1
|
He X, Zhu J, Gong X, Zhang D, Li Y, Zhang X, Zhao X, Zhou C. Advances in deciphering the mechanisms of salt tolerance in Maize. PLANT SIGNALING & BEHAVIOR 2025; 20:2479513. [PMID: 40098499 PMCID: PMC11959903 DOI: 10.1080/15592324.2025.2479513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/19/2025]
Abstract
Maize (Zea mays L.) is a vital crop worldwide, serving as a cornerstone for food security, livestock feed, and biofuel production. However, its cultivation is increasingly jeopardized by environmental challenges, notably soil salinization, which severely constrains growth, yield, and quality. To combat salinity stress, maize employs an array of adaptive mechanisms, including enhanced antioxidant enzyme activity and modulated plant hormone levels, which work synergistically to maintain reactive oxygen species (ROS) balance and ion homeostasis. This review explores the intricate interactions among ROS, antioxidant systems, plant hormones, and ion regulation in maize under salt stress, providing a comprehensive understanding of the physiological and molecular basis of its tolerance. By elucidating these mechanisms, this study contributes to the development of salt-tolerant maize varieties and informs innovative strategies to sustain agricultural productivity under adverse environmental conditions, offering significant theoretical insights into plant stress biology and practical solutions for achieving sustainable agriculture amidst global climate challenges.
Collapse
Affiliation(s)
- Xiaofei He
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Junke Zhu
- School of Agricultural Engineering & Food Science, Shandong University of Technology, Zibo, Shandong, China
- College of Life Sciences, Qilu Normal University, Jinan, Shandong, China
| | - Xuehua Gong
- Hebei Province Carbon-Based Heavy Metal Soil Pollution Remediation Technology Innovation Center, Tangshan, Hebei, China
| | - Dongqing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Yuan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| |
Collapse
|
2
|
Liu J, Li J, Deng C, Liu Z, Yin K, Zhang Y, Zhao Z, Zhao R, Zhao N, Zhou X, Chen S. Effect of NaCl on ammonium and nitrate uptake and transport in salt-tolerant and salt-sensitive poplars. TREE PHYSIOLOGY 2024; 44:tpae020. [PMID: 38366380 DOI: 10.1093/treephys/tpae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
Nitrogen (N) plays an important role in mitigating salt stress in tree species. We investigate the genotypic differences in the uptake of ammonium (NH4+) and nitrate (NO3-) and the importance for salt tolerance in two contrasting poplars, salt-tolerant Populus euphratica Oliv. and salt-sensitive P. simonii × (P. pyramidalis ×Salix matsudana) (P. popularis cv. 35-44, P. popularis). Total N content, growth and photosynthesis were significantly reduced in P. popularis after 7 days of exposure to NaCl (100 mM) supplied with 1 mM NH4+ and 1 mM NO3-, while the salt effects were not pronounced in P. euphratica. The 15NH4+ trace and root flux profiles showed that salt-stressed poplars retained ammonium uptake, which was related to the upregulation of ammonium transporters (AMTs) in roots, as two of the four AMTs tested significantly increased in salt-stressed P. euphratica (i.e., AMT1.2, 2.1) and P. popularis (i.e., AMT1.1, 1.6). It should be noted that P. euphratica differs from salt-sensitive poplar in the maintenance of NO3- under salinity. 15NO3- tracing and root flux profiles showed that P. euphratica maintained nitrate uptake and transport, while the capacity to uptake NO3- was limited in salt-sensitive P. popularis. Salt increased the transcription of nitrate transporters (NRTs), NRT1.1, 1.2, 2.4, 3.1, in P. euphratica, while P. popularis showed a decrease in the transcripts of NRT1.1, 2.4, 3.1 after 7 days of salt stress. Furthermore, salt-stimulated transcription of plasmalemma H+-ATPases (HAs), HA2, HA4 and HA11 contributed to H+-pump activation and NO3- uptake in P. euphratica. However, salt stimulation of HAs was less pronounced in P. popularis, where a decrease in HA2 transcripts was observed in the stressed roots. We conclude that the salinity-decreased transcripts of NRTs and HAs reduced the ability to uptake NO3- in P. popularis, resulting in limited nitrogen supply. In comparison, P. euphratica maintains NH4+ and NO3- supply, mitigating the negative effects of salt stress.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Chen Deng
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology (Box 162), Beijing Forestry University, Qinghua East Road 35, Haidian District, Beijing 100083, P.R. China
| |
Collapse
|