1
|
Marchand LJ, Gričar J, Zuccarini P, Dox I, Mariën B, Verlinden M, Heinecke T, Prislan P, Marie G, Lange H, Van den Bulcke J, Penuelas J, Fonti P, Campioli M. No winter halt in below-ground wood growth of four angiosperm deciduous tree species. Nat Ecol Evol 2025; 9:386-394. [PMID: 39789168 DOI: 10.1038/s41559-024-02602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe. Coarse-roots wood growth continued throughout the winter whereas stem wood growth halted in autumn, regardless of the tree species, experimental setting or location. Our results do not indicate a clear temperature constraint on below-ground wood growth, even during prolonged periods with soil temperatures lower than 3 °C. The continuous differentiation of xylem root cells in autumn and winter suggests that the non-growing season does not exist sensu stricto for all woody organs of angiosperm deciduous tree species of the temperate zone. Our findings hold implications for understanding tree functioning, in particular the seasonal wood formation, the environmental controls of tree growth and the carbon reserves dynamics.
Collapse
Affiliation(s)
- Lorène J Marchand
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Paolo Zuccarini
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Inge Dox
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Bertold Mariën
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Integrated Science Lab (IceLab), Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Melanie Verlinden
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Thilo Heinecke
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Guillaume Marie
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Holger Lange
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jan Van den Bulcke
- UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Josep Penuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Matteo Campioli
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
2
|
Jiang C, Wang J, Fu X, Zhao C, Zhang W, Gao H, Zhu C, Song X, Zhao Y, An Y, Huang L, Chen N, Lu MZ, Zhang J. PagPXYs improve drought tolerance by regulating reactive oxygen species homeostasis in the cambium of Populus alba × P. glandulosa. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 344:112106. [PMID: 38663480 DOI: 10.1016/j.plantsci.2024.112106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/19/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
PXY (Phloem intercalated with xylem) is a receptor kinase required for directional cell division during the development of plant vascular tissue. Drought stress usually affects plant stem cell division and differentiation thereby limiting plant growth. However, the role of PXY in cambial activities of woody plants under drought stress is unclear. In this study, we analyzed the biological functions of two PXY genes (PagPXYa and PagPXYb) in poplar growth and development and in response to drought stress in a hybrid poplar (Populus alba × P. glandulosa, '84K'). Expression analysis indicated that PagPXYs, similar to their orthologs PtrPXYs in Populus trichocarpa, are mainly expressed in the stem vascular system, and related to drought. Interestingly, overexpression of PagPXYa and PagPXYb in poplar did not have a significant impact on the growth status of transgenic plants under normal condition. However, when treated with 8 % PEG6000 or 100 mM H2O2, PagPXYa and PagPXYb overexpressing lines consistently exhibited more cambium cell layers, fewer xylem cell layers, and enhanced drought tolerance compared to the non-transgenic control '84K'. In addition, PagPXYs can alleviate the damage caused by H2O2 to the cambium under drought stress, thereby maintaining the cambial division activity of poplar under drought stress, indicating that PagPXYs play an important role in plant resistance to drought stress. This study provides a new insight for further research on the balance of growth and drought tolerance in forest trees.
Collapse
Affiliation(s)
- Cheng Jiang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Jiawei Wang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xinyue Fu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chunyan Zhao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Weilin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Hesheng Gao
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Chenhao Zhu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Yanqiu Zhao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, Shandong 264025, China
| | - Yi An
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Lichao Huang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Ningning Chen
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
3
|
Lehnebach R, Campioli M, Gričar J, Prislan P, Mariën B, Beeckman H, Van den Bulcke J. High-Resolution X-Ray Computed Tomography: A New Workflow for the Analysis of Xylogenesis and Intra-Seasonal Wood Biomass Production. FRONTIERS IN PLANT SCIENCE 2021; 12:698640. [PMID: 34421949 PMCID: PMC8377475 DOI: 10.3389/fpls.2021.698640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/28/2021] [Indexed: 06/01/2023]
Abstract
Understanding tree growth and carbon sequestration are of crucial interest to forecast the feedback of forests to climate change. To have a global understanding of the wood formation, it is necessary to develop new methodologies for xylogenesis measurements, valid across diverse wood structures and applicable to both angiosperms and gymnosperms. In this study, the authors present a new workflow to study xylogenesis using high-resolution X-ray computed tomography (HRXCT), which is generic and offers high potential for automatization. The HXRCT-based approach was benchmarked with the current classical approach (microtomy) on three tree species with contrasted wood anatomy (Pinus nigra, Fagus sylvatica, and Quercus robur). HRXCT proved to estimate the relevant xylogenesis parameters (timing, duration, and growth rates) across species with high accuracy. HRXCT showed to be an efficient avenue to investigate tree xylogenesis for a wide range of wood anatomies, structures, and species. HRXCT also showed its potential to provide quantification of intra-annual dynamics of biomass production through high-resolution 3D mapping of wood biomass within the forming growth ring.
Collapse
Affiliation(s)
- Romain Lehnebach
- UGCT–UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
- AMAP Laboratory (botany and bio-informatics of plant architecture and vegetation), Université Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Matteo Campioli
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Jozica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Bertold Mariën
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Hans Beeckman
- Royal Museum for Central Africa, Service of Wood Biology, Tervuren, Belgium
| | - Jan Van den Bulcke
- UGCT–UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
4
|
Buras A, Rammig A, Zang CS. The European Forest Condition Monitor: Using Remotely Sensed Forest Greenness to Identify Hot Spots of Forest Decline. FRONTIERS IN PLANT SCIENCE 2021; 12:689220. [PMID: 34925391 PMCID: PMC8672298 DOI: 10.3389/fpls.2021.689220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 09/28/2021] [Indexed: 05/07/2023]
Abstract
Forest decline, in course of climate change, has become a frequently observed phenomenon. Much of the observed decline has been associated with an increasing frequency of climate change induced hotter droughts while decline induced by flooding, late-frost, and storms also play an important role. As a consequence, tree mortality rates have increased across the globe. Despite numerous studies that have assessed forest decline and predisposing factors for tree mortality, we still lack an in-depth understanding of (I) underlying eco-physiological mechanisms, (II) the influence of varying environmental conditions related to soil, competition, and micro-climate, and (III) species-specific strategies to cope with prolonged environmental stress. To deepen our knowledge within this context, studying tree performance within larger networks seems a promising research avenue. Ideally such networks are already established during the actual period of environmental stress. One approach for identifying stressed forests suitable for such monitoring networks is to assess measures related to tree vitality in near real-time across large regions by means of satellite-borne remote sensing. Within this context, we introduce the European Forest Condition monitor (EFCM)-a remote-sensing based, freely available, interactive web information tool. The EFCM depicts forest greenness (as approximated using NDVI from MODIS at a spatial resolution of roughly 5.3 hectares) for the pixel-specific growing season across Europe and consequently allows for guiding research within the context of concurrent forest performance. To allow for inter-temporal comparability and account for pixel-specific features, all observations are set in relation to normalized difference vegetation index (NDVI) records over the monitoring period beginning in 2001. The EFCM provides both a quantile-based and a proportion-based product, thereby allowing for both relative and absolute comparison of forest greenness over the observational record. Based on six specific examples related to spring phenology, drought, late-frost, tree die-back on water-logged soils, an ice storm, and windthrow we exemplify how the EFCM may help identifying hotspots of extraordinary forest greenness. We discuss advantages and limitations when monitoring forest condition at large scales on the basis of moderate resolution remote sensing products to guide users toward an appropriate interpretation.
Collapse
Affiliation(s)
- Allan Buras
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
- *Correspondence: Allan Buras
| | - Anja Rammig
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
| | - Christian S. Zang
- Land Surface-Atmosphere Interactions, Technische Universität München, Freising, Germany
- Forests and Climate Change, Hochschule Weihenstephan-Triesdorf, Freising, Germany
| |
Collapse
|