1
|
Szejner P, Tang Y, Angove C, Schiestl-Aalto P, Sahlstedt E, Young G, Nelson DB, Kahmen A, Saurer M, Rinne-Garmston KT. Opposing seasonal trends in source water and sugar dampen intra-annual variability in tree rings oxygen isotopes. THE NEW PHYTOLOGIST 2025. [PMID: 40391701 DOI: 10.1111/nph.70223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 04/18/2025] [Indexed: 05/22/2025]
Abstract
Variations of oxygen isotopes δ18O in tree rings provide critical insights into past climate and tree physiological processes, yet the mechanisms shaping the intra-annual δ18O signals remain incompletely understood. To address this gap, we investigated how seasonal changes in source water, leaf water, and sugars influence δ18O recorded along the tree rings of Pinus sylvestris in Finland. We conducted a seasonal analysis measuring δ18O from needle water, source water, and phloem sugars and investigated the fraction of oxygen isotope exchange during wood formation. We found that seasonal δ18O amplitudes are significantly reduced from leaf water to tree rings, driven by opposing seasonal patterns in increasing source water δ18O and decreasing evaporative enrichment as relative humidity increases. Additionally, the isotope exchange between source water and phloem sugars further dampens seasonal δ18O signals in the rings. Our findings show that oxygen isotope exchange is critical in shaping δ18O signals, influencing the role of source water and relative humidity recorded on intra-annual resolution. This refined understanding helps interpret tree physiological responses under changing conditions and improves climate reconstructions based on tree rings using intra-annual resolution.
Collapse
Affiliation(s)
- Paul Szejner
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Yu Tang
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Charlotte Angove
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Pauliina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research (INAR)/Physics, Faculty of Science, University of Helsinki, PO Box 68, FI-00014, Helsinki, Finland
| | - Elina Sahlstedt
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Giles Young
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| | - Daniel B Nelson
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| | - Ansgar Kahmen
- Department of Environmental Sciences - Botany, University of Basel, 4056, Basel, Switzerland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Katja T Rinne-Garmston
- Stable Isotope Laboratory of Luke (SILL), Natural Resources Institute Finland (Luke), Latokartanonkaari 9, FI-00790, Helsinki, Finland
| |
Collapse
|
2
|
Schmied G, Kappen J, Del Río M, Moser WK, Gundale MJ, Hilmers T, Ambs D, Uhl E, Pretzsch H. Positive mixture effects in pine-oak forests during drought are context-dependent. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 40341707 DOI: 10.1111/plb.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/21/2025] [Indexed: 05/10/2025]
Abstract
The increasing severity and frequency of droughts will play a pivotal role in shaping future forest ecosystems worldwide. Trees growing in mixtures are thought to be less susceptible to drought stress, but evidence for such positive admixture effects remains limited. This study examines how interspecific neighbourhood structures affect the growth responses of pine and oak species under recurrent drought stress in two contrasting forest ecosystems. We sampled naturally occurring, unmanaged mixed stands of Gambel oak (Quercus gambelii) and ponderosa pine (Pinus ponderosa) in semi-arid Arizona, USA, and pedunculate oak (Quercus robur) and Scots pine (Pinus sylvestris) in sub-humid Bavaria, Germany. Tree growth responses to recurrent drought events were assessed across a wide gradient of species admixture. Species admixture significantly influenced tree growth responses to drought stress, but the effects varied by species and forest ecosystem. In semi-arid Arizona, increasing species admixture buffered trees, especially Gambel oak, against drought stress. In sub-humid Bavaria, the effects of species admixture on pedunculate oak and Scots pine were more variable. Our findings emphasize the positive mixture effects in semi-arid environments, likely due to distinct niche complementarity and facilitation. Under sub-humid conditions, the effects were less consistent, aligning with the stress-gradient hypothesis. This study provides valuable insights into the complex dynamics of pine-oak interactions under drought stress and emphasizes the relevance of complementary species admixtures for climate-smart forest management in the face of climate change.
Collapse
Affiliation(s)
- G Schmied
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - J Kappen
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - M Del Río
- Instituto de Ciencias Forestales ICIFOR-INIA, CSIC, Madrid, Spain
| | - W K Moser
- USDA Forest Service, Rocky Mountain Research Station, Flagstaff, Arizona, USA
| | - M J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - T Hilmers
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - D Ambs
- Professorship of Tree Growth and Wood Physiology, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - E Uhl
- Bavarian State Institute of Forestry (LWF), Bavarian State Ministry of Food, Agriculture and Forestry (StMELF), Freising, Germany
| | - H Pretzsch
- Chair for Forest Growth and Yield Science, Department of Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Sustainable Forest Management Research Institute iuFOR, University of Valladolid, Valladolid, Spain
| |
Collapse
|
3
|
Bailey K, Szejner P, Strange B, Nabours R, Monson RK, Hu J. The aridity influence on oxygen isotopes recorded in tree rings. TREE PHYSIOLOGY 2025; 45:tpaf044. [PMID: 40192226 DOI: 10.1093/treephys/tpaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 03/22/2025] [Indexed: 05/15/2025]
Abstract
The stable isotopes of oxygen in wood cellulose (δ18Ocell) have been widely used to reconstruct historical source water use in trees or changes in atmospheric humidity. However, in many cases, the δ18O of source water use is assumed to reflect that of precipitation, which is often not the case in semi-arid to arid ecosystems where trees use deeper and older water from previous precipitation events (or even groundwater). Furthermore, the degree to which δ18Ocell reflects source water and atmospheric aridity depends on pex, normally defined as the proportion of oxygen atoms that exchange between isotopically enriched carbohydrates from the leaf and unenriched xylem water during cellulose synthesis. Many studies treat pex as a constant. However, pex can only be estimated with direct measurements of δ18Ocell and the δ18O of tree source water and sucrose. Additionally, other physiological mechanisms (e.g., photosynthate translocation) can alter the isotopic signal before cellulose is produced. Thus, determining this 'apparent pex' (apex; which includes those other physiological mechanisms such as photosynthate translocation plus the exchange of oxygen atoms during cellulose synthesis), can be difficult. In this study, we collected δ18O of xylem water and δ18O of wood cellulose from seven stands of Ponderosa pine situated at the northern boundary of the North American Monsoon (NAM) climate system to assess how potential variability in apex influenced how source water and aridity were recorded in δ18Ocell. We compared measured and modeled values of δ18Ocell and found that more arid sites under-represented the vapor pressure deficit (VPD) signal in cellulose while wetter sites over-represented the VPD signal in cellulose. We also found that apex varied as a function of site aridity, where low precipitation and high VPD led to high apex, while high precipitation and low VPD led to low apex. Future studies can use our emerging understanding of the aridity-apex relationship in different portions of the annual ring to better disentangle the source water and VPD signals in cellulose, particularly for regions such as the NAM region.
Collapse
Affiliation(s)
- Kinzie Bailey
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- Northern Prairie Wildlife Research Center, US Geological Survey, 820 Columbus Street, Rapid City, SD 57701, USA
| | - Paul Szejner
- Bioeconomy and Environment Unit, Natural Resources Institute Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Brandon Strange
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- School of Informatics, Norther Arizona University, 1295 Knoles Drive, Flagstaff, AZ 86011, USA
| | - Rhiannon Nabours
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
| | - Russell K Monson
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
- Department of Evolutionary Biology, University of Arizona, 1041 East Lowell Street, Tucson, AZ 85721, USA
| | - Jia Hu
- School of Natural Resources and the Environment, University of Arizona, 1064 East Lowell Street, Tucson, AZ 85721, USA
- Laboratory of Tree Ring Research, University of Arizona, 1215 East Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|
4
|
Liu Z, Wang X, Jia G, Jiang J, Liao B. Introduction of broadleaf tree species can promote the resource use efficiency and gross primary productivity of pure forests. PLANT, CELL & ENVIRONMENT 2024; 47:5252-5264. [PMID: 39177516 DOI: 10.1111/pce.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024]
Abstract
Long-term pure forest (PF) management and successive planting has result resulted in "low-efficiency artificial forests" in large areas. However, controversy persists over the promoting effect of introduction of broadleaf tree species on production efficiency of PF. This study hypothesised that introduced broadleaf tree species can significantly promote both water-nutrient use efficiency and gross primary productivity (GPP)of PF. Tree ring chronologies, water source, water use efficiency and GPP were analysed in coniferous Cunninghamia lanceolata and broadleaved Phoebe zhennan growing over the past three decades. The introduction of P. zhennan into C. lanceolata plantations resulted in inter-specific competition for water, probably because of the similarity of the main water source of these two tree species. However, C. lanceolata absorbed more water with a higher nutrient level from the 40-60-cm soil layer in mixed forests (MF). Although the co-existing tree species limited the basal area increment and growth rates of C. lanceolata in MF plots, the acquisition of dissolved nutrients from the fertile topsoil layer were enhanced; this increased the water use efficiency and GPP of MF plots. To achieve better ecological benefits and GPP, MFs should be constructed in southern China.
Collapse
Affiliation(s)
- Ziqiang Liu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaodi Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guodong Jia
- Key Laboratory of Soil and Water Conservation and Desertification Combating of Ministry of Education, Beijing Forestry University, Beijing, China
| | - Jiang Jiang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Bin Liao
- State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Kannenberg SA, Maxwell JT. Disentangling the drivers of non-stationarity in tree growth. TREE PHYSIOLOGY 2022; 42:1128-1130. [PMID: 35298647 DOI: 10.1093/treephys/tpac031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Steven A Kannenberg
- School of Biological Sciences, University of Utah, Salt Lake City, 84112 UT, USA
| | - Justin T Maxwell
- Department of Geography, Indiana University, Bloomington, 47405 IN, USA
| |
Collapse
|
6
|
Tumajer J, Scharnweber T, Smiljanic M, Wilmking M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. THE NEW PHYTOLOGIST 2022; 233:2429-2441. [PMID: 35000201 DOI: 10.1111/nph.17952] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Understanding the effects of temperature and moisture on radial growth is vital for assessing the impacts of climate change on carbon and water cycles. However, studies observing growth at sub-daily temporal scales remain scarce. We analysed sub-daily growth dynamics and its climatic drivers recorded by point dendrometers for 35 trees of three temperate broadleaved species during the years 2015-2020. We isolated irreversible growth driven by cambial activity from the dendrometer records. Next, we compared the intra-annual growth patterns among species and delimited their climatic optima. The growth of all species peaked at air temperatures between 12 and 16°C and vapour pressure deficit (VPD) below 0.1 kPa. Acer pseudoplatanus and Fagus sylvatica, both diffuse-porous, sustained growth under suboptimal VPD. Ring-porous Quercus robur experienced a steep decline of growth rates with reduced air humidity. This resulted in multiple irregular growth peaks of Q. robur during the year. By contrast, the growth patterns of the diffuse-porous species were always right-skewed unimodal with a peak in June between day of the year 150-170. Intra-annual growth patterns are shaped more by VPD than temperature. The different sensitivity of radial growth to VPD is responsible for unimodal growth patterns in both diffuse-porous species and multimodal growth pattern in Q. robur.
Collapse
Affiliation(s)
- Jan Tumajer
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraβe 15, 17487, Greifswald, Germany
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843, Prague, Czech Republic
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraβe 15, 17487, Greifswald, Germany
| | - Marko Smiljanic
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraβe 15, 17487, Greifswald, Germany
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraβe 15, 17487, Greifswald, Germany
| |
Collapse
|
7
|
Rapid increases in shrubland and forest intrinsic water-use efficiency during an ongoing megadrought. Proc Natl Acad Sci U S A 2021; 118:2118052118. [PMID: 34930849 DOI: 10.1073/pnas.2118052118] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2021] [Indexed: 11/18/2022] Open
Abstract
Globally, intrinsic water-use efficiency (iWUE) has risen dramatically over the past century in concert with increases in atmospheric CO2 concentration. This increase could be further accelerated by long-term drought events, such as the ongoing multidecadal "megadrought" in the American Southwest. However, direct measurements of iWUE in this region are rare and largely constrained to trees, which may bias estimates of iWUE trends toward more mesic, high elevation areas and neglect the responses of other key plant functional types such as shrubs that are dominant across much of the region. Here, we found evidence that iWUE is increasing in the Southwest at one of the fastest rates documented due to the recent drying trend. These increases were particularly large across three common shrub species, which had a greater iWUE sensitivity to aridity than Pinus ponderosa, a common tree species in the western United States. The sensitivity of both shrub and tree iWUE to variability in atmospheric aridity exceeded their sensitivity to increasing atmospheric [CO2]. The shift to more water-efficient vegetation would be, all else being equal, a net positive for plant health. However, ongoing trends toward lower plant density, diminished growth, and increasing vegetation mortality across the Southwest indicate that this increase in iWUE is unlikely to offset the negative impacts of aridification.
Collapse
|
8
|
Szejner P, Belmecheri S, Babst F, Wright WE, Frank DC, Hu J, Monson RK. Stable isotopes of tree rings reveal seasonal-to-decadal patterns during the emergence of a megadrought in the Southwestern US. Oecologia 2021; 197:1079-1094. [PMID: 33870457 DOI: 10.1007/s00442-021-04916-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022]
Abstract
Recent evidence has revealed the emergence of a megadrought in southwestern North America since 2000. Megadroughts extend for at least 2 decades, making it challenging to identify such events until they are well established. Here, we examined tree-ring growth and stable isotope ratios in Pinus ponderosa at its driest niche edge to investigate whether trees growing near their aridity limit were sensitive to the megadrought climatic pre-conditions, and were capable of informing predictive efforts. During the decade before the megadrought, trees in four populations revealed increases in the cellulose δ13C content of earlywood, latewood, and false latewood, which, based on past studies are correlated with increased intrinsic water-use efficiency. However, radial growth and cellulose δ18O were not sensitive to pre-megadrought conditions. During the 2 decades preceding the megadrought, at all four sites, the changes in δ13C were caused by the high sensitivity of needle carbon and water exchange to drought trends in key winter months, and for three of the four sites during crucial summer months. Such pre-megadrought physiological sensitivity appears to be unique for trees near their arid range limit, as similar patterns were not observed in trees in ten reference sites located along a latitudinal gradient in the same megadrought domain, despite similar drying trends. Our results reveal the utility of tree-ring δ13C to reconstruct spatiotemporal patterns during the organizational phase of a megadrought, demonstrating that trees near the arid boundaries of a species' distribution might be useful in the early detection of long-lasting droughts.
Collapse
Affiliation(s)
- Paul Szejner
- Instituto de Geología, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico. .,Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.
| | - Soumaya Belmecheri
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Flurin Babst
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,W. Szafer Institute of Botany, Polish Academy of Science, ul. Lubicz 46, 31-512, Krakow, Poland.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - William E Wright
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - David C Frank
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA
| | - Jia Hu
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell St., Tucson, AZ, 85721, USA
| | - Russell K Monson
- Laboratory of Tree‑Ring Research, University of Arizona, 1215 E Lowell St, Tucson, AZ, 85721, USA.,Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| |
Collapse
|