1
|
Hamberg L, Vanhatalo J, Velmala S, Taylor AFS, MacKay J, Caron S, Asiegbu FO, Sievänen R, Raumonen P, Hytönen T, Pennanen T. The community of root fungi is associated with the growth rate of Norway spruce (Picea abies). Environ Microbiol 2024; 26:e16662. [PMID: 38840258 DOI: 10.1111/1462-2920.16662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/16/2024] [Indexed: 06/07/2024]
Abstract
Our study delved into the relationship between root-associated fungi, gene expression and plant morphology in Norway spruce cuttings derived from both slow-and fast-growing trees. We found no clear link between the gene expression patterns of adventitious roots and the growth phenotype, suggesting no fundamental differences in the receptiveness to fungal symbionts between the phenotypes. Interestingly, saplings from slow-growing parental trees exhibited a higher richness of ectomycorrhizal species and larger roots. Some ectomycorrhizal species, typically found on mature spruces, were more prevalent on saplings from slow-growing spruces. The ericoid mycorrhizal fungus, Hyaloscypha hepaticola, showed a stronger association with saplings from fast-growing spruces. Moreover, saplings from slow-growing spruces had a greater number of Ascomycete taxa and free-living saprotrophic fungi. Aboveground sapling stems displayed some phenotypic variation; saplings from fast-growing phenotypes had longer branches but fewer whorls in their stems compared to those from the slow-growing group. In conclusion, the observed root-associated fungi and phenotypic characteristics in young Norway spruces may play a role in their long-term growth rate. This suggests that the early interactions between spruces and fungi could potentially influence their growth trajectory.
Collapse
Affiliation(s)
- Leena Hamberg
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Jarno Vanhatalo
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | | | | | - John MacKay
- Department of Biology, University of Oxford, Oxford, UK
| | - Sébastien Caron
- Center for Forest Research and Institute for Integrative and Systems Biology, Université Laval, Québec, Canada
| | - Fred O Asiegbu
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Risto Sievänen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Pasi Raumonen
- Computing Sciences, Tampere University, Tampere, Finland
| | - Tuija Hytönen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Taina Pennanen
- Natural Resources Institute Finland (Luke), Helsinki, Finland
| |
Collapse
|
2
|
Rubert-Nason KF, Yang P, Morrow CJ, Lindroth RL. Environment and Genotype Influence Quantitative and Qualitative Variation in Condensed Tannins in Aspen. J Chem Ecol 2023; 49:325-339. [PMID: 37183205 DOI: 10.1007/s10886-023-01430-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/08/2023] [Accepted: 04/16/2023] [Indexed: 05/16/2023]
Abstract
Condensed tannins (CTs) are abundant, ecologically-relevant secondary metabolites in many plants, which respond to variables associated with anthropogenic environmental change. While many studies have reported how genetic and environmental factors affect CT concentrations, few have explored how they influence CT molecular structure. Here, using trembling aspen (Populus tremuloides) as a model organism, we report how foliar CT concentrations, polymer sizes, representation of procyanidins and prodelphinidins, and stereochemistry vary in response to changes in air temperature (warming and freeze damage), air composition (elevated CO2 and O3), soil quality (nutrients and microbiome), and herbivory (mammal and lepidopteran). Use of multiple aspen genotypes enabled assessment of genetic influences on aspen CTs. CT concentration and composition were analyzed by thiolysis-ultra high performance liquid chromatography/mass spectrometry in archived leaf samples from prior experiments. All environmental variables explored except for soil microbiome influenced both CT quantity and quality, with climate factors appearing to have larger effect magnitudes than herbivory. Climate, soil, and herbivory effects varied among genotypes, while air composition effects were consistent across genotypes. Considering that CT properties (concentrations and molecular structures) mediate functions at the organismal through ecosystem scales, intraspecific variation in responses of CT properties to environmental factors could provide a pathway through which environmental change exerts selective pressure on Populus populations. Future studies are needed to identify the molecular-level mechanisms by which environmental factors influence CT concentrations and structures, and to establish their ecological and evolutionary significance.
Collapse
Affiliation(s)
- Kennedy F Rubert-Nason
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA.
- Division of Natural Sciences, University of Maine - Fort Kent, 23 University Drive, Fort Kent, ME, 04743, USA.
| | - Phia Yang
- Dept. of Zoology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Clay J Morrow
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| | - Richard L Lindroth
- Dept. of Entomology, University of Wisconsin - Madison, 1630 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Libutti A, Russo D, Lela L, Ponticelli M, Milella L, Rivelli AR. Enhancement of Yield, Phytochemical Content and Biological Activity of a Leafy Vegetable ( Beta vulgaris L. var. cycla) by Using Organic Amendments as an Alternative to Chemical Fertilizer. PLANTS (BASEL, SWITZERLAND) 2023; 12:569. [PMID: 36771653 PMCID: PMC9921681 DOI: 10.3390/plants12030569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/11/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This study evaluates the effect of a chemical fertilizer (ammonium nitrate), a compost (vermicompost from cattle manure) and two biochars (from vine prunings and wood chips, respectively), applied to the soil alone or in mixture, on the yield, phytochemical content and biological activity of Beta vulgaris L. var. cycla (Swiss chard). The respective treatments, each replicated four times, were arranged according to a completely randomized block design. Results showed that vermicompost, both alone and in mixture with vine pruning biochar, significantly increased yield parameters (plant height and leaf area) and yield over the untreated soil and the biochars alone, similar to ammonium nitrate. Moreover, vermicompost, both alone and in mixture, respectively, with the two biochars, determined lower total N and NO3- contents than ammonium nitrate, both alone and in mixture, respectively, with the two biochars. In particular, NO3- content was within the safe thresholds fixed for leafy vegetables by the European Commission to prevent any adverse implication on human health from dietary NO3- exposure. The biochars alone resulted in very low yield and leaf total N content, likely due to a limited release of N for plant uptake, also evidenced by the undetectable NO3- leaf content, similarly shown by plants grown in untreated soil. Vermicompost, alone or in mixture, respectively, with the two biochars, increased the content of specialized metabolites, with a positive effect on antioxidant activity. The organic amendments, particularly compost, could be an alternative to chemical fertilizers to reach a trade-off between yield, nutritional and health qualities in Swiss chard, meeting the needs of farmers and consumers as well as the targets for sustainable food production.
Collapse
Affiliation(s)
- Angela Libutti
- Department of Science of Agriculture, Food, Natural Resources and Engineering, University of Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Daniela Russo
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
- Spinoff BioActiPlant s.r.l., Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Ludovica Lela
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Maria Ponticelli
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Luigi Milella
- Department of Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| | - Anna Rita Rivelli
- School of Agricultural, Forest, Food and Environmental Sciences, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, Italy
| |
Collapse
|
4
|
Singh V, Lone RA, Kumar V, Mohanty CS. Reducing the biosynthesis of condensed tannin in winged bean ( Psophocarpus tetragonolobus (L.) DC.) by virus-induced gene silencing of anthocyanidin synthase (ANS) gene. 3 Biotech 2023; 13:16. [PMID: 36561838 PMCID: PMC9763518 DOI: 10.1007/s13205-022-03435-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
The Underutilized legume-winged bean (Psophocarpus tetragonolobus (L.) DC.) and its various parts are infested with condensed tannin (CT) or proanthocyanidin (PA). CT has anti-nutritional effect as it adversely affects the digestion of proteins, minerals and vitamin among ruminants and humans. It is also responsible for low protein digestibility and decreased amino acid availability. One of the probable reasons of underutilization of P. tetragonolobus is due to its infestation with CT. Histochemical staining of various tissues of P. tetragonolobus with dimethylcinnmaldehyde (DMACA) developed a deep-blue colour indicating the presence of polyphenolic condensed tannin. Structural monomeric unit catechin and epi-catechin were reported to be responsible for biosynthesis of CT in P. tetragonolobus. The enzyme anthocyanidin synthase (ANS) and its corresponding transcripts were identified and phylogenetically mapped. The transcript was subjected to virus-induced gene silencing (VIGS) through agro-infiltration in P. tetragonolobus for reducing the CT-content. The WbANS-VIGS induced P. tetragonolobus resulted in four-fold decrease of CT as compared to the control P. tetragonolobus. A decrease of 73% of CT level was reported in VIGS silenced Wb-ANS line of P. tetragonolobus. This study resulted and confirmed that, the silencing of (ANS) gene in P. tetragonolobus has a regulatory effect on the condensed tannin biosynthesis. This study will pave way for further manipulation of ANS enzyme for reducing the biosynthesis of the anti-nutrient CT. Reducing the CT content will make this underutilized legume more acceptable. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03435-5.
Collapse
Affiliation(s)
- Vinayak Singh
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 Uttar Pradesh India
- Department of Biology, Western University, London, Ontario Canada
| | - Rayees Ahmad Lone
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 Uttar Pradesh India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002 India
| | - Verandra Kumar
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 Uttar Pradesh India
| | - Chandra Sekhar Mohanty
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001 Uttar Pradesh India
- Academy of Scientific and Innovative Research, Ghaziabad, 201002 India
| |
Collapse
|
5
|
Harding SA, Frost CJ, Tsai CJ. Defoliation-induced compensatory transpiration is compromised in SUT4-RNAi Populus. PLANT DIRECT 2020; 4:e00268. [PMID: 33015535 PMCID: PMC7522500 DOI: 10.1002/pld3.268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 07/13/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The tonoplast sucrose transporter PtaSUT4 is well expressed in leaves of Populus tremula × Populus alba (INRA 717-IB4), and its inhibition by RNA-interference (RNAi) alters leaf sucrose homeostasis. Whether sucrose partitioning between the vacuole and the cytosol is modulated by PtaSUT4 for specific physiological outcomes in Populus remains unexplored. In this study, partial defoliation was used to elicit compensatory increases in photosynthesis and transpiration by the remaining leaves in greenhouse-grown poplar. Water uptake, leaf gas exchange properties, growth and nonstructural carbohydrate abundance in source and sink organs were then compared between wild-type and SUT4-RNAi lines. Partial defoliation increased maximum photosynthesis rates similarly in all lines. There was no indication that source leaf sugar levels changed differently between wild-type and RNAi plants following partial defoliation. Sink levels of hexose (glucose and fructose) and starch decreased similarly in all lines. Interestingly, plant water uptake after partial defoliation was not as well sustained in RNAi as in wild-type plants. While the compensatory increase in photosynthesis was similar between genotypes, leaf transpiration increased less robustly in RNAi than wild-type plants. SUT4-RNAi and wild-type source leaves differed constitutively in their bulk modulus of elasticity, a measure of leaf turgor, and storage water capacitance. The data demonstrate that reduced sucrose partitioning due to PtaSUT4-RNAi altered turgor control and compensatory transpiration capacity more strikingly than photosynthesis and sugar export. The results are consistent with the interpretation that SUT4 may control vacuolar turgor independently of sink carbon provisioning.
Collapse
Affiliation(s)
- Scott A Harding
- Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA
| | - Christopher J Frost
- Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA
- Present address: BIO5 Institute University of Arizona Tucson AZ 85719 USA
| | - Chung-Jui Tsai
- Warnell School of Forestry and Natural Resources Department of Genetics and Department of Plant Biology University of Georgia Athens GA USA
| |
Collapse
|
6
|
Derba-Maceluch M, Amini F, Donev EN, Pawar PMA, Michaud L, Johansson U, Albrectsen BR, Mellerowicz EJ. Cell Wall Acetylation in Hybrid Aspen Affects Field Performance, Foliar Phenolic Composition and Resistance to Biological Stress Factors in a Construct-Dependent Fashion. FRONTIERS IN PLANT SCIENCE 2020; 11:651. [PMID: 32528503 PMCID: PMC7265884 DOI: 10.3389/fpls.2020.00651] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/27/2020] [Indexed: 05/03/2023]
Abstract
The production of biofuels and "green" chemicals from the lignocellulose of fast-growing hardwood species is hampered by extensive acetylation of xylan. Different strategies have been implemented to reduce xylan acetylation, resulting in transgenic plants that show good growth in the greenhouse, improved saccharification and fermentation, but the field performance of such plants has not yet been reported. The aim of this study was to evaluate the impact of reduced acetylation on field productivity and identify the best strategies for decreasing acetylation. Growth and biological stress data were evaluated for 18 hybrid aspen lines with 10-20% reductions in the cell wall acetyl content from a five year field experiment in Southern Sweden. The reduction in acetyl content was achieved either by suppressing the process of acetylation in the Golgi by reducing expression of REDUCED WALL ACETYLATION (RWA) genes, or by post-synthetic acetyl removal by fungal acetyl xylan esterases (AXEs) from two different families, CE1 and CE5, targeting them to cell walls. Transgene expression was regulated by either a constitutive promoter (35S) or a wood-specific promoter (WP). For the majority of transgenic lines, growth was either similar to that in WT and transgenic control (WP:GUS) plants, or slightly reduced. The slight reduction was observed in the AXE-expressing lines regulated by the 35S promoter, not those with the WP promoter which limits expression to cells developing secondary walls. Expressing AXEs regulated by the 35S promoter resulted in increased foliar arthropod chewing, and altered condensed tannins and salicinoid phenolic glucosides (SPGs) profiles. Greater growth inhibition was observed in the case of CE5 than with CE1 AXE, and it was associated with increased foliar necrosis and distinct SPG profiles, suggesting that CE5 AXE could be recognized by the pathogen-associated molecular pattern system. For each of three different constructs, there was a line with dwarfism and growth abnormalities, suggesting random genetic/epigenetic changes. This high frequency of dwarfism (17%) is suggestive of a link between acetyl metabolism and chromatin function. These data represent the first evaluation of acetyl-reduced plants from the field, indicating some possible pitfalls, and identifying the best strategies, when developing highly productive acetyl-reduced feedstocks.
Collapse
Affiliation(s)
- Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fariba Amini
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
- Biology Department, Faculty of Science, Arak University, Arak, Iran
| | - Evgeniy N. Donev
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Prashant Mohan-Anupama Pawar
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Lisa Michaud
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - Ulf Johansson
- Tönnersjöheden Experimental Forest, Swedish University of Agricultural Sciences, Simlångsdalen, Sweden
| | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Ewa J. Mellerowicz,
| |
Collapse
|
7
|
Harding SA. Condensed tannins: arbiters of abiotic stress tolerance? TREE PHYSIOLOGY 2019; 39:341-344. [PMID: 30806659 DOI: 10.1093/treephys/tpz005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/19/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Scott A Harding
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
8
|
Decker VHG, Bandau F, Gundale MJ, Cole CT, Albrectsen BR. Aspen phenylpropanoid genes' expression levels correlate with genets' tannin richness and vary both in responses to soil nitrogen and associations with phenolic profiles. TREE PHYSIOLOGY 2017; 37:270-279. [PMID: 27986954 DOI: 10.1093/treephys/tpw118] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
Condensed tannin (CT) contents of European aspen (Populus tremula L.) vary among genotypes, and increases in nitrogen (N) availability generally reduce plants' tannin production in favor of growth, through poorly understood mechanisms. We hypothesized that intrinsic tannin production rates may co-vary with gene expression responses to soil N and resource allocation within the phenylpropanoid pathway (PPP). Thus, we examined correlations between soil N levels and both expression patterns of eight PPP genes (measured by quantitative-reverse transcription PCR) and foliar phenolic compounds (measured by liquid chromatography-mass spectrometry) in young aspen genets with intrinsically extreme CT levels. Monitored phenolics included salicinoids, lignins, flavones, flavonols, CT precursors and CTs. The PPP genes were consistently expressed more strongly in high-CT trees. Low N supplements reduced expression of genes throughout the PPP in all genets, while high N doses restored expression of genes at the beginning and end of the pathway. These PPP changes were not reflected in pools of tannin precursors, but varying correlations between gene expression and foliar phenolic pools were detected in young and mature leaves, suggesting that processes linking gene expression and the resulting phenolics vary spatially and temporally. Precursor fluxes suggested that CT-related metabolic rate or sink controls are linked to intrinsic carbon allocation strategies associated with N responses. Overall, we found more negative correlations (indicative of allocation trade-offs) between PPP gene expression and phenolic products following N additions in low-CT plants than in high-CT plants. The tannin-related expression dynamics suggest that, in addition to defense, relative tannin levels may also be indicative of intraspecific variations in the way aspen genets respond to soil fertility.
Collapse
Affiliation(s)
- Vicki H G Decker
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| | - Franziska Bandau
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| | - Michael J Gundale
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, UmeåSE 90183, Sweden
| | - Christopher T Cole
- Division of Science and Mathematics, University of Minnesota, Morris, MN56267, USA
| | - Benedicte R Albrectsen
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, UmeåSE 90187, Sweden
| |
Collapse
|
9
|
Franklin O, Palmroth S, Näsholm T. How eco-evolutionary principles can guide tree breeding and tree biotechnology for enhanced productivity. TREE PHYSIOLOGY 2014; 34:1149-1166. [PMID: 25542897 DOI: 10.1093/treephys/tpu111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Tree breeding and biotechnology can enhance forest productivity and help alleviate the rising pressure on forests from climate change and human exploitation. While many physiological processes and genes are targeted in search of genetically improved tree productivity, an overarching principle to guide this search is missing. Here, we propose a method to identify the traits that can be modified to enhance productivity, based on the differences between trees shaped by natural selection and 'improved' trees with traits optimized for productivity. We developed a tractable model of plant growth and survival to explore such potential modifications under a range of environmental conditions, from non-water limited to severely drought-limited sites. We show how key traits are controlled by a trade-off between productivity and survival, and that productivity can be increased at the expense of long-term survival by reducing isohydric behavior (stomatal regulation of leaf water potential) and allocation to defense against pests compared with native trees. In contrast, at dry sites occupied by naturally drought-resistant trees, the model suggests a better strategy may be to select trees with slightly lower wood density than the native trees and to augment isohydric behavior and allocation to defense. Thus, which traits to modify, and in which direction, depend on the original tree species or genotype, the growth environment and wood-quality versus volume production preferences. In contrast to this need for customization of drought and pest resistances, consistent large gains in productivity for all genotypes can be obtained if root traits can be altered to reduce competition for water and nutrients. Our approach illustrates the potential of using eco-evolutionary theory and modeling to guide plant breeding and genetic technology in selecting target traits in the quest for higher forest productivity.
Collapse
Affiliation(s)
- Oskar Franklin
- Ecosystems Services and Management Program , International Institute for Applied Systems Analysis, A-2361 Laxenburg , Austria;
| | - Sari Palmroth
- Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708 , USA
| | - Torgny Näsholm
- Department of Forest Ecology and Management , Swedish University of Agricultural Sciences, SE-901 83 Umeå , Sweden; Department of Forest Genetics and Plant Physiology , Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 85 Umeå , Sweden
| |
Collapse
|
10
|
Näsholm T, Palmroth S, Ganeteg U, Moshelion M, Hurry V, Franklin O. Genetics of superior growth traits in trees are being mapped but will the faster-growing risk-takers make it in the wild? TREE PHYSIOLOGY 2014; 34:1141-1148. [PMID: 25527413 DOI: 10.1093/treephys/tpu112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- Torgny Näsholm
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Sari Palmroth
- Division of Environmental Science & Policy, Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Ulrika Ganeteg
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Menachem Moshelion
- Faculty of Agriculture, Food and Environment, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Vaughan Hurry
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Center, Swedish University of Agricultural Sciences, SLU, SE-901 83 Umeå, Sweden
| | - Oskar Franklin
- Ecosystems Services and Management Program, International Institute for Applied Systems Analysis, A-2361 Laxenburg, Austria
| |
Collapse
|
11
|
Chen HY, Babst BA, Nyamdari B, Hu H, Sykes R, Davis MF, Harding SA, Tsai CJ. Ectopic expression of a loblolly pine class II 4-coumarate:CoA ligase alters soluble phenylpropanoid metabolism but not lignin biosynthesis in Populus. PLANT & CELL PHYSIOLOGY 2014; 55:1669-78. [PMID: 25016610 DOI: 10.1093/pcp/pcu098] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
4-Coumarate:CoA ligase (4CL) catalyzes the formation of hydroxycinnamoyl-CoA esters for phenylpropanoid biosynthesis. Phylogenetically distinct Class I and Class II 4CL isoforms occur in angiosperms, and support lignin and non-lignin phenylpropanoid biosynthesis, respectively. In contrast, the few experimentally characterized gymnosperm 4CLs are associated with lignin biosynthesis and belong to the conifer-specific Class III. Here we report a new Pinus taeda isoform Pinta4CL3 that is phylogenetically more closely related to Class II angiosperm 4CLs than to Class III Pinta4CL1. Like angiosperm Class II 4CLs, Pinta4CL3 transcript levels were detected in foliar and root tissues but were absent in xylem, and recombinant Pinta4CL3 exhibited a substrate preference for 4-coumaric acid. Constitutive expression of Pinta4CL3 in transgenic Populus led to significant increases of hydroxycinnamoyl-quinate esters at the expense of hydroxycinnamoyl-glucose esters in green tissues. In particular, large increases of cinnamoyl-quinate in transgenic leaves suggested in vivo utilization of cinnamic acid by Pinta4CL3. Lignin was unaffected in transgenic Populus, consistent with Pinta4CL3 involvement in biosynthesis of non-structural phenylpropanoids. We discuss the in vivo cinnamic acid utilization activity of Pinta4CL3 and its adaptive significance in conifer defense. Together with phylogenetic inference, our data support an ancient origin of Class II 4CLs that pre-dates the angiosperm-gymnosperm split.
Collapse
Affiliation(s)
- Han-Yi Chen
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Benjamin A Babst
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Present address: Biosciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Hao Hu
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert Sykes
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Mark F Davis
- National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Scott A Harding
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Chung-Jui Tsai
- School of Forest Resources and Environmental Sciences, Michigan Technological University, Houghton, MI 49931, USA Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|