1
|
Wilson AM, Burtis JC, Goebel M, Yavitt JB. Litter quality and decomposition responses to drought in a northeastern US deciduous forest. Oecologia 2022; 200:247-257. [PMID: 36129577 DOI: 10.1007/s00442-022-05263-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/10/2022] [Indexed: 10/14/2022]
Abstract
Even though drought impacts on tree physiology have been identified, whether drought affects leaf litter chemistry that, in turn, influences litter decay rates is still poorly understood. We compared litter quality and decomposition for two cohorts of leaves from five co-occurring seasonally deciduous tree species: Acer saccharum, Tilia americana, Quercus rubra, Quercus alba, and Ostrya virginiana. One cohort experienced a growing-season drought, and the other cohort came from the same trees in the ensuing, post-drought growing season. Leaf litter production was greater for drought litter than post-drought litter for all five species. Specific leaf area and nitrogen concentrations were 20% greater for the drought cohort than the post-drought cohort. Concentrations of non-structural carbohydrates were about 14% greater for the drought cohort, except for greater values for post-drought A. saccharum litter. Pectin in the middle lamella of leaf litter was 31% lower for the drought cohort compared to post-drought cohort. We found few differences in litter decay rates between drought and post-drought cohorts, although Q. rubra litter had more decomposition for the post-drought cohort than the drought cohort, whereas A. saccharum litter had more decomposition for the drought cohort than the post-drought cohort. Leaf litter decay rates for the drought cohort were related to litter nitrogen and lignin concentrations, whereas decay rates for the post-drought cohort were related to litter carbohydrate concentrations. Our findings suggest that the role of drought events on seasonally deciduous forest ecosystems must recognize species-specific, idiosyncratic responses in leaf litter quality and decomposition.
Collapse
Affiliation(s)
- Alexis M Wilson
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - James C Burtis
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - Marc Goebel
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA
| | - Joseph B Yavitt
- Department of Natural Resources & the Environment, Cornell University, Ithaca, NY, 14853-3001, USA.
| |
Collapse
|
2
|
Vegetation Characteristics Based Climate Change Vulnerability Assessment of Temperate Forests of Western Himalaya. FORESTS 2022. [DOI: 10.3390/f13060848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Forests are under stress due to variety of climatic and non-climatic factors. Therefore for suitably managing the forests, vulnerability of the forests needs to be understood. The present paper attempts to estimate the vulnerability of various temperate forests of Western Himalaya due to climate change by analyzing the patterns of different taxonomical indices, based on primary data i.e., vegetation data. The paper presents a novel approach for climate change vulnerability assessment based on field data through a bottom-up approach. The vulnerability of the forests was assessed through the IPCC framework by suitably selecting indicators (taxonomy indices and climatic parameters) for the three dimensions of vulnerability i.e., exposure, sensitivity and adaptive capacity. The field data were collected from 17 different temperate forests distributed at the elevation “1600 to 3500 m” in Uttarakhand and Himachal Pradesh, India. Abundance and richness for each forest were collected by randomly laying ten quadrats of size 0.1 ha each. The analysis resulted into identifying the most and the least vulnerable temperate forests of the western Himalaya to climate change. The analysis showed that the Neoza Pine; Moist Deodar; Ban Oak and Dry Broadleaved and Coniferous forest were the most vulnerable forests in the Himalayan temperate forests due to climate change. Moreover, the variation in the levels of the vulnerability status of the selected forests was insignificant with elevational range as well as exposure to climate. The proposed method will serve for vulnerability estimation of forests due to climate change based on the actual realization of the species in the field.
Collapse
|
3
|
Buttó V, Millan M, Rossi S, Delagrange S. Contrasting Carbon Allocation Strategies of Ring-Porous and Diffuse-Porous Species Converge Toward Similar Growth Responses to Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:760859. [PMID: 34975943 PMCID: PMC8716880 DOI: 10.3389/fpls.2021.760859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
Extreme climatic events that are expected under global warming expose forest ecosystems to drought stress, which may affect the growth and productivity. We assessed intra-annual growth responses of trees to soil water content in species belonging to different functional groups of tree-ring porosity. We pose the hypothesis that species with contrasting carbon allocation strategies, which emerge from different relationships between wood traits and canopy architecture, display divergent growth responses to drought. We selected two diffuse-porous species (Acer saccharum and Betula alleghaniensis) and two ring-porous species (Quercus rubra and Fraxinus americana) from the mixed forest of Quebec (Canada). We measured anatomical wood traits and canopy architecture in eight individuals per species and assessed tree growth sensitivity to water balance during 2008-2017 using the standardized precipitation evapotranspiration index (SPEI). Stem elongation in diffuse-porous species mainly depended upon the total number of ramifications and hydraulic diameter of the tree-ring vessels. In ring-porous species, stem elongation mainly depended upon the productivity of the current year, i.e., number of vessels and basal area increment. Diffuse-porous and ring-porous species had similar responses to soil water balance. The effect of soil water balance on tree growth changed during the growing season. In April, decreasing soil temperature linked to wet conditions could explain the negative relationship between SPEI and tree growth. In late spring, greater water availability affected carbon partitioning, by promoting the formation of larger xylem vessels in both functional groups. Results suggest that timings and duration of drought events affect meristem growth and carbon allocation in both functional groups. Drought induces the formation of fewer xylem vessels in ring-porous species, and smaller xylem vessels in diffuse-porous species, the latter being also prone to a decline in stem elongation due to a reduced number of ramifications. Indeed, stem elongation of diffuse-porous species is influenced by environmental conditions of the previous year, which determine the total number of ramifications during the current year. Drought responses in different functional groups are thus characterized by different drivers, express contrasting levels of resistance or resilience, but finally result in an overall similar loss of productivity.
Collapse
Affiliation(s)
- Valentina Buttó
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Mathilde Millan
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Sylvain Delagrange
- Département des Sciences Naturelles, Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, QC, Canada
| |
Collapse
|
4
|
Nakamura T, Ishida A, Kawai K, Minagi K, Saiki S, Yazaki K, Yoshimura J. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. GLOBAL CHANGE BIOLOGY 2021; 27:5094-5108. [PMID: 34170598 PMCID: PMC8518126 DOI: 10.1111/gcb.15764] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Ongoing global warming increases the frequency and severity of tropical typhoons and prolonged drought, leading to forest degradation. Simultaneous and/or successive masting events and climatic extremes may thus occur frequently in the near future. If these climatic extremes occur immediately after mass seed reproduction, their effects on individual trees are expected to be very severe because mass reproduction decreases carbohydrate reserves. While the effects of either a single climate extreme or masting alone on tree resilience/growth have received past research attention, understanding the cumulative effects of such multiple events remains challenging and is crucial for predicting future forest changes. Here, we report tree hazards compound by two successive climate extremes, a tropical typhoon and prolonged drought, after mass reproduction in an endemic tree species (Distylium lepidotum Nakai) on oceanic islands. Across individual trees, the starch stored within the sapwood of branchlets significantly decreased with reproductive efforts (fruit mass/shoot mass ratio). Typhoon damage significantly decreased not only the total leaf area of apical shoots but also the maximum photosynthetic rates. During the 5-month period after the typhoon, the mortality of large branchlets (8-10-mm diameter) increased with decreasing stored starch when the typhoon hit. During the prolonged summer drought in the next year, the recovery of total leaf area, stored starch, and hydraulic conductivity was negatively correlated with the stored starch at the typhoon. These data indicate that the level of stored starch within branchlets is the driving factor determining tree regrowth or dieback, and the restoration of carbohydrates after mass reproduction is synergistically delayed by such climate extremes. Stored carbohydrates are the major cumulative factor affecting individual tree resilience, resulting in their historical effects. Because of highly variable carbohydrate levels among individual trees, the resultant impacts of such successive events on forest dieback will be fundamentally different among trees.
Collapse
Affiliation(s)
- Tomomi Nakamura
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Atsushi Ishida
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Kiyosada Kawai
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
- Japan International Research Center for Agricultural SciencesTsukubaIbarakiJapan
| | - Kanji Minagi
- Center for Ecological ResearchKyoto UniversityOtsuShigaJapan
| | - Shin‐Taro Saiki
- Forestry and Forest Products Research InstituteTsukubaIbarakiJapan
| | - Kenichi Yazaki
- Hokkaido Research Center, Forestry and Forest Products Research InstituteSapporoHokkaidoJapan
| | - Jin Yoshimura
- Institute of Tropical MedicineNagasaki UniversityNagasakiNagasakiJapan
- Faculty of ScienceTokyo Metropolitan UniversityHachiojiTokyoJapan
- The University MuseumThe University of TokyoBunkyoTokyoJapan
| |
Collapse
|
5
|
Paul R, Patra S, Banerjee K. Socio-economic impact on vulnerability of tropical forests of Eastern Ghats using hybrid modelling. Trop Ecol 2020. [DOI: 10.1007/s42965-020-00106-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Drought Hardening Contributes to the Maintenance of Proportions of Non-Embolized Xylem and Cambium Status during Consecutive Dry Treatment in Container-Grown Seedling of Japanese Cedar (Cryptomeria japonica). FORESTS 2020. [DOI: 10.3390/f11040441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Climate models in Japan predict that the annual mean air temperature and number of consecutive dry days will increase in the future, leading to high seedling mortality rates. Maintaining high survival rates of Cryptomeria japonica seedlings, a commercially important tree species, is therefore, important in terms of appropriate forest management under climate change. Although drought hardening, in which seedlings are acclimated to dry conditions in the nursery prior to planting, contributes to increased survival under drought conditions, little is known about the effective irrigation frequency of drought hardening in C. japonica seedlings. In this study, we therefore, examine the effectiveness of different drought-hardening treatments in C. japonica. We first clarify the effects on physiological and morphological traits by comparing three drought-hardening treatments [control (C): Irrigation once daily; mild (M): irrigation once every three days; and severe (S): irrigation once every five days] for one month. Next, to confirm the effects during consecutive dry treatment, we stopped irrigation for 13 days and once again compared the physiological traits between the three drought-hardening treatments. Drought hardening reduced whole-plant transpiration (Ewhole), resulting in conserved water use, and this tendency was particularly evident under the S treatment. Moreover, during consecutive dry treatment, the Ewhole, proportions of non-embolized xylem, and cambium status of basal stem regions were maintained for the longest duration under the S treatment, followed by the M treatment. Our findings suggest that the efficiency of drought hardening increased with drought severity. Furthermore, one month of drought hardening contributed to both water conservation and the maintenance of cell differentiation under consecutive dry treatment, likely increasing the tolerance and survival of C. japonica seedlings under prolonged drought.
Collapse
|
7
|
Kono Y, Ishida A, Saiki ST, Yoshimura K, Dannoura M, Yazaki K, Kimura F, Yoshimura J, Aikawa SI. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun Biol 2019; 2:8. [PMID: 30623104 PMCID: PMC6323055 DOI: 10.1038/s42003-018-0256-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022] Open
Abstract
Drought-induced tree death has become a serious problem in global forest ecosystems. Two nonexclusive hypotheses, hydraulic failure and carbon starvation, have been proposed to explain tree die-offs. To clarify the mechanisms, we investigated the physiological processes of drought-induced tree death in saplings with contrasting Huber values (sapwood area/total leaf area). First, hydraulic failure and reduced respiration were found in the initial process of tree decline, and in the last stage carbon starvation led to tree death. The carbohydrate reserves at the stem bases, low in healthy trees, accumulated at the beginning of the declining process due to phloem transport failure, and then decreased just before dying. The concentrations of non-structural carbohydrates at the stem bases are a good indicator of tree damage. The physiological processes and carbon sink-source dynamics that occur during lethal drought provide important insights into the adaptive measures underlying forest die-offs under global warming conditions.
Collapse
Affiliation(s)
- Yuri Kono
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
| | - Atsushi Ishida
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
| | - Shin-Taro Saiki
- Center for Ecological Research, Kyoto University, Otsu, Shiga 520-2113 Japan
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
| | - Kenichi Yoshimura
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata 997-8555 Japan
| | - Masako Dannoura
- Kyoto University Graduate School of Global Environmental Studies, Kyoto, Kyoto 606-8502 Japan
- Faculty of Agriculture, Kyoto University, Kyoto, Kyoto 606-8502 Japan
| | - Kenichi Yazaki
- Forestry and Forest Products Research Institute, Tsukuba, Ibaraki 305-8687 Japan
| | - Fuku Kimura
- Graduate School of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-0880 Japan
| | - Jin Yoshimura
- Graduate School of Science and Technology and Department of Mathematical and Systems Engineering, Shizuoka University, Naka-Ku, Hamamatsu Shizuoka, 432-8561 Japan
- Department of Environmental and Forest Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY 13210 USA
- Marine Biosystems Research Center, Chiba University, Kamogawa, Chiba 299-5502 Japan
| | - Shin-ichi Aikawa
- Japan Forest Technology Association, Chiyoda, Tokyo 102-5281 Japan
- Graduate School of Science and Engineering, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo 192-0397 Japan
| |
Collapse
|
8
|
Johnson DM, Domec JC, Carter Berry Z, Schwantes AM, McCulloh KA, Woodruff DR, Wayne Polley H, Wortemann R, Swenson JJ, Scott Mackay D, McDowell NG, Jackson RB. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. PLANT, CELL & ENVIRONMENT 2018; 41:576-588. [PMID: 29314069 DOI: 10.1111/pce.13121] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 12/01/2017] [Indexed: 05/25/2023]
Abstract
From 2011 to 2013, Texas experienced its worst drought in recorded history. This event provided a unique natural experiment to assess species-specific responses to extreme drought and mortality of four co-occurring woody species: Quercus fusiformis, Diospyros texana, Prosopis glandulosa, and Juniperus ashei. We examined hypothesized mechanisms that could promote these species' diverse mortality patterns using postdrought measurements on surviving trees coupled to retrospective process modelling. The species exhibited a wide range of gas exchange responses, hydraulic strategies, and mortality rates. Multiple proposed indices of mortality mechanisms were inconsistent with the observed mortality patterns across species, including measures of the degree of iso/anisohydry, photosynthesis, carbohydrate depletion, and hydraulic safety margins. Large losses of spring and summer whole-tree conductance (driven by belowground losses of conductance) and shallower rooting depths were associated with species that exhibited greater mortality. Based on this retrospective analysis, we suggest that species more vulnerable to drought were more likely to have succumbed to hydraulic failure belowground.
Collapse
Affiliation(s)
- Daniel M Johnson
- College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR INRA-ISPA 1391, Gradignan, 33195, France
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Z Carter Berry
- College of Natural Resources, University of Idaho, Moscow, ID, 83844, USA
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, 03824, USA
| | - Amanda M Schwantes
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | | | - David R Woodruff
- US Forest Service, Pacific Northwest Research Station, Corvallis, OR, 97331, USA
| | - H Wayne Polley
- Grassland, Soil & Water Research Laboratory USDA-Agricultural Research Service, Temple, TX, 76502, USA
| | - Remí Wortemann
- INRA Nancy, UMR INRA-UL 1137 Ecologie et Ecophysiologie Forestières, Champenoux, 54280, France
| | - Jennifer J Swenson
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - D Scott Mackay
- Department of Geography, State University of New York, Buffalo, NY, 14261, USA
| | - Nate G McDowell
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Robert B Jackson
- Department of Earth System Science, Woods Institute for the Environment, and Precourt Institute for Energy, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|