li S, Ren J, Dai Y, Liu G. Effect of Gentianella acuta (Michx.) Hulten against the arsenic-induced development hindrance of mouse oocytes. Biometals 2024; 37:1411-1430. [PMID: 38814492 DOI: 10.1007/s10534-024-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 05/18/2024] [Indexed: 05/31/2024]
Abstract
The current study was designed to investigate the alleviative effect of Gentianella acuta (Michx.) Hulten (G. acuta) against the sodium arsenite (NaAsO2)-induced development hindrance of mouse oocytes. For this purpose, the in vitro maturation (IVM) of mouse cumulus-oocyte complexes (COCs) was conducted in the presence of NaAsO2 and G. acuta, followed by the assessments of IVM efficiency including oocyte maturation, spindle organization, chromosome alignment, cytoskeleton assembly, cortical granule (CGs) dynamics, redox regulation, epigenetic modification, DNA damage, and apoptosis. Subsequently, the alleviative effect of G. acuta intervention on the fertilization impairments of NaAsO2-exposed oocytes was confirmed by the assessment of in vitro fertilization (IVF). The results showed that the G. acuta intervention effectively ameliorated the decreased maturation potentials and fertilization deficiency of NaAsO2-exposed oocytes but also significantly inhibited the DNA damages, apoptosis, and altered H3K27me3 expression level in the NaAsO2-exposed oocytes. The effective effects of G. acuta intervention against redox dysregulation including mitochondrial dysfunctions, accumulated reactive oxygen species (ROS) generation, glutathione (GSH) deficiency, and decreased adenosine triphosphate (ATP) further confirmed that the ameliorative effects of G. acuta intervention against the development hindrance of mouse oocytes were positively related to the antioxidant capacity of G. acuta. Evidenced by these abovementioned results, the present study provided fundamental bases for the ameliorative effect of G. acuta intervention against the meiotic defects caused by the NaAsO2 exposure, benefiting the future application potentials of G. acuta intervention in these nutritional and therapeutic research for attenuating the outcomes of arseniasis.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
- Department of Environmental Science and Engineering, Inner Mongolia University of Technology, Hohhot, 010051, Inner Mongolia, China
| | - Biao Wang
- Animal Husbandry Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot, 010031, Inner Mongolia, China
| | - Ying Wei
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China
| | - Shubin Li
- Department of Geriatric Medical Center, Inner Mongolia People's Hospital, Hohhot, 010010, Inner Mongolia, China
| | - Jingyu Ren
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Yanfeng Dai
- College of Life Science, Inner Mongolia University, Hohhot, 010070, Inner Mongolia, China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Clinical Medicine Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010030, Inner Mongolia, China.
| |
Collapse
|
2
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
3
|
Han J, Wang S, Wang H, Zhang T, Yang Y, Zhao T, Chen Z, Xia G, Wang C. SIRT1 reduction contributes to doxorubicin-induced oxidative stress and meiotic failure in mouse oocytes. Toxicol Appl Pharmacol 2023; 476:116671. [PMID: 37633598 DOI: 10.1016/j.taap.2023.116671] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Impaired fertility is the major side effect of chemotherapy for female cancer patients, accumulated evidence indicates this is associated with damage on oocyte quality, but the underlying mechanisms remain unclear. Previously we reported that doxorubicin (DXR) exposure, one of the most widely used chemotherapy drugs, disrupted mouse oocyte meiotic maturation in vitro. In the current study, we identified that SIRT1 expression was remarkably reduced in DXR exposure oocytes. Next, we found that increasing SIRT1 expression by resveratrol partially alleviated the effects of DXR exposure on oocyte maturation, which was counteracted by SIRT1 inhibition. Furthermore, we revealed that increasing SIRT1 expression mitigated DXR induced oocyte damage through reducing ROS levels, increasing antioxidant enzyme MnSOD expression, and preventing spindle and chromosome disorganization, lowering the incidence of aneuploidy. Importantly, by performing in vitro fertilization and embryo transfer assays, we demonstrated that increasing SIRT1 expression significantly improved the fertilization ability, developmental competence of oocytes and early embryos. In summary, our data uncover that SIRT1 reduction represents one mechanism that mediates the effects of DXR exposure on oocyte quality.
Collapse
Affiliation(s)
- Jun Han
- Jiangsu Academy of Agricultural Sciences, Nanjing 21000, China; State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuo Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Huarong Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ye Yang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ziqi Chen
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Ningxia University, Ningxia 750021, China
| | - Chao Wang
- State Key Laboratory of Livestock and Poultry Biotechnology Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Zhang S, Liu Q, Chang M, Pan Y, Yahaya BH, Liu Y, Lin J. Chemotherapy impairs ovarian function through excessive ROS-induced ferroptosis. Cell Death Dis 2023; 14:340. [PMID: 37225709 DOI: 10.1038/s41419-023-05859-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/05/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023]
Abstract
Chemotherapy was conventionally applied to kill cancer cells, but regrettably, they also induce damage to normal cells with high-proliferative capacity resulting in cardiotoxicity, nephrotoxicity, peripheral nerve toxicity, and ovarian toxicity. Of these, chemotherapy-induced ovarian damages mainly include but are not limited to decreased ovarian reserve, infertility, and ovarian atrophy. Therefore, exploring the underlying mechanism of chemotherapeutic drug-induced ovarian damage will pave the way to develop fertility-protective adjuvants for female patients during conventional cancer treatment. Herein, we firstly confirmed the abnormal gonadal hormone levels in patients who received chemotherapy and further found that conventional chemotherapeutic drugs (cyclophosphamide, CTX; paclitaxel, Tax; doxorubicin, Dox and cisplatin, Cis) treatment significantly decreased both the ovarian volume of mice and the number of primordial and antral follicles and accompanied with the ovarian fibrosis and reduced ovarian reserve in animal models. Subsequently, Tax, Dox, and Cis treatment can induce the apoptosis of ovarian granulosa cells (GCs), likely resulting from excessive reactive oxygen species (ROS) production-induced oxidative damage and impaired cellular anti-oxidative capacity. Thirdly, the following experiments demonstrated that Cis treatment could induce mitochondrial dysfunction through overproducing superoxide in GCs and trigger lipid peroxidation leading to ferroptosis, first reported in chemotherapy-induced ovarian damage. In addition, N-acetylcysteine (NAC) treatment could alleviate the Cis-induced toxicity in GCs by downregulating cellular ROS levels and enhancing the anti-oxidative capacity (promoting the expression of glutathione peroxidase, GPX4; nuclear factor erythroid 2-related factor 2, Nrf2 and heme oxygenase-1, HO-1). Our study confirmed the chemotherapy-induced chaotic hormonal state and ovarian damage in preclinical and clinical examination and indicated that chemotherapeutic drugs initiated ferroptosis in ovarian cells through excessive ROS-induced lipid peroxidation and mitochondrial dysfunction, leading to ovarian cell death. Consequently, developing fertility protectants from the chemotherapy-induced oxidative stress and ferroptosis perspective will ameliorate ovarian damage and further improve the life quality of cancer patients.
Collapse
Affiliation(s)
- Shenghui Zhang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia
| | - Qin Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
| | - Mengyuan Chang
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Ying Pan
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Badrul Hisham Yahaya
- Department of Biomedical Sciences, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Penang, Malaysia.
| | - Yanli Liu
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| | - Juntang Lin
- Stem Cell and Biotherapy Technology Research Center, Henan Joint International Research Laboratory of Stem Cell Medicine, Xinxiang Medical University, Xinxiang, China.
| |
Collapse
|
5
|
Liu C, Zhao Z, Lv H, Yu J, Zhang P. Microneedles-mediated drug delivery system for the diagnosis and treatment of melanoma. Colloids Surf B Biointerfaces 2022; 219:112818. [PMID: 36084509 DOI: 10.1016/j.colsurfb.2022.112818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/29/2022] [Indexed: 11/26/2022]
Abstract
As an emerging novel drug delivery system, microneedles (MNs) have a wide range of applications in the medical field. They can overcome the physiological barriers of the skin, penetrate the outermost skin of the human body, and form hundreds of reversible microchannels to enhance the penetration of drugs and deliver drugs to the diseased sites. So they have great applications in the diagnosis and treatment of melanoma. Melanoma is a kind of malignant tumor, the survival rate of patients with metastases is extremely low. The traditional methods of surgery and drug treatment for melanoma are often accompanied by large adverse reactions in the whole body, and the drug concentration is low. The use of MNs for transdermal administration can increase the drug concentration, reduce adverse reactions in the treatment process, and have good therapeutic effect on melanoma. This paper introduced various types of MNs and their preparation methods, summarized the diagnosis and various treatment options for melanoma with MNs, focused on the treatment of melanoma with dissolved MNs, and made prospect of MNs-mediated transdermal drug delivery in the treatment of melanoma.
Collapse
Affiliation(s)
- Cheng Liu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Zhining Zhao
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Hongqian Lv
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China
| | - Jia Yu
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
6
|
Hatırnaz Ş, Hatırnaz ES, Ellibeş Kaya A, Hatırnaz K, Soyer Çalışkan C, Sezer Ö, Dokuzeylül Güngor N, Demirel C, Baltacı V, Tan S, Dahan M. Oocyte maturation abnormalities - A systematic review of the evidence and mechanisms in a rare but difficult to manage fertility pheneomina. Turk J Obstet Gynecol 2022; 19:60-80. [PMID: 35343221 PMCID: PMC8966321 DOI: 10.4274/tjod.galenos.2022.76329] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A small proportion of infertile women experience repeated oocyte maturation abnormalities (OMAS). OMAS include degenerated and dysmorphic oocytes, empty follicle syndrome, oocyte maturation arrest (OMA), resistant ovary syndrome and maturation defects due to primary ovarian insufficiency. Genetic factors play an important role in OMAS but still need specifications. This review documents the spectrum of OMAS and to evaluate the multiple subtypes classified as OMAS. In this review, readers will be able to understand the oocyte maturation mechanism, gene expression and their regulation that lead to different subtypes of OMAs, and it will discuss the animal and human studies related to OMAS and lastly the treatment options for OMAs. Literature searches using PubMed, MEDLINE, Embase, National Institute for Health and Care Excellence were performed to identify articles written in English focusing on Oocyte Maturation Abnormalities by looking for the following relevant keywords. A search was made with the specified keywords and included books and documents, clinical trials, animal studies, human studies, meta-analysis, randomized controlled trials, reviews, systematic reviews and options written in english. The search detected 3,953 sources published from 1961 to 2021. After title and abstract screening for study type, duplicates and relevancy, 2,914 studies were excluded. The remaining 1,039 records were assessed for eligibility by full-text reading and 886 records were then excluded. Two hundred and twenty seven full-text articles and 0 book chapters from the database were selected for inclusion. Overall, 227 articles, one unpublished and one abstract paper were included in this final review. In this review study, OMAS were classified and extensively evaluatedand possible treatment options under the light of current information, present literature and ongoing studies. Either genetic studies or in vitro maturation studies that will be handled in the future will lead more informations to be reached and may make it possible to obtain pregnancies.
Collapse
Affiliation(s)
- Şafak Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Ebru Saynur Hatırnaz
- Medicana Samsun International Hospital, In Vitro Fertilization-In Vitro Maturation Unit, Samsun, Turkey
| | - Aşkı Ellibeş Kaya
- Private Office, Clinic of Obstetrics and Gynecology Specialist, Samsun, Turkey
| | - Kaan Hatırnaz
- Ondokuz Mayıs University Faculty of Medicine, Department of Molecular Biology and Genetics, Samsun, Turkey
| | - Canan Soyer Çalışkan
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Obstetrics and Gynecology, Samsun, Turkey
| | - Özlem Sezer
- University of Health Sciences Turkey, Samsun Training and Research Hospital, Clinic of Genetics, Samsun, Turkey
| | | | - Cem Demirel
- Memorial Ataşehir Hospital, In Vitro Fertilization Unit, İstanbul, Turkey
| | | | - Seang Tan
- James Edmund Dodds Chair in ObGyn, Department of ObGyn, McGill University, OriginElle Fertility Clinic and Women, QC, Canada
| | - Michael Dahan
- McGill Reproductive Centre, Department of ObGyn, McGill University Montreal, Quebec, Canada
| |
Collapse
|
7
|
Ozturk S. Molecular determinants of the meiotic arrests in mammalian oocytes at different stages of maturation. Cell Cycle 2022; 21:547-571. [PMID: 35072590 PMCID: PMC8942507 DOI: 10.1080/15384101.2022.2026704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/21/2021] [Accepted: 01/03/2022] [Indexed: 01/26/2023] Open
Abstract
Mammalian oocytes undergo two rounds of developmental arrest during maturation: at the diplotene of the first meiotic prophase and metaphase of the second meiosis. These arrests are strictly regulated by follicular cells temporally producing the secondary messengers, cAMP and cGMP, and other factors to regulate maturation promoting factor (composed of cyclin B1 and cyclin-dependent kinase 1) levels in the oocytes. Out of these normally appearing developmental arrests, permanent arrests may occur in the oocytes at germinal vesicle (GV), metaphase I (MI), or metaphase II (MII) stage. This issue may arise from absence or altered expression of the oocyte-related genes playing key roles in nuclear and cytoplasmic maturation. Additionally, the assisted reproductive technology (ART) applications such as ovarian stimulation and in vitro culture conditions both of which harbor various types of chemical agents may contribute to forming the permanent arrests. In this review, the molecular determinants of developmental and permanent arrests occurring in the mammalian oocytes are comprehensively evaluated in the light of current knowledge. As number of permanently arrested oocytes at different stages is increasing in ART centers, potential approaches for inducing permanent arrests to obtain competent oocytes are discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey
| |
Collapse
|
8
|
Pailas A, Niaka K, Zorzompokou C, Marangos P. The DNA Damage Response in Fully Grown Mammalian Oocytes. Cells 2022; 11:cells11050798. [PMID: 35269420 PMCID: PMC8909749 DOI: 10.3390/cells11050798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
DNA damage in cells can occur physiologically or may be induced by exogenous factors. Genotoxic damage may cause cancer, ageing, serious developmental diseases and anomalies. If the damage occurs in the germline, it can potentially lead to infertility or chromosomal and genetic aberrations in the developing embryo. Mammalian oocytes, the female germ cells, are produced before birth, remaining arrested at the prophase stage of meiosis over a long period of time. During this extensive state of arrest the oocyte may be exposed to different DNA-damaging insults for months, years or even decades. Therefore, it is of great importance to understand how these cells respond to DNA damage. In this review, we summarize the most recent developments in the understanding of the DNA damage response mechanisms that function in fully grown mammalian oocytes.
Collapse
Affiliation(s)
- Alexandros Pailas
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantina Niaka
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Chrysoula Zorzompokou
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
| | - Petros Marangos
- Department of Biological Applications and Technology, School of Health Sciences, Institute of Biosciences, University Research Centre, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology, University of Ioannina Campus, 45115 Ioannina, Greece
| |
Collapse
|
9
|
Jiao X, Liu N, Xu Y, Qiao H. Perfluorononanoic acid impedes mouse oocyte maturation by inducing mitochondrial dysfunction and oxidative stress. Reprod Toxicol 2021; 104:58-67. [PMID: 34246765 DOI: 10.1016/j.reprotox.2021.07.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/18/2021] [Accepted: 07/06/2021] [Indexed: 12/22/2022]
Abstract
Perfluorononanoic acid (PFNA), a member of PFAS, is frequently detected in human blood and tissues, even in follicular fluid of women. The exposure of PFNA, but not PFOA and PFOS, is positively correlated with miscarriage and increased time to pregnancy. Toxicological studies indicated that PFNA exposure is associated with immunotoxicity, hepatotoxicity, developmental toxicity, and reproductive toxicity in animals. However, there is little information regarding the toxic effects of PFNA on oocyte maturation. In this study, we investigated the toxic effects of PFNA exposure on mouse oocyte maturation in vitro. Our results showed that 600 μM PFNA significantly inhibited germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Our further study revealed that PFNA induced abnormal metaphase I (MI) spindle assembly, evidenced by malformed spindles and mislocalization of p-ERK1/2 in PFNA-treated oocytes. We also found that PFNA induced abnormal mitochondrial distribution and increased mitochondrial membrane potential. Consequently, PFNA increased reactive oxygen species (ROS) levels, leading to oxidative stress, DNA damage, and eventually early-stage apoptosis in oocytes. In addition, after 14 h culture, PFNA disrupted the formation of metaphase II (MII) spindle in most PFNA-treated oocytes with polar bodies. Collectively, our results indicate that PFNA interferes with oocyte maturation in vitro via disrupting spindle assembly, damaging mitochondrial functions, and inducing oxidative stress, DNA damage, and early-stage apoptosis.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ning Liu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yiding Xu
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
10
|
Guo C, Zhao Z, Zhao K, Huang J, Ding L, Huang X, Meng L, Li L, Wei H, Zhang S. Perfluorooctanoic acid inhibits the maturation rate of mouse oocytes cultured in vitro by triggering mitochondrial and DNA damage. Birth Defects Res 2021; 113:1074-1083. [PMID: 33871176 DOI: 10.1002/bdr2.1899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/19/2021] [Accepted: 04/05/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Perfluorooctanoic acid (PFOA) is widely used in the manufacture of household and industrial products. It has certain toxicity and leaves many residues in the environment. Numerous studies have shown that PFOA exhibits endocrine disrupting properties and immunotoxicity and induces developmental defects. However, there is very little information regarding its toxicity on oocytes. METHODS We cultured denuded oocytes in maturation medium supplemented with 0, 300, or 500 PFOA during IVM and evaluated the maturation of oocytes from the aspects of ROS(DCFH-DA), mitochondria(MitoOrange and JC-1), DNA damage(P-H2AX), and cytoskeleton(β-tubulin). RESULTS Compared with the control group, the PFOA treatment group exhibited significantly reduced proportion of oocytes matutation. Furthermore, the DCFH-DA test showed that PFOA significantly increased reactive oxygen species (ROS) levels. PFOA disrupted mitochondrial distribution and decreased mitochondrial function as assessed using MitoOrange and JC-1. In addition, PFOA-treated oocytes exhibited a significantly higher percentage of P-H2AX, defective β-tubulin, abnormal chromosome alignment, lower expression of the anti-apoptotic gene Bcl-2, and higher expression of the apoptotic genes caspase3 and Bax. CONCLUSION In summary, PFOA could negatively and directly affect oocyte maturation in vitro and cause oxidative stress, mitochondrial function disruption, DNA damage, cytoskeleton damage, and apoptosis.
Collapse
Affiliation(s)
- Conghui Guo
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Zhihong Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Kun Zhao
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jianhao Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Linshu Ding
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Xiaogang Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Meng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hengxi Wei
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shouquan Zhang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Yang CX, Wu ZW, Liu XM, Liang H, Gao ZR, Wang Y, Fang T, Liu YH, Miao YL, Du ZQ. Single-cell RNA-seq reveals mRNAs and lncRNAs important for oocytes in vitro matured in pigs. Reprod Domest Anim 2021; 56:642-657. [PMID: 33496347 DOI: 10.1111/rda.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
The faithful execution of molecular programme underlying oocyte maturation and meiosis is vital to generate competent haploid gametes for efficient mammalian reproduction. However, the organization and principle of molecular circuits and modules for oocyte meiosis remain obscure. Here, we employed the recently developed single-cell RNA-seq technique to profile the transcriptomes of germinal vesicle (GV) and metaphase II (MII) oocytes, aiming to discover the dynamic changes of mRNAs and long non-coding RNAs (lncRNAs) during oocyte in vitro meiotic maturation. During the transition from GV to MII, total number of detected RNAs (mRNAs and lncRNAs) in oocytes decreased. Moreover, 1,807 (602 up- and 1,205 down-regulated) mRNAs and 313 (177 up- and 136 down-regulated) lncRNAs were significantly differentially expressed (DE), i.e., more mRNAs down-regulated, but more lncRNAs up-regulated. During maturation of pig oocytes, mitochondrial mRNAs were actively transcribed, eight of which (ND6, ND5, CYTB, ND1, ND2, COX1, COX2 and COX3) were significantly up-regulated. Both DE mRNAs and targets of DE lncRNAs were enriched in multiple biological and signal pathways potentially associated with oocyte meiosis. Highly abundantly expressed mRNAs (including DNMT1, UHRF2, PCNA, ARMC1, BTG4, ASNS and SEP11) and lncRNAs were also discovered. Weighted gene co-expression network analysis (WGCNA) revealed 20 hub mRNAs in three modules to be important for oocyte meiosis and maturation. Taken together, our findings provide insights and resources for further functional investigation of mRNAs/lncRNAs in in vitro meiotic maturation of pig oocytes.
Collapse
Affiliation(s)
- Cai-Xia Yang
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Zi-Wei Wu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Xiao-Man Liu
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Hao Liang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Zhuo-Ran Gao
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yi Wang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Ting Fang
- College of Animal Science, Yangtze University, Jingzhou, China
| | - Yun-Hua Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Qiang Du
- College of Animal Science, Yangtze University, Jingzhou, China.,College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Jiao X, Gonsioroski A, Flaws JA, Qiao H. Iodoacetic acid disrupts mouse oocyte maturation by inducing oxidative stress and spindle abnormalities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115601. [PMID: 33126034 PMCID: PMC7746578 DOI: 10.1016/j.envpol.2020.115601] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/25/2020] [Accepted: 09/01/2020] [Indexed: 05/29/2023]
Abstract
Disinfection by-products (DBPs) are compounds produced during the water disinfection process. Iodoacetic acid (IAA) is one of the unregulated DBPs in drinking water, with potent cytotoxicity and genotoxicity in animals. However, whether IAA has toxic effects on oocyte maturation remains unclear. Here, we show that IAA exposure resulted in metaphase I (MI) arrest and polar-body-extrusion failure in mouse oocytes, indicating that IAA had adverse effects on mouse oocyte maturation in vitro. Particularly, IAA treatment caused abnormal spindle assembly and chromosome misalignment. Previous studies reported that IAA is a known inducer of oxidative stress in non-germline cells. Correspondingly, we found that IAA exposure increased the reactive oxygen species (ROS) levels in oocytes in a dose-dependent manner, indicating IAA exposure could induce oxidative stress in oocytes. Simultaneously, DNA damage was also elevated in the nuclei of these IAA-exposed mouse oocytes, evidenced by increased γ-H2AX focus number. In addition, the un-arrested oocytes entered metaphase II (MII) with severe defects in spindle morphologies and chromosome alignment after 14-h IAA treatment. An antioxidant, N-acetyl-L-cysteine (NAC), reduced the elevated ROS level and restored the meiotic maturation in the IAA-exposed oocytes, which indicates that IAA-induced maturation failure in oocytes was mainly mediated by oxidative stress. Collectively, our results indicate that IAA exposure interfered with mouse oocyte maturation by elevating ROS levels, disrupting spindle assembly, inducing DNA damage, and causing MI arrest.
Collapse
Affiliation(s)
- Xiaofei Jiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Andressa Gonsioroski
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Huanyu Qiao
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
13
|
Li T, Liu C, Zhen X, Yu Y, Qiao J. Actinomycin D causes oocyte maturation failure by inhibiting chromosome separation and spindle assembly†. Biol Reprod 2020; 104:94-105. [PMID: 33106855 DOI: 10.1093/biolre/ioaa170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 06/08/2020] [Accepted: 09/21/2020] [Indexed: 11/12/2022] Open
Abstract
Actinomycin D (ActD) has been considered as one of the most effective and safe chemotherapeutic medications for treating a number of cancers. Although ActD has been used in the treatment of gynecological tumors and pediatric tumors for more than 50 years, the toxic effects of ActD on mammalian oocytes remain unknown. In this study, the influence of ActD on mouse and human oocyte maturation and the possible mechanisms were investigated. Notably, ActD inhibited oocyte maturation and arrested oocytes at the metaphase I (MI) stage in a dose-dependent manner. In addition, ActD arrested oocyte maturation when the oocytes were treated at different successive stages, including the germinal vesicle (GV), germinal vesicle breakdown, and MI stages. In ActD-treated oocytes, disordered chromosome condensation and irregular spindle assembly occurred, resulting in incomplete chromosome segregation and oocytes arresting at the MI phase; these results possibly occurred because ActD triggered the formation of reactive oxygen species, resulting in DNA damage and decreased ATP in mouse GV oocytes. Besides, in vivo treatment with ActD also inhibited mouse oocyte maturation. Similar effects were seen in human oocytes. Collectively, our results indicated that ActD exposure disrupted oocyte maturation by increasing DNA damage, which is a finding that might help with optimizing future methods for female fertility preservation before undergoing chemotherapy.
Collapse
Affiliation(s)
- Tianjie Li
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China.,Department of Obstetrics and Gynecology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Changyu Liu
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Xiumei Zhen
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Beijing Key laboratory of Reproductive Endocrinology and Assisted Reproductive Technology and Key Laboratory of Assisted Reproduction, Ministry of Education, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Ding ZM, Ahmad MJ, Meng F, Chen F, Wang YS, Zhao XZ, Zhang SX, Miao YL, Xiong JJ, Huo LJ. Triclocarban exposure affects mouse oocyte in vitro maturation through inducing mitochondrial dysfunction and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114271. [PMID: 32135433 DOI: 10.1016/j.envpol.2020.114271] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 06/10/2023]
Abstract
Triclocarban (TCC), a broad-spectrum lipophilic antibacterial agent, is the main ingredient of personal and health care products. Nonetheless, its ubiquitous presence in the environment has been established to negatively affect the reproduction in humans and animals. In this work, we studied the possible toxic effects of TCC on mouse oocytes maturation in vitro. Our findings revealed that TCC-treated immature mouse oocytes had a significantly reduced rate of polar body extrusion (PBE) compared to that of control. Further study demonstrated that the cell cycle progression and cytoskeletal dynamics were disrupted after TCC exposure, which resulted in the continuous activation of spindle assembly checkpoint (SAC). Moreover, TCC-treated oocytes had mitochondrial damage, reduced ATP content, and decreased mitochondrial membrane potential (MMP). Furthermore, TCC exposure induced oxidative stress and subsequently triggered early apoptosis in mouse oocytes. Besides, the levels of histone methylation were also affected, as indicated by increased H3K27me2 and H3K27me3 levels. In summary, our results revealed that TCC exposure disrupted mouse oocytes maturation through affecting cell cycle progression, cytoskeletal dynamics, oxidative stress, early apoptosis, mitochondria function, and histone modifications in vitro.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yong-Shang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin-Zhe Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai 264000, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan 430070, China.
| |
Collapse
|
15
|
Huang S, Liu H, Huang S, Fu T, Xue W, Guo R. Dextran methacrylate hydrogel microneedles loaded with doxorubicin and trametinib for continuous transdermal administration of melanoma. Carbohydr Polym 2020; 246:116650. [PMID: 32747282 DOI: 10.1016/j.carbpol.2020.116650] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/27/2020] [Accepted: 06/12/2020] [Indexed: 12/19/2022]
Abstract
Microneedles (MNs) technology has many advantages and is an ideal local transdermal drug delivery method. Here we synthesized photocrosslinkable dextran methacrylate (DexMA), and its degree of substitution is 5 % higher than the previous method. We used DexMA hydrogel for the first time to develop a new type of MNs for continuous transdermal administration. The prepared hydrogel MNs can successfully penetrate the epidermal layer and achieve sustained drug release. Doxorubicin (DOX) and trametinib (Tra) are anticancer drugs approved by FDA. Besides, Tra can also reverse P-gp-mediated multidrug resistance (MDR) to effectively block the efflux of DOX by P-gp. We used MNs to simultaneously load Tra and DOX, and achieved synergy in a B16 cell xenograft nude mouse model. The DexMA hydrogel MNs developed in this study can be used to enhance the transdermal delivery of small molecule drugs and reduce systemic toxicity and side effects.
Collapse
Affiliation(s)
- Shanghui Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Shaoshan Huang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Tingling Fu
- Nanhai Longtime Pharmaceutical Co., Ltd, Foshan 528200, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Guangdong Provincial Engineering and Technological Research Center for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
16
|
Ding ZM, Hua LP, Ahmad MJ, Safdar M, Chen F, Wang YS, Zhang SX, Miao YL, Xiong JJ, Huo LJ. Diethylstilbestrol exposure disrupts mouse oocyte meiotic maturation in vitro through affecting spindle assembly and chromosome alignment. CHEMOSPHERE 2020; 249:126182. [PMID: 32078850 DOI: 10.1016/j.chemosphere.2020.126182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
An adverse tendency induced by the environmental estrogens in female reproductive health is one serious problem worldwide. Diethylstilbestrol (DES), as a synthetic estrogen, is still used as an animal growth stimulant in terrestrial livestock and aquaculture illegally. It has been reported to negatively affect ovarian function and oogenesis. Nevertheless, the mechanism and toxicity of DES on oocyte meiotic maturation are largely unknown. Herein, we found that DES (40 μM) intervened in mouse oocyte maturation and first polar body extrusion (PBE) was decreased in vitro. Cell cycle analysis showed meiotic process was disturbed with oocytes arrested at metaphase I (MI) stage after DES exposure. Further study showed that DES exposure disrupted the spindle assembly and chromosome alignment, which then continuously provoke the spindle assemble checkpoint (SAC). We also observed that the acetylation levels of α-tubulin were dramatically increased in DES-treated oocytes. In addition, the dynamics of actin were also affected. Moreover, the distribution patterns of estrogen receptor α (ERα) were altered in DES-treated oocyte, as indicated by the significant signals accumulation in the spindle area. However, ERα inhibitor failed to rescue the defects of oocyte maturation caused by DES. Of note, the same phenomenon was observed in estrogen-treated oocytes. Collectively, we showed that DES exposure lead to the oocyte meiotic failure via impairing the spindle assembly and chromosome alignment. Our research is helpful to understand how environmental estrogen affects female germ cells and contribute to design the potential therapies to preserve fertility especially for occupational exposure.
Collapse
Affiliation(s)
- Zhi-Ming Ding
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Ping Hua
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Muhammad Jamil Ahmad
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Muhammad Safdar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Fan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Yong-Shang Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Shou-Xin Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China; Biochip Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, China
| | - Yi-Liang Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Jia-Jun Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong, Agricultural University, Wuhan, 430070, China; Hubei Province's Engineering Research Center in Buffalo Breeding & Products, Wuhan, 430070, China.
| |
Collapse
|