1
|
Zhao Y, Xiong H, Luo Y, Hu B, Wang J, Tang X, Wang Y, Shi X, Zhang Y, Rennenberg H. Long-term nitrogen fertilization alters the partitioning of amino acids between citrus leaves and fruits. FRONTIERS IN PLANT SCIENCE 2025; 15:1516000. [PMID: 39872200 PMCID: PMC11769974 DOI: 10.3389/fpls.2024.1516000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/20/2024] [Indexed: 01/29/2025]
Abstract
Introduction The growth of evergreen fruit trees is influenced by the interaction of soil nitrogen (N) and leaf amino acid contents. However, information on free amino acid contents in leaves of fruiting and non-fruiting branches during long-term N fertilizer application remains scarce. Methods Here, a four-year field experiment (2018-2021) in a citrus orchard revealed consistently lower total N and amino acid contents in leaves of fruiting compared to non-fruiting branches. Results and discussion Appropriate N fertilizer application increased free amino acid and total N contents in leaves of both types of branches and fruits, but excessive amounts led to decreases. Correlation analysis showed that, in the early stage of fruit development, leaves on both types of branches can meet the N requirements of the fruit (R²=0.77 for fruiting, R²=0.82 for non-fruiting). As fruits entered the swelling stage, a significant positive correlation emerged between fruiting branch leaves and fruit total N content (R²=0.68), while the R² for leaves on non-fruiting branches dropped to 0.47, indicating a shift in N supply towards leaves on fruiting branches. Proline and arginine are the most abundant amino acids in these leaves. At fruit maturity, these amino acids account for more than half of the total amino acids in the fruit (29.0% for proline and 22.2% for arginine), highlighting their crucial role in fruit development. Further research is needed to investigate amino acid transport and distribution mechanisms between citrus leaves and fruits.
Collapse
Affiliation(s)
- Yuanlai Zhao
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Huaye Xiong
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yayin Luo
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiaodong Tang
- Changshou District Agricultural Technology Research Service Center, Chongqing, China
| | - Yuehong Wang
- Hechuan District Grain and Oil Development Guidance Station, Chongqing, China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Beijing Changping Soil Quality National Observation and Research Station, Beijing, China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing, China
- Beijing Changping Soil Quality National Observation and Research Station, Beijing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee, Freiburg, Germany
| |
Collapse
|
2
|
Liu R, Zhang Y, Wang Z, Zhang X, Xu W, Zhang J, Zhang Y, Hu B, Shi X, Rennenberg H. Groundcover improves nutrition and growth of citrus trees and reduces water runoff, soil erosion and nutrient loss on sloping farmland. FRONTIERS IN PLANT SCIENCE 2024; 15:1489693. [PMID: 39568460 PMCID: PMC11576175 DOI: 10.3389/fpls.2024.1489693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024]
Abstract
Introduction Groundcover management plays a crucial role in improving water retention and soil nutrition in orchard systems, thereby preventing environmental constrains by non-point source pollution. However, effectiveness of groundcover management in citrus orchards developed on sloping farmland with eroded purple soil has not been studied in detail. In particular, information on the soil nutrient losses, e.g., nitrogen (N) and phosphorus (P), through interflow and its effects on growth and nutrition of citrus plants has not been reported. Methods The present study evaluated the effects of different cover crops, i.e., Lolium perenne L. (Lolium), Vicia villosa Roth (Vicia) and Orychophragmus violaceus (Ory), on nutrition and growth of citrus trees as well as water, soil and nutrient retention in an orchard developed in sloping farmland during two consecutive years. Results and discussion The results show that the groundcover species Lolium and Vicia mediated nursing effects on nutrition and growth of citrus trees. These nursing effects included enhanced foliar levels of carbon(C), N and P as well as increased tree height, stem diameter, and crown width. Groundcover management generally reduced the annual surface runoff, interflow, soil loss, total N loss and total P loss. Among the cover crop species studied, Lolium and Vicia were overall more efficient than Ory in this context. Lolium reduced the average annual total loss of N and P by 42.53% and 49.23%, respectively, compared with clean tillage. The estimated annual reduction potentials of soil, N and P losses in Southwestern China were 16.3, 3.4 and 8.5 million tons yr-1, respectively. Obviously, Lolium and Vicia provide highly beneficial ground coverage on sloping farmland and, thus, can be used for future sustainable development of citrus orchards.
Collapse
Affiliation(s)
- Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yuting Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Zhichao Wang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Xueliang Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Wenjing Xu
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Jianwei Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Yueqiang Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, China
| |
Collapse
|
3
|
Fan Z, Lali MN, Xiong H, Luo Y, Wang Y, Wang Y, Lu M, Wang J, He X, Shi X, Zhang Y. Seedlings of Poncirus trifoliata exhibit tissue-specific detoxification in response to NH 4 + toxicity. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:467-475. [PMID: 38466186 DOI: 10.1111/plb.13621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/18/2024] [Indexed: 03/12/2024]
Abstract
Ammonium nitrogen (NH4 +-N) is essential for fruit tree growth, but the impact of excess NH4 +-N from fertilizer on evergreen citrus trees is unclear. In a climate chamber, 8-month-old citrus plants were exposed to five different hydroponic NH4 +-N concentrations (0, 5, 10, 15 and 20 mm) for 1 month to study effects of NH4 +-N on growth characteristics, N uptake, metabolism, antioxidant enzymes and osmotic regulatory substances. Application of 10 mm NH4 +-N adversely affected root plasma membrane integrity, root physiological functions, and plant biomass. MDA, CAT, POD, APX and SOD content were significantly correlated with leaf N metabolic enzyme activity (GOGAT, GDH, GS and NR). GDH was the primary enzyme involved in NH4 +-N assimilation in leaves, while the primary pathway involved in roots was GS-GOGAT. Under comparatively high NH4 + addition, roots were the main organs involved in NH4 + utilization in citrus seedlings. Our results demonstrated that variations in NH4 + concentration and enzyme activity in various organs are associated with more effective N metabolism in roots than in leaves to prevent NH4 + toxicity in evergreen woody citrus plants. These results provide insight into the N forms used by citrus plants that are important for N fertilizer management.
Collapse
Affiliation(s)
- Z Fan
- College of Resources and Environment, Southwest University, Chongqing, China
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - M N Lali
- College of Resources and Environment, Southwest University, Chongqing, China
- Department of Forestry and Natural Resources, Faculty of Agriculture, Bamyan University, Bamyan, Afghanistan
| | - H Xiong
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Luo
- College of Resources and Environment, Southwest University, Chongqing, China
| | - Y Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Wang
- Development and Guidance Station of Cereal and Oil Crops in Hechuan District, Chongqing, China
| | - M Lu
- College of Resources and Environment, Southwest University, Chongqing, China
- Chongqing Agro-Tech Extension Station, Chongqing, China
| | - J Wang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - X He
- College of Resources and Environment, Southwest University, Chongqing, China
| | - X Shi
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| | - Y Zhang
- College of Resources and Environment, Southwest University, Chongqing, China
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Xiong H, Luo Y, Zhao H, Wang J, Hu B, Yan C, Yao T, Zhang Y, Shi X, Rennenberg H. Integrated proteome and physiological traits reveal interactive mechanisms of new leaf growth and storage protein degradation with mature leaves of evergreen citrus trees. TREE PHYSIOLOGY 2024; 44:tpae001. [PMID: 38195893 DOI: 10.1093/treephys/tpae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 12/29/2023] [Indexed: 01/11/2024]
Abstract
The growth of fruit trees depends on the nitrogen (N) remobilization in mature tissues and N acquisition from the soil. However, in evergreen mature citrus (Citrus reticulata Blanco) leaves, proteins with N storage functions and hub molecules involved in driving N remobilization remain largely unknown. Here, we combined proteome and physiological analyses to characterize the spatiotemporal mechanisms of growth of new leaves and storage protein degradation in mature leaves of citrus trees exposed to low-N and high-N fertilization in the field. Results show that the growth of new leaves is driven by remobilization of stored reserves, rather than N uptake by the roots. In this context, proline and arginine in mature leaves acted as N sources supporting the growth of new leaves in spring. Time-series analyses with gel electrophoresis and proteome analysis indicated that the mature autumn shoot leaves are probably the sites of storage protein synthesis, while the aspartic endopeptidase protein is related to the degradation of storage proteins in mature citrus leaves. Furthermore, bioinformatic analysis based on protein-protein interactions indicated that glutamate synthetase and ATP-citrate synthetase are hub proteins in N remobilization from mature citrus leaves. These results provide strong physiological data for seasonal optimization of N fertilizer application in citrus orchards.
Collapse
Affiliation(s)
- Huaye Xiong
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Yayin Luo
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Huanyu Zhao
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Jie Wang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Chengquan Yan
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Xiema, Beibei District, 400712 Chongqing, P.R. China
| | - Yueqiang Zhang
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Xiaojun Shi
- Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715 Chongqing, P.R. China
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 53/54, 79110 Freiburg, Germany
| |
Collapse
|
5
|
Zhang J, Sun K, Wang Y, Qian W, Sun L, Shen J, Ding Z, Fan K. Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development. PLANT CELL REPORTS 2024; 43:28. [PMID: 38177567 DOI: 10.1007/s00299-023-03110-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/05/2023] [Indexed: 01/06/2024]
Abstract
KEY MESSAGE The weighted gene co-expression network analysis and antisense oligonucleotide-mediated transient gene silencing revealed that CsAAP6 plays an important role in amino acid transport during tea shoot development. Nitrogen transport from source to sink is crucial for tea shoot growth and quality formation. Amino acid represents the major transport form of reduced nitrogen in the phloem between source and sink, but the molecular mechanism of amino acid transport from source leaves to new shoots is not yet clear. Therefore, the composition of metabolites in phloem exudates collected by the EDTA-facilitated method was analyzed through widely targeted metabolomics. A total of 326 metabolites were identified in the phloem exudates with the richest variety of amino acids and their derivatives (93), accounting for approximately 39.13% of the total metabolites. Moreover, through targeted metabolomics, it was found that the content of glutamine, glutamic acid, and theanine was the most abundant, and gradually increased with the development of new shoots. Meanwhile, transcriptome analysis suggested that the expression of amino acid transport genes changed significantly. The WGCNA analysis identified that the expression levels of CsAVT1, CsLHTL8, and CsAAP6 genes located in the MEterquoise module were positively correlated with the content of amino acids such as glutamine, glutamic acid, and theanine in phloem exudates. Reducing the CsAAP6 in mature leaves resulted in a significant decrease in the content of glutamic acid, aspartic acid, alanine, leucine, asparagine, glutamine, and arginine in the phloem exudates, indicating that CsAAP6 played an important role in the source to sink transport of amino acids in the phloem. The research results will provide the theoretical basis and genetic resources for the improvement of nitrogen use efficiency and tea quality.
Collapse
Affiliation(s)
- Jie Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Kangwei Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Yu Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Wenjun Qian
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China
| | - Litao Sun
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100, Shandong, China
| | - Kai Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, Shandong, China.
| |
Collapse
|
6
|
Xu C, Wang Y, Yang H, Tang Y, Liu B, Hu X, Hu Z. Cold acclimation alleviates photosynthetic inhibition and oxidative damage induced by cold stress in citrus seedlings. PLANT SIGNALING & BEHAVIOR 2023; 18:2285169. [PMID: 38015652 PMCID: PMC10761016 DOI: 10.1080/15592324.2023.2285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 11/11/2023] [Indexed: 11/30/2023]
Abstract
Cold stress seriously inhibits plant growth and development, geographical distribution, and yield stability of plants. Cold acclimation (CA) is an important strategy for modulating cold stress, but the mechanism by which CA induces plant resistance to cold stress is still not clear. The purpose of this study was to investigate the effect of CA treatment on the cold resistance of citrus seedlings under cold stress treatment, and to use seedlings without CA treatment as the control (NA). The results revealed that CA treatment increased the content of photosynthetic pigments under cold stress, whereas cold stress greatly reduced the value of gas exchange parameters. CA treatment also promoted the activity of Rubisco and FBPase, as well as led to an upregulation of the transcription levels of photosynthetic related genes (rbcL and rbcS),compared to the NA group without cold stress. In addition, cold stress profoundly reduced photochemical chemistry of photosystem II (PSII), especially the maximum quantum efficiency (Fv/Fm) in PSII. Conversely, CA treatment improved the chlorophyll a fluorescence parameters, thereby improving electron transfer efficiency. Moreover, under cold stress, CA treatment alleviated oxidative stress damage to cell membranes by inhibiting the concentration of H2O2 and MDA, enhancing the activities of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APX) and glutathione reductase (GR), accompanied by an increase in the expression level of antioxidant enzyme genes (CuZnSOD1, CAT1, APX and GR). Additionally, CA also increased the contents of abscisic acid (ABA) and salicylic acid (SA) in plants under cold stress. Overall, we concluded that CA treatment suppressed the negative effects of cold stress by enhancing photosynthetic performance, antioxidant enzymes functions and plant hormones contents.
Collapse
Affiliation(s)
- Chao Xu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, P. R. China
| | - Yuting Wang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Huidong Yang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Yuqing Tang
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Buchun Liu
- Institute of Environment and Sustainable Development in Agriculture, CAAS, Beijing, P. R. China
| | - Xinlong Hu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| | - Zhongdong Hu
- Nanchang Key Laboratory of Germplasm Innovation and Utilization of Fruit and Tea, Jiangxi Academy of Agricultural Sciences, Nanchang, P. R. China
| |
Collapse
|
7
|
Lai YH, Peng MY, Rao RY, Chen WS, Huang WT, Ye X, Yang LT, Chen LS. An Integrated Analysis of Metabolome, Transcriptome, and Physiology Revealed the Molecular and Physiological Response of Citrus sinensis Roots to Prolonged Nitrogen Deficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:2680. [PMID: 37514294 PMCID: PMC10383776 DOI: 10.3390/plants12142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Citrus sinensis seedlings were supplied with a nutrient solution containing 15 (control) or 0 (nitrogen (N) deficiency) mM N for 10 weeks. Extensive metabolic and gene reprogramming occurred in 0 mM N-treated roots (RN0) to cope with N deficiency, including: (a) enhancing the ability to keep phosphate homeostasis by elevating the abundances of metabolites containing phosphorus and the compartmentation of phosphate in plastids, and/or downregulating low-phosphate-inducible genes; (b) improving the ability to keep N homeostasis by lowering the levels of metabolites containing N but not phosphorus, upregulating N compound degradation, the root/shoot ratio, and the expression of genes involved in N uptake, and resulting in transitions from N-rich alkaloids to carbon (C)-rich phenylpropanoids and phenolic compounds (excluding indole alkaloids) and from N-rich amino acids to C-rich carbohydrates and organic acids; (c) upregulating the ability to maintain energy homeostasis by increasing energy production (tricarboxylic acid cycle, glycolysis/gluconeogenesis, oxidative phosphorylation, and ATP biosynthetic process) and decreasing energy utilization for amino acid and protein biosynthesis and new root building; (d) elevating the transmembrane transport of metabolites, thus enhancing the remobilization and recycling of useful compounds; and (e) activating protein processing in the endoplasmic reticulum. RN0 had a higher ability to detoxify reactive oxygen species and aldehydes, thus protecting RN0 against oxidative injury and delaying root senescence.
Collapse
Affiliation(s)
- Yin-Hua Lai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Yi Peng
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rong-Yu Rao
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wen-Shu Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei-Tao Huang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xin Ye
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Li-Song Chen
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
8
|
Hu J, Zou S, Huang J, Huan X, Jin X, Zhou L, Zhao K, Han Y, Wang S. PagMYB151 facilitates proline accumulation to enhance salt tolerance of poplar. BMC Genomics 2023; 24:345. [PMID: 37349699 DOI: 10.1186/s12864-023-09459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.
Collapse
Affiliation(s)
- Jia Hu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengqiang Zou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | - Xuhui Huan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xia Jin
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lieding Zhou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kai Zhao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|