1
|
Qaseem MF, Zhang W, Dupree P, Wu AM. Xylan structural diversity, biosynthesis, and functional regulation in plants. Int J Biol Macromol 2025; 291:138866. [PMID: 39719228 DOI: 10.1016/j.ijbiomac.2024.138866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/15/2024] [Indexed: 12/26/2024]
Abstract
Xylan is a vital component of plant cell walls, contributing to their structural integrity and flexibility through interactions with other polymers. Its structure varies among plant species, influencing the mechanical properties of cell walls. Xylan also has significant industrial potential, including in biofuels, biomaterials, food, and pharmaceuticals, due to its ability to be converted into valuable bioproducts. However, key aspects of xylan biosynthesis, regulation, and structural impact on plant growth and structures remain unclear. This review highlights current researches on xylan biosynthesis, modification, and applications, identifying critical gaps in knowledge. Meanwhile the review proposes new approaches to regulate xylan synthesis and understand its role in cell wall assembly and interactions with other polymers. Addressing these gaps could unlock the full industrial potential of xylan, leading to more sustainable applications.
Collapse
Affiliation(s)
- Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Wenjuan Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Paul Dupree
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangzhou 510642, China; Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
2
|
Xu W, Cheng H, Zhu S, Cheng J, Ji H, Zhang B, Cao S, Wang C, Tong G, Zhen C, Mu L, Zhou Y, Cheng Y. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. THE NEW PHYTOLOGIST 2021; 231:1478-1495. [PMID: 33713445 PMCID: PMC8362133 DOI: 10.1111/nph.17338] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/12/2023]
Abstract
Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Baocai Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Shenquan Cao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liqiang Mu
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Yihua Zhou
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
3
|
Behr M, Faleri C, Hausman JF, Planchon S, Renaut J, Cai G, Guerriero G. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl. PLANTA 2019; 250:1539-1556. [PMID: 31352512 DOI: 10.1007/s00425-019-03245-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.
Collapse
Affiliation(s)
- Marc Behr
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Sébastien Planchon
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy.
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.
| |
Collapse
|
4
|
Behr M, Sergeant K, Leclercq CC, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G. Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC PLANT BIOLOGY 2018; 18:1. [PMID: 29291729 PMCID: PMC5749015 DOI: 10.1186/s12870-017-1213-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lignin and lignans are both derived from the monolignol pathway. Despite the similarity of their building blocks, they fulfil different functions in planta. Lignin strengthens the tissues of the plant, while lignans are involved in plant defence and growth regulation. Their biosyntheses are tuned both spatially and temporally to suit the development of the plant (water conduction, reaction to stresses). We propose to study the general molecular events related to monolignol-derived product biosynthesis, especially lignin. It was previously shown that the growing hemp hypocotyl (between 6 and 20 days after sowing) is a valid system to study secondary growth and the molecular events accompanying lignification. The present work confirms the validity of this system, by using it to study the regulation of lignin and lignan biosynthesis. Microscopic observations, lignin analysis, proteomics, together with in situ laccase and peroxidase activity assays were carried out to understand the dynamics of lignin synthesis during the development of the hemp hypocotyl. RESULTS Based on phylogenetic analysis and targeted gene expression, we suggest a role for the hemp dirigent and dirigent-like proteins in lignan biosynthesis. The transdisciplinary approach adopted resulted in the gene- and protein-level quantification of the main enzymes involved in the biosynthesis of monolignols and their oxidative coupling (laccases and class III peroxidases), in lignin deposition (dirigent-like proteins) and in the determination of the stereoconformation of lignans (dirigent proteins). CONCLUSIONS Our work sheds light on how, in the growing hemp hypocotyl, the provision of the precursors needed to synthesize the aromatic biomolecules lignin and lignans is regulated at the transcriptional and proteomic level.
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UcL), 1348 Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Céline C. Leclercq
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Sébastien Planchon
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Cédric Guignard
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Audrey Lenouvel
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UcL), 1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
5
|
Clair B, Déjardin A, Pilate G, Alméras T. Is the G-Layer a Tertiary Cell Wall? FRONTIERS IN PLANT SCIENCE 2018; 9:623. [PMID: 29868079 PMCID: PMC5952352 DOI: 10.3389/fpls.2018.00623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/19/2018] [Indexed: 05/13/2023]
Affiliation(s)
- Bruno Clair
- CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRA, Université des Antilles, Université de Guyane, Kourou, France
- *Correspondence: Bruno Clair
| | | | | | | |
Collapse
|
6
|
Higaki A, Yoshinaga A, Takabe K. Heterogeneous distribution of xylan and lignin in tension wood G-layers of the S1+G type in several Japanese hardwoods. TREE PHYSIOLOGY 2017; 37:1767-1775. [PMID: 29177443 DOI: 10.1093/treephys/tpx144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 10/14/2017] [Indexed: 05/15/2023]
Abstract
A gradual shift in the microfibril angle of gelatinous layer (G-layer) of tension wood fibres of the S1+G type has been detected via potassium permanganate (KMnO4) staining. Thus, microfibril angles in fibres of the S1+G type are different from S1+S2+G type fibres. We evaluated the microfibril orientation and presence of lignin and xylan in G-layers of tension wood fibres of the S1+G type in several Japanese hardwoods. The distribution of xylan and lignin was examined using immunoelectron microscopy with anti-xylan monoclonal antibody, ultraviolet (UV) microscopy, fluorescence microscopy after acrifravine staining and transmission electron microscopy after KMnO4 staining. In transverse sections, the outer parts of the G-layers showed ultraviolet absorption and a heterogeneous KMnO4 staining pattern, suggesting that lignin was heterogeneously distributed in the outer parts of the G-layers. The heterogeneous staining pattern was found in the G-layers of several tree species; however, the degree of staining differed between tree species. In longitudinal sections, the KMnO4-staining region in the G-layers continued parallel to the cell axis to variable lengths. The orientation of cellulose microfibrils changed gradually from a steep helix to parallel to the cell axis from the outer to inner parts of the G-layers. Xylan immunolabelling was observed in the outer part of the G-layers; in some fibres, labelling was found in the innermost parts of the G-layers. Following immunogold labelling combined with KMnO4 staining, xylan labelling was mainly found in KMnO4-stained electron-opaque regions, suggesting that lignin and xylan were heterogeneously colocalized in the outer parts of the G-layers. The rotation of cellulose microfibrils and heterogeneous distribution of xylan and lignin might be a general phenomenon in S1+G tension wood fibres.
Collapse
Affiliation(s)
- Ayano Higaki
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keiji Takabe
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
7
|
Li Q, Koda K, Yoshinaga A, Takabe K, Shimomura M, Hirai Y, Tamai Y, Uraki Y. Dehydrogenative polymerization of coniferyl alcohol in artificial polysaccharides matrices: effects of xylan on the polymerization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4613-20. [PMID: 25775127 DOI: 10.1021/acs.jafc.5b01070] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To elucidate the influence of wood polysaccharide components on lignin formation in vitro, models for polysaccharide matrix in wood secondary cell wall were fabricated from two types of bacterial cellulosic films, flat film (FBC) and honeycomb-patterned film (HPBC), as basic frameworks by depositing xylan onto the films. An endwise type of dehydrogenative polymerization, "Zutropfverfahren", of coniferyl alcohol was attempted in the films with/without xylan. The resultant dehydrogenation polymer (DHP) was generated inside and outside xylan-deposited films, whereas DHP was deposited only outside the films without xylan. The amount of the generated DHP in the xylan-deposited films was larger than that in the films without xylan. The frequency of 8-O-4' interunitary linkage in DHP was also increased by the xylan deposition. These results suggest that xylan acts as a scaffold for DHP deposition in polysaccharides matrix and as a structure regulator for the formation of the 8-O-4' linkage. In addition, mechanical properties, i.e., tensile strength and modulus of elasticity (MOE), of both cellulosic films were found to be augmented by the deposition of xylan and DHP. Especially, DHP deposition remarkably enhanced MOE. Such effects of xylan on DHP formation and augmentation of mechanical strength were clearly observed for HPBC, revealing that HPBC is a promising framework model to investigate wood cell wall formation in vitro.
Collapse
Affiliation(s)
| | | | - Arata Yoshinaga
- §Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Keiji Takabe
- §Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masatsugu Shimomura
- ⊥Faculty of Photonic Science, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | - Yuji Hirai
- ⊥Faculty of Photonic Science, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose 066-8655, Japan
| | | | | |
Collapse
|