1
|
Yan M, Li X, Ji X, Gang B, Li Y, Li Z, Wang Y, Guo H. An R2R3-MYB transcription factor PdbMYB6 enhances drought tolerance by mediating reactive oxygen species scavenging, osmotic balance, and stomatal opening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109536. [PMID: 39884149 DOI: 10.1016/j.plaphy.2025.109536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Drought is a major environmental challenge that hinders the growth and development of plants. R2R3-MYB transcription factors (TFs) play a vital role in mediating responses to abiotic stress; however, their specific functions in Populus davidiana × Populus bolleana hybrid poplar plants remain underexplored. This study focused on PdbMYB6, a novel R2R3-MYB TF identified in P. davidiana × P. bolleana plants. We found that PdbMYB6 acts as a transcriptional activator. By conducting functional analyses of both overexpression and knockout models, we demonstrated that PdbMYB6 enhances drought tolerance in plants by improving reactive oxygen species scavenging and modulating osmotic balance. Additionally, PdbMYB6 plays a role in regulating stomatal openings to minimize water loss. The qRT-PCR and RNA sequencing results revealed that PdbMYB6 influences the expression of genes related to stress tolerance. TF-centered Yeast One-Hybrid (Y1H) and chromatin immunoprecipitation (ChIP) assays indicated that PdbMYB6 binds to two novel core sequences (C [A/G/C]TG and [T/A/G]GTA) as well as GT-1 (GGAAA) and MYBCORE (AACGG) elements, which are associated with light responses and stress resistance, thereby promoting the expression of stress-resistant genes. Furthermore, Y1H and ChIP assays identified four upstream factors that regulate PdbMYB6 expression by interacting with specific elements in its promoter. Notably, the overexpression of these four factors enhances plant drought resistance and affects the expression of stress-response genes. Our findings highlight the role of the PdbMYB6 TF in the drought regulatory mechanism and provide potential gene sources for the molecular breeding of drought-resistant plants through genetic engineering.
Collapse
Affiliation(s)
- Minglong Yan
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xinxin Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Xiaoyu Ji
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Biyao Gang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Ying Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China; The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, 110866, China.
| |
Collapse
|
2
|
Bhatt PA, Gurav TP, Kondhare KR, Giri AP. MYB proteins: Versatile regulators of plant development, stress responses, and secondary metabolite biosynthetic pathways. Int J Biol Macromol 2025; 288:138588. [PMID: 39672414 DOI: 10.1016/j.ijbiomac.2024.138588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/07/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
MYB proteins are ubiquitous in nature, regulating key aspects of plant growth and development. Although MYB proteins are known for regulating genes involved in secondary metabolite biosynthesis, particularly phenylpropanoids, their roles in terpenoid, glucosinolate, and alkaloid biosynthesis remain less understood. This review explores the structural and functional differences between activator and repressor MYB proteins along with their roles in plant growth, development, stress responses, and secondary metabolite production. MYB proteins serve as central hubs in protein-protein interaction networks that regulate expression of numerous genes involved in the adaptation of plants to varying environmental conditions. Thus, we also highlight key interacting partners of MYB proteins and their roles in these adaptation mechanisms. We further discuss the mechanisms regulating MYB proteins, including autoregulation, epigenetics, and post-transcriptional and post-translational modifications. Overall, we propose MYB proteins as versatile regulators for improving plant traits, stress responses, and secondary metabolite production.
Collapse
Affiliation(s)
- Preshita A Bhatt
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Tanuja P Gurav
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India
| | - Kirtikumar R Kondhare
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| | - Ashok P Giri
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune 411008, Maharashtra, India; Academy of Scientific and Innovative Research, Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
3
|
Pan J, Sohail H, Sharif R, Hu Q, Song J, Qi X, Chen X, Xu X. Cucumber JASMONATE ZIM-DOMAIN 8 interaction with transcription factor MYB6 impairs waterlogging-triggered adventitious rooting. PLANT PHYSIOLOGY 2024; 197:kiae351. [PMID: 38918826 DOI: 10.1093/plphys/kiae351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 06/27/2024]
Abstract
Waterlogging is a serious abiotic stress that drastically decreases crop productivity by damaging the root system. Jasmonic acid (JA) inhibits waterlogging-induced adventitious root (AR) formation in cucumber (Cucumis sativus L.). However, we still lack a profound mechanistic understanding of how JA governs AR formation under waterlogging stress. JASMONATE ZIM-DOMAIN (JAZ) proteins are responsible for repressing JA signaling in a transcriptional manner. In this study, we showed that overexpressing CsJAZ8 inhibited the formation of ARs triggered by waterlogging. Molecular analyses revealed that CsJAZ8 inhibited the activation of the R2R3-MYB transcription factor CsMYB6 via direct interaction. Additionally, silencing of CsMYB6 negatively impacted AR formation under waterlogging stress, as CsMYB6 could directly bind to the promoters of 1-aminocyclopropane-1-carboxylate oxidase 2 gene CsACO2 and gibberellin 20-oxidase gene CsGA20ox2, facilitating the transcription of these genes. The overexpression of CsACO2 and CsGA20ox2 led to increased levels of ethylene and gibberellin, which facilitated AR formation under waterlogging conditions. On the contrary, silencing these genes resulted in contrasting phenotypes of AR formation. These results highlight that the transcriptional cascade of CsJAZ8 and CsMYB6 plays a critical role in regulating hormonal-mediated cucumber waterlogging-triggered AR formation by inhibiting ethylene and gibberellin accumulation. We anticipate that our findings will provide insights into the molecular mechanisms that drive the emergence of AR in cucumber plants under waterlogging stress.
Collapse
Affiliation(s)
- Jiawei Pan
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hamza Sohail
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Rahat Sharif
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiming Hu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Jia Song
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiaohua Qi
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xuewen Xu
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
4
|
Zhang H, Wang Y, Ma B, Bu X, Dang Z, Wang Y. Transcriptional Profiling Analysis Providing Insights into the Harsh Environments Tolerance Mechanisms of Krascheninnikovia arborescens. Int J Mol Sci 2024; 25:11891. [PMID: 39595960 PMCID: PMC11594238 DOI: 10.3390/ijms252211891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 10/31/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Krascheninnikovia arborescens, an endemic shrub in China, thrives in desertification-prone environments due to its robust biomass, hairy leaves, and extensive root system. It is vital for ecological restoration and serves as a valuable forage plant. This study explored the molecular mechanisms underlying K. arborescens' adaptation to desert conditions, focusing on its physiological, biochemical, and transcriptomic responses to drought, salt, and alkali stresses. The results revealed that the three stresses have significant impacts on the photosynthetic, antioxidant, and ion balance systems of the plants, with the alkali stress inducing the most pronounced changes and differential gene expression. The clustering and functional enrichment analyses of differentially expressed genes (DEGs) highlighted the enrichment of the induced genes in pathways related to plant hormone signaling, phenylpropanoid biosynthesis, and transcription factors following stress treatments. In these pathways, the synthesis and signal transduction of abscisic acid (ABA) and ethylene, as well as the flavonoid and lignin synthesis pathways, and transcription factors such as MYB, AP2/ERF, bHLH, NAC, and WRKY responded actively to the stress and played pivotal roles. Through the WGCNA analysis, 10 key modules were identified, with the yellow module demonstrating a high correlation with the ABA and anthocyanin contents, while the turquoise module was enriched in the majority of genes related to hormone and phenylpropanoid pathways. The analysis of hub genes in these modules highlighted the significant roles of the bHLH and MYB transcription factors. These findings could offer new insights into the molecular mechanisms that enable the adaptation of K. arborescens to desert environments, enhancing our understanding of how other desert plants adapt to harsh conditions. These insights are crucial for exploring and utilizing high-quality forage plant germplasm resources and ecological development, with the identified candidate genes serving as valuable targets for further research on stress-resistant genes.
Collapse
Affiliation(s)
- Hongyi Zhang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Yingnan Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Binjie Ma
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China;
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| | - Xiangqi Bu
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| | - Zhenhua Dang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Ministry of Education Key Laboratory of Forage and Endemic Crop Biology, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China; (H.Z.); (Y.W.); (X.B.)
| |
Collapse
|
5
|
Kong X, Chen Y, Li H, Li M, Liu X, Xia L, Zhang S. Dissociation of transcription factor MYB94 and histone deacetylases HDA907/908 alleviates oxidative damage in poplar. PLANT PHYSIOLOGY 2024; 196:181-194. [PMID: 38850061 DOI: 10.1093/plphys/kiae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/21/2024] [Indexed: 06/09/2024]
Abstract
Drought is one of the major threats to forest productivity. Oxidation stress is common in drought-stressed plants, and plants need to maintain normal life activities through complex reactive oxygen scavenging mechanisms. However, the molecular links between epigenetics, oxidation stress, and drought in poplar (Populus) remain poorly understood. Here, we found that Populus plants overexpressing PtrMYB94, which encodes an R2R3-MYB transcription factor that regulates the abscisic acid signaling pathway, displayed increased tolerance to extreme drought stress via upregulation of embryogenic cell phosphoprotein 44 (PtrECPP44) expression. Further investigation revealed that PtrMYB94 could recruit the histone deacetylases PtrHDA907/908 to the promoter of PtrECPP44 and decrease acetylation at lysine residues 9, 14, and 27 of histone H3, leading to relatively low transcriptional expression levels under normal conditions. Drought induced the expression of PtrMYB94 while preventing interaction of PtrMYB94 with PtrHDA907/908, which relaxed the chromatin structure and facilitated the binding of RNA polymerase II to the PtrECPP44 promoter. The upregulation of PtrECPP44 helped poplar alleviate oxidative damage and maintain normal cell activities. This study establishes a PtrMYB94-PtrECPP44 transcriptional regulatory module modified by PtrHDA907/908 in modulating drought-induced oxidative stress recovery. Therefore, our study reveals an oxidative regulatory mechanism in response to drought stress and provides insights into molecular breeding for stress resistance in poplar.
Collapse
Affiliation(s)
- Xiangge Kong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yao Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Huanhuan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Menghan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xuejiao Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Yu R, Yang X, Xiao D, Bao H, Wang Y. MiRNAs profiles among three poplar varieties provide insights into different molecular responses in resistance to newly emerging bacterial pathogen. PHYSIOLOGIA PLANTARUM 2024; 176:e14498. [PMID: 39223906 DOI: 10.1111/ppl.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Canker caused by Lonsdalea populi has seriously reduced the economic and ecological benefits of poplar. MicroRNAs play vital roles in the response of plants to biotic stress. However, there is little research about the regulatory mechanism of miRNAs among different tree varieties upon pathogen infection. To dissect miRNAs involved in L. populi resistance, three poplar varieties, 2025 (susceptible), 107 (moderately resistant) and Populus. tomentosa cv 'henan' (resistant) were selected to elucidate the expression profiles of miRNAs using small RNA-seq. A total of 227 miRNAs were identified from all varieties. Intriguingly, miR160, miR169, miR171 and miR482b-5p were only identified in the resistant variety P. tomentosa upon pathogen infection, and these miRNAs might be important candidates for future investigation to improve the tolerance of poplar to L. populi. Among all identified miRNAs, 174 were differentially expressed in all varieties. Functional annotation analysis indicated that an array of miRNAs, including miR482, miR472, miR169, miR481, and miR172, should be involved in disease resistance and phytohormone signal transduction. Furthermore, correlation analysis of small RNA-seq and RNA-seq identified a handful of L. populi-responsive miRNAs and target genes, which exhibited that miR159 and miR172 played key roles in resistant variety P. tomentosa by targeting MYB and ERF, while miR6462c-5p and miR828 were related to the susceptibility of 2025 by targeting MYB. The comprehensive integration analysis in this research provides new insights into the regulatory pathways involved in the defence response of poplar to L. populi and offers crucial candidate miRNAs-target genes modules for poplar resistance improvement.
Collapse
Affiliation(s)
- Ruen Yu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Dandan Xiao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Hai Bao
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| |
Collapse
|
7
|
Zuo D, Yan Y, Ma J, Zhao P. Genome-Wide Analysis of Transcription Factor R2R3-MYB Gene Family and Gene Expression Profiles during Anthocyanin Synthesis in Common Walnut ( Juglans regia L.). Genes (Basel) 2024; 15:587. [PMID: 38790216 PMCID: PMC11121633 DOI: 10.3390/genes15050587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
The R2R3-MYB gene family, encoding plant transcriptional regulators, participates in many metabolic pathways of plant physiology and development, including flavonoid metabolism and anthocyanin synthesis. This study proceeded as follows: the JrR2R3-MYB gene family was analyzed genome-wide, and the family members were identified and characterized using the high-quality walnut reference genome "Chandler 2.0". All 204 JrR2R3-MYBs were established and categorized into 30 subgroups via phylogenetic analysis. JrR2R3-MYBs were unevenly distributed over 16 chromosomes. Most JrR2R3-MYBs had similar structures and conservative motifs. The cis-acting elements exhibit multiple functions of JrR2R3-MYBs such as light response, metabolite response, and stress response. We found that the expansion of JrR2R3-MYBs was mainly caused by WGD or segmental duplication events. Ka/Ks analysis indicated that these genes were in a state of negative purifying selection. Transcriptome results suggested that JrR2R3-MYBs were widely entangled in the process of walnut organ development and differentially expressed in different colored varieties of walnuts. Subsequently, we identified 17 differentially expressed JrR2R3-MYBs, 9 of which may regulate anthocyanin biosynthesis based on the results of a phylogenetic analysis. These genes were present in greater expression levels in 'Zijing' leaves than in 'Lvling' leaves, as revealed by the results of qRT-PCR experiments. These results contributed to the elucidation of the functions of JrR2R3-MYBs in walnut coloration. Collectively, this work provides a foundation for exploring the functional characteristics of the JrR2R3-MYBs in walnuts and improving the nutritional value and appearance quality of walnuts.
Collapse
Affiliation(s)
| | | | | | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi’an 710069, China; (D.Z.); (Y.Y.); (J.M.)
| |
Collapse
|
8
|
Zhang B, Wang Z, Dai X, Gao J, Zhao J, Ma R, Chen Y, Sun Y, Ma H, Li S, Zhou C, Wang JP, Li W. A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa. THE NEW PHYTOLOGIST 2024; 241:1950-1972. [PMID: 38095236 DOI: 10.1111/nph.19481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/22/2023] [Indexed: 02/09/2024]
Abstract
Histone H3 lysine-4 trimethylation (H3K4me3) activating drought-responsive genes in plants for drought adaptation has long been established, but the underlying regulatory mechanisms are unknown. Here, using yeast two-hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR-mediated transgenesis in Populus trichocarpa, we unveiled in this adaptation a regulatory interplay between chromatin regulation and gene transactivation mediated by an epigenetic determinant, a PtrSDG2-1-PtrCOMPASS (complex proteins associated with Set1)-like H3K4me3 complex, PtrSDG2-1-PtrWDR5a-1-PtrRbBP5-1-PtrAsh2-2 (PtrSWRA). Under drought conditions, a transcription factor PtrAREB1-2 interacts with PtrSWRA, forming a PtrSWRA-PtrAREB1-2 pentamer, to recruit PtrSWRA to specific promoter elements of drought-tolerant genes, such as PtrHox2, PtrHox46, and PtrHox52, for depositing H3K4me3 to promote and maintain activated state of such genes for tolerance. CRISPR-edited defects in the pentamer impaired drought tolerance and elevated expression of PtrHox2, PtrHox46, or PtrHox52 improved the tolerance as well as growth in P. trichocarpa. Our findings revealed the identity of the underlying H3K4 trimethyltransferase and its interactive arrangement with the COMPASS for catalysis specificity and efficiency. Furthermore, our study uncovered how the H3K4 trimethyltransferase-COMPASS complex is recruited to the effector genes for elevating H3K4me3 marks for improved drought tolerance and growth/biomass production in plants.
Collapse
Affiliation(s)
- Baofeng Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Zhuwen Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Xiufang Dai
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinghui Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jinfeng Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Rong Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yanjie Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Yi Sun
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Hongyan Ma
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| | - Jack P Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
- Forest Biotechnology Group, Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
9
|
Su J, Zhan N, Cheng X, Song S, Dong T, Ge X, Duan H. Genome-Wide Analysis of Cotton MYB Transcription Factors and the Functional Validation of GhMYB in Response to Drought Stress. PLANT & CELL PHYSIOLOGY 2024; 65:79-94. [PMID: 37847105 DOI: 10.1093/pcp/pcad125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
MYB transcription factors play important roles during abiotic stress responses in plants. However, little is known about the accurate systematic analysis of MYB genes in the four cotton species, Gossypium hirsutum, G. barbadense, G. arboreum and G. raimondii. Herein, we performed phylogenetic analysis and showed that cotton MYBs and Arabidopsis MYBs were clustered in the same subfamilies for each species. The identified cotton MYBs were distributed unevenly on chromosomes in various densities for each species, wherein genome-wide tandem and segment duplications were the main driving force of MYB family expansion. Synteny analysis suggested that the abundant collinearity pairs of MYBs were identified between G. hirsutum and the other three species, and that they might have undergone strong purification selection. Characteristics of conserved motifs, along with their consensus sequence, promoter cis elements and gene structure, revealed that MYB proteins might be highly conserved in the same subgroups for each species. Subsequent analysis of differentially expressed genes and expression patterns indicated that most GhMYBs might be involved in response to drought (especially) and salt stress, which was supported by the expression levels of nine GhMYBs using real-time quantitative PCR. Finally, we performed a workflow that combined virus-induced gene silencing and the heterologous transformation of Arabidopsis, which confirmed the positive roles of GhMYBs under drought conditions, as validated by determining the drought-tolerant phenotypes, damage index and/or water loss rate. Collectively, our findings not only expand our understanding of the relationships between evolution and function of MYB genes, but they also provide candidate genes for cotton breeding.
Collapse
Affiliation(s)
- Jiuchang Su
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Na Zhan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoru Cheng
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Shanglin Song
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Tianyu Dong
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Hongying Duan
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
- Henan International Joint Laboratory of Aquatic Toxicology and Health Protection, College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
10
|
Long T, Yang F, Chen Z, Xing Y, Tang X, Chen B, Cui W, Rodriguez LG, Wang L, Gao Y, Yao Y. Overexpression of PtoMYB99 diminishes poplar tolerance to osmotic stress by suppressing ABA and JA biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154149. [PMID: 38064888 DOI: 10.1016/j.jplph.2023.154149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 02/10/2024]
Abstract
Drought poses a serious challenge to sustained plant growth and crop yields in the context of global climate change. Drought tolerance in poplars and their underlying mechanisms still remain largely unknown. In this article, we investigated the overexpression of PtoMYB99 - both a drought and abscisic acid (ABA) induced gene constraining drought tolerance in poplars (as compared with wild type poplars). First, we found that PtoMYB99-OE lines exhibited increased stomatal opening and conductance, higher transpiration and photosynthetic rates, as well as reduced levels of ABA and jasmonic acid (JA). Second, PtoMYB99-OE lines accumulated more reactive oxygen species (ROS), including H2O2 and O2-, as well as malonaldehyde (MDA), proline, and soluble sugar under osmotic stress; conversely, the activity of antioxidant enzymes (SOD, POD, and CAT), was weakened in the PtoMYB99-OE lines. Third, the expression of ABA biosynthetic genes, PtoNCED3.1 and PtoNCED3.2, as well as JA biosynthetic genes, PtoOPR3.1 and PtoOPR3.2, was significantly reduced in the PtoMYB99-OE lines under both normal conditions and osmotic stress. Based on our results, we conclude that the overexpression of PtoMYB99 compromises tolerance to osmotic stress in poplar. These findings contribute to the understanding of the role of the MYB genes in drought stress and the biosynthesis of ABA and JA.
Collapse
Affiliation(s)
- Tao Long
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Fengming Yang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Zihao Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yuhang Xing
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Xia Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Banglan Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Wenli Cui
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lucas Gutierrez Rodriguez
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Lijun Wang
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China
| | - Yongfeng Gao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| | - Yinan Yao
- School of Life Science and Engineering, Southwest University of Science and Technology, 621010, Mianyang, China.
| |
Collapse
|
11
|
Fu T, Wang C, Yang Y, Yang X, Wang J, Zhang L, Wang Z, Wang Y. Function identification of miR159a, a positive regulator during poplar resistance to drought stress. HORTICULTURE RESEARCH 2023; 10:uhad221. [PMID: 38077498 PMCID: PMC10709547 DOI: 10.1093/hr/uhad221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/24/2023] [Indexed: 03/08/2024]
Abstract
Drought seriously affects the growth and development of plants. MiR159 is a highly conserved and abundant microRNA family that plays a crucial role in plant growth and stress responses. However, studies of its function in woody plants are still lacking. Here, the expression of miR159a was significantly upregulated after drought treatment in poplar, and the overexpression of miR159a (OX159a) significantly reduced the open area of the stomata and improved water-use efficiency in poplar. After drought treatment, OX159a lines had better scavenging ability of reactive oxygen species and damage of the membrane system was less than that in wild-type lines. MYB was the target gene of miR159a, as verified by psRNATarget prediction, RT-qPCR, degradome sequencing, and 5' rapid amplification of cDNA ends (5' RACE). Additionally, miR159a-short tandem target mimic suppression (STTM) poplar lines showed increased sensitivity to drought stress. Transcriptomic analysis comparing OX159a lines with wild-type lines revealed upregulation of a series of genes related to response to water deprivation and metabolite synthesis. Moreover, drought-responsive miR172d and miR398 were significantly upregulated and downregulated respectively in OX159a lines. This investigation demonstrated that miR159a played a key role in the tolerance of poplar to drought by reducing stomata open area, increasing the number and total area of xylem vessels, and enhancing water-use efficiency, and provided new insights into the role of plant miR159a and crucial candidate genes for the molecular breeding of trees with tolerance to drought stress.
Collapse
Affiliation(s)
- Tiantian Fu
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chun Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yuzhang Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoqian Yang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lichun Zhang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Zeqi Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yanwei Wang
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
12
|
Rao X, Qian Z, Xie L, Wu H, Luo Q, Zhang Q, He L, Li F. Genome-Wide Identification and Expression Pattern of MYB Family Transcription Factors in Erianthus fulvus. Genes (Basel) 2023; 14:2128. [PMID: 38136950 PMCID: PMC10743048 DOI: 10.3390/genes14122128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
MYB family genes have many functions and are widely involved in plant abiotic-stress responses. Erianthus fulvus is an important donor material for stress-resistance genes in sugarcane breeding. However, the MYB family genes in E. fulvus have not been systematically investigated. In this study, 133 EfMYB genes, including 48 Ef1R-MYB, 84 EfR2R3-MYB and 1 Ef3R-MYB genes, were identified in the E. fulvus genome. Among them, the EfR2R3-MYB genes were classified into 20 subgroups. In addition, these EfMYB genes were unevenly distributed across 10 chromosomes. A total of 4 pairs of tandemly duplicated EfMYB genes and 21 pairs of segmentally duplicated EfMYB genes were identified in the E. fulvus genome. Protein-interaction analysis predicted that 24 EfMYB proteins had potential interactions with 14 other family proteins. The EfMYB promoter mainly contains cis-acting elements related to the hormone response, stress response, and light response. Expression analysis showed that EfMYB39, EfMYB84, and EfMYB124 could be significantly induced using low-temperature stress. EfMYB30, EfMYB70, EfMYB81, and EfMYB101 responded positively to drought stress. ABA treatment significantly induced EfMYB1, EfMYB30, EfMYB39, EfMYB84, and EfMYB130. All nine genes were induced using MeJA treatment. These results provide comprehensive information on EfMYB genes and can serve as a reference for further studies of gene function.
Collapse
Affiliation(s)
- Xibing Rao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Zhenfeng Qian
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Linyan Xie
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Huaying Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Quan Luo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Qiyue Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Lilian He
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
| | - Fusheng Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming 650201, China; (X.R.); (Z.Q.); (L.X.); (H.W.); (Q.L.); (Q.Z.)
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Kunming 650201, China
- Sugarcane Research Institute, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
13
|
Li R, Liu H, Liu Y, Guo J, Chen Y, Lan X, Lu C. Insights into the mechanism underlying UV-B induced flavonoid metabolism in callus of a Tibetan medicinal plant Mirabilis himalaica. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154074. [PMID: 37651898 DOI: 10.1016/j.jplph.2023.154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Mirabilis himalaica is an important Tibetan medicinal plant in China. However, it has become a rare and class I endangered Tibetan medicine plant. Therefore, the use of callus to propagate germplasm resources is of great significance. We found that the flavonoid content of M. himalaica callus increased continuously with the extension of UV-B treatment. Multi-omics profiles were used to reveal the co-expression patterns of gene networks of flavonoid metabolism in M. himalaica callus during UV-B radiation. Results showed that five medicinal metabolics, including geranin, eriodictyol, astragalin, isoquercetin, pyrotechnic acid, and one anthocyanin malvide-3-O-glucoside were identified. The transcriptome data were divided into 46 modules according to the expression pattern by WGCNA (weighted gene co-expression network analysis), of which the module Turquoise had the strongest correlation with six target metabolites. We found that seven structural genes and twenty-five transcription factors were related to the metabolism of flavonoid synthesis, among which the structural genes CHI, C4H and UGT79B6 had strong co-expression relationships with the 6 target metabolites. WRKY42, WRKY7, bHLH128 and other transcription factors had strong co-expression relationships with multiple structural genes. Consequently, these findings suggest callus grown under UV-B treatment could be an effective alternative medical resource of M. himalaica, which is valuable for conservation and usage of this wild and endangered plant.
Collapse
Affiliation(s)
- Rongchen Li
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Huan Liu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yanjing Liu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jiaojiao Guo
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yuzhen Chen
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, China.
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Zhang X, Wang H, Chen Y, Huang M, Zhu S. The Over-Expression of Two R2R3-MYB Genes, PdMYB2R089 and PdMYB2R151, Increases the Drought-Resistant Capacity of Transgenic Arabidopsis. Int J Mol Sci 2023; 24:13466. [PMID: 37686270 PMCID: PMC10487491 DOI: 10.3390/ijms241713466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The R2R3-MYB genes in plants play an essential role in the drought-responsive signaling pathway. Plenty of R2R3-MYB S21 and S22 subgroup genes in Arabidopsis have been implicated in dehydration conditions, yet few have been covered in terms of the role of the S21 and S22 subgroup genes in poplar under drought. PdMYB2R089 and PdMYB2R151 genes, respectively belonging to the S21 and S22 subgroups of NL895 (Populus deltoides × P. euramericana cv. 'Nanlin895'), were selected based on the previous expression analysis of poplar R2R3-MYB genes that are responsive to dehydration. The regulatory functions of two target genes in plant responses to drought stress were studied and speculated through the genetic transformation of Arabidopsis thaliana. PdMYB2R089 and PdMYB2R151 could promote the closure of stomata in leaves, lessen the production of malondialdehyde (MDA), enhance the activity of the peroxidase (POD) enzyme, and shorten the life cycle of transgenic plants, in part owing to their similar conserved domains. Moreover, PdMYB2R089 could strengthen root length and lateral root growth. These results suggest that PdMYB2R089 and PdMYB2R151 genes might have the potential to improve drought adaptability in plants. In addition, PdMYB2R151 could significantly improve the seed germination rate of transgenic Arabidopsis, but PdMYB2R089 could not. This finding provides a clue for the subsequent functional dissection of S21 and S22 subgroup genes in poplar that is responsive to drought.
Collapse
Affiliation(s)
- Xueli Zhang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Haoran Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing Botanical Garden, Memorial Sun Yat-Sen, Nanjing 210014, China;
| | - Ying Chen
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Minren Huang
- State Key Laboratory of Tree Genetics and Breeding, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (X.Z.); (Y.C.); (M.H.)
| | - Sheng Zhu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Ma R, Luo J, Wang W, Song T, Fu Y. Function of the R2R3-MYB Transcription Factors in Dalbergia odorifera and Their Relationship with Heartwood Formation. Int J Mol Sci 2023; 24:12430. [PMID: 37569814 PMCID: PMC10419101 DOI: 10.3390/ijms241512430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
R2R3-MYB transcription factors (TFs) form one of the most important TF families involved in regulating various physiological functions in plants. The heartwood of Dalbergia odorifera is a kind of high-grade mahogany and valuable herbal medicine with wide application. However, the role of R2R3-MYB genes in the growth and development of D. odorifera, especially their relevance to heartwood formation, has not been revealed. A total of 126 R2R3-MYBs were screened from the D. odorifera genome and named DodMYB1-126 based on their location on 10 chromosomes. The collinearity results showed that purification selection was the main driving force for the evolution of the R2R3-MYB TFs family, and whole genome/fragment replication event was the main form for expanding the R2R3-MYB family, generating a divergence of gene structure and function. Comparative phylogenetic analysis classified the R2R3-MYB TFs into 33 subfamilies. S3-7,10,12-13,21 and N4-7 were extensively involved in the metabolic process; S9,13,16-19,24-25 and N1-3,8 were associated with the growth and development of D. odorifera. Based on the differential transcriptional expression levels of R2R3-MYBs in different tissues, DodMYB32, DodMYB55, and DodMYB89 were tentatively screened for involvement in the regulatory process of heartwood. Further studies have shown that the DodMYB89, localized in the nucleus, has transcriptional activation activity and is involved in regulating the biosynthesis of the secondary metabolites of heartwood by activating the promoters of the structural genes DodI2'H and DodCOMT. This study aimed to comprehensively analyze the functions of the R2R3-MYB TFs and screen for candidate genes that might be involved in heartwood formation of D. odorifera.
Collapse
Affiliation(s)
- Ruoke Ma
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Jia Luo
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Weijie Wang
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| | - Tianqi Song
- College of Agronomy, Northwest A&F University, Xianyang 712000, China;
| | - Yunlin Fu
- Key Laboratory of National Forestry and Grassland Administration for Fast-Growing Tree Breeding and Cultivation in Central and Southern China, College of Forestry, Guangxi University, Nanning 530004, China; (R.M.); (J.L.); (W.W.)
| |
Collapse
|
16
|
Li H, Yang J, Ma R, An X, Pan F, Zhang S, Fu Y. Genome-wide identification and expression analysis of MYB gene family in Cajanus cajan and CcMYB107 improves plant drought tolerance. PHYSIOLOGIA PLANTARUM 2023; 175:e13954. [PMID: 37318225 DOI: 10.1111/ppl.13954] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/06/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
MYB transcription factor (TF) is one of the largest superfamilies that play a vital role in multiple plant biological processes. However, the MYB family has not been comprehensively identified and functionally verified in Cajanus cajan, which is the sixth most important legume crop. Here, 170 CcR2R3-MYBs were identified and divided into 43 functional subgroups. Segmental and tandem duplications and alternative splicing events were found and promoted the expansion of the CcR2R3-MYB gene family. Functional prediction results showed that CcR2R3-MYBs were mainly involved in secondary metabolism, cell fate and identity, developmental processes, and responses to abiotic stress. Cis-acting element analysis of promoters revealed that stress response elements were widespread in the above four functional branches, further suggesting CcR2R3-MYBs were extensively involved in abiotic stress response. The transcriptome data and qRT-PCR results indicated that most of the CcR2R3-MYB genes responded to various stresses, of which the expression of CcMYB107 was significantly induced by drought stress. Overexpression of CcMYB107 enhanced antioxidant enzyme activity and increased proline and lignin accumulation, thus improving the drought resistance of C. cajan. Furthermore, Overexpression of CcMYB107 up-regulated the expression of stress-related genes and lignin biosynthesis genes after drought stress. Our findings established a strong foundation for the investigation of biological function of CcR2R3-MYB TFs in C. cajan.
Collapse
Affiliation(s)
- Hongquan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Jie Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Ruijin Ma
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Xiaoli An
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Feng Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, Harbin, China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Hu J, Zou S, Huang J, Huan X, Jin X, Zhou L, Zhao K, Han Y, Wang S. PagMYB151 facilitates proline accumulation to enhance salt tolerance of poplar. BMC Genomics 2023; 24:345. [PMID: 37349699 DOI: 10.1186/s12864-023-09459-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/16/2023] [Indexed: 06/24/2023] Open
Abstract
Poplar is one of the main urban and rural greening and shade tree species in the northern hemisphere, but its growth and development is always restricted by salt stress. R2R3-MYB transcription factor family is commonly involved in many biological processes during plant growth and stress endurance. In this study, PagMYB151 (Potri.014G035100) one of R2R3-MYB members related to salt stress and expressed in both nucleus and cell membrane was cloned from Populus alba × P. glandulosa to perfect the salt tolerance mechanism. Morphological and physiological indexes regulated by PagMYB151 were detected using the PagMYB151 overexpression (OX) and RNA interference (RNAi) transgenic poplar lines. Under salt stress conditions, compared with RNAi and the non-transgenic wild-type (WT) plants, the plant height, both aboveground and underground part fresh weight of OX was significantly increased. In addition, OX has a longer and finer root structure and a larger root surface area. The root activity of OX was also enhanced, which was significantly different from RNAi but not from WT under salt treatment. Under normal conditions, the stomatal aperture of OX was larger than WT, whereas this phenotype was not obvious after salt stress treatment. In terms of physiological indices, OX enhanced the accumulation of proline but reduced the toxicity of malondialdehyde to plants under salt stress. Combing with the transcriptome sequencing data, 6 transcription factors induced by salt stress and co-expressed with PagMYB151 were identified that may cooperate with PagMYB151 to function in salt stress responding process. This study provides a basis for further exploring the molecular mechanism of poplar PagMYB151 transcription factor under abiotic stress.
Collapse
Affiliation(s)
- Jia Hu
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengqiang Zou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | | | - Xuhui Huan
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Xia Jin
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Lieding Zhou
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Kai Zhao
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Youzhi Han
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China
| | - Shengji Wang
- College of Forestry, Shanxi Agricultural University, Taigu, Shanxi, 030801, China.
| |
Collapse
|
18
|
Liu R, Shen Y, Wang M, Liu R, Cui Z, Li P, Wu Q, Shen Q, Chen J, Zhang S, Liu S, Ma H, Pang C, Ge C. GhMYB102 promotes drought resistance by regulating drought-responsive genes and ABA biosynthesis in cotton (Gossypium hirsutum L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 329:111608. [PMID: 36717027 DOI: 10.1016/j.plantsci.2023.111608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/16/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The MYB transcription factor (TF) family is among the largest TF families and plays an important role in plant growth and stress response. However, few studies have investigated the role of the MYB gene in drought resistance in cotton. In this study, we analysed the drought transcriptomic data of cotton and identified that the GhMYB102 gene was significantly upregulated in upland cotton during the early stages of drought stress. Bioinformatics analysis showed that the amino acid sequence encoded by GhMYB102 contained two highly conserved MYB binding domains belonging to R2R3-MYB TFs. GhMYB102 was most closely related to AtMYB102. GhMYB102 is mainly expressed in roots and is induced by abiotic stresses and abscisic acid (ABA); it is localised in the nucleus and has transcriptional activation activity. Silencing of GhMYB102 decreased plant drought resistance. In addition, dual-luciferase assays and yeast single hybridisation analysis showed that GhMYB102 could directly bind the MYB motif elements in the promoter regions of GhNCED1 and GhZAT10. These results indicate that GhMYB102 plays a positive role in drought tolerance by regulating the expression of GhNCED1 and GhZAT10. Thus, GhMYB102 enhances drought resistance by participating in ABA biosynthesis or regulating the expression of drought-responsive genes.
Collapse
Affiliation(s)
- Ruida Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Beijing Lianchuang Seed Science Academy, Longping High-tech Subsidiary, Zhengzhou 450001,Henan, China; Hebei Agricultural University, Stare Key Laboratory of Cotton Biology (Hebei Base), Baoding 071001, Hebei, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanhui Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Minxuan Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Hebei Agricultural University, Stare Key Laboratory of Cotton Biology (Hebei Base), Baoding 071001, Hebei, China
| | - Ruihua Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Ziqian Cui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Pengzhen Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qidi Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China
| | - Qian Shen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Jing Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Siping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Shaodong Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Huijuan Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| | - Changwei Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
19
|
Comprehensive Genome-Wide Analyses of Poplar R2R3-MYB Transcription Factors and Tissue-Specific Expression Patterns under Drought Stress. Int J Mol Sci 2023; 24:ijms24065389. [PMID: 36982459 PMCID: PMC10049292 DOI: 10.3390/ijms24065389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
R2R3-type MYB transcription factors are implicated in drought stress, which is a primary factor limiting the growth and development of woody plants. The identification of R2R3-MYB genes in the Populus trichocarpa genome has been previously reported. Nevertheless, the diversity and complexity of the conserved domain of the MYB gene caused inconsistencies in these identification results. There is still a lack of drought-responsive expression patterns and functional studies of R2R3-MYB transcription factors in Populus species. In this study, we identified a total of 210 R2R3-MYB genes in the P. trichocarpa genome, of which 207 genes were unevenly distributed across all 19 chromosomes. These poplar R2R3-MYB genes were phylogenetically divided into 23 subgroups. Collinear analysis demonstrated that the poplar R2R3-MYB genes underwent rapid expansion and that whole-genome duplication events were a dominant factor in the process of rapid gene expansion. Subcellular localization assays indicated that poplar R2R3-MYB TFs mainly played a transcriptional regulatory role in the nucleus. Ten R2R3-MYB genes were cloned from P. deltoides × P. euramericana cv. Nanlin895, and their expression patterns were tissue-specific. A majority of the genes showed similar drought-responsive expression patterns in two out of three tissues. This study provides a valid cue for further functional characterization of drought-responsive R2R3-MYB genes in poplar and provides support for the development of new poplar genotypes with elevated drought tolerance.
Collapse
|
20
|
Responses to Drought Stress in Poplar: What Do We Know and What Can We Learn? Life (Basel) 2023; 13:life13020533. [PMID: 36836891 PMCID: PMC9962866 DOI: 10.3390/life13020533] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
Poplar (Populus spp.) is a high-value crop for wood and biomass production and a model organism for tree physiology and genomics. The early release, in 2006, of the complete genome sequence of P. trichocarpa was followed by a wealth of studies that significantly enriched our knowledge of complex pathways inherent to woody plants, such as lignin biosynthesis and secondary cell wall deposition. Recently, in the attempt to cope with the challenges posed by ongoing climate change, fundamental studies and breeding programs with poplar have gradually shifted their focus to address the responses to abiotic stresses, particularly drought. Taking advantage from a set of modern genomic and phenotyping tools, these studies are now shedding light on important processes, including embolism formation (the entry and expansion of air bubbles in the xylem) and repair, the impact of drought stress on biomass yield and quality, and the long-term effects of drought events. In this review, we summarize the status of the research on the molecular bases of the responses to drought in poplar. We highlight how this knowledge can be exploited to select more tolerant genotypes and how it can be translated to other tree species to improve our understanding of forest dynamics under rapidly changing environmental conditions.
Collapse
|
21
|
Song Q, Kong L, Yang X, Jiao B, Hu J, Zhang Z, Xu C, Luo K. PtoMYB142, a poplar R2R3-MYB transcription factor, contributes to drought tolerance by regulating wax biosynthesis. TREE PHYSIOLOGY 2022; 42:2133-2147. [PMID: 35640137 DOI: 10.1093/treephys/tpac060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Drought is one of the main environmental factors that limit plant development and growth. Accordingly, plants have evolved strategies to prevent water loss under drought stress, such as stomatal closure, maintenance of root water uptake, enhancement of stem water transport, and synthesis and deposition of cuticular wax. However, the molecular evidence of cuticular wax biosynthesis regulation in response to drought is limited in woody plants. Here, we identified an MYB transcription factor, Populus tomentosa Carr. MYB transcription factor (PtoMYB142), in response to drought stress from P. tomentosa. Over-expression of PtoMYB142 (PtoMYB142-OE) resulted in increased wax accumulation in poplar leaves, and significantly enhanced drought resistance. We found that the expression of wax biosynthesis genes CER4 and 3-ketoacyl CoA synthase (KCS) were markedly induced under drought stress, and significantly up-regulated in PtoMYB142-OE lines. Biochemical analysis confirmed that PtoMYB142 could directly bind to the promoter of CER4 and KCS6, and regulate their expression in P. tomentosa. Taken together, this study reveals that PtoMYB142 regulates cuticular wax biosynthesis to adapt to water-deficient conditions.
Collapse
Affiliation(s)
- Qin Song
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Lingfei Kong
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuerui Yang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Bo Jiao
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Jian Hu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhichao Zhang
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Changzheng Xu
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Keming Luo
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Southwest University, Chongqing 400715, China
- Key Laboratory of Eco-environments of Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
22
|
Borthakur D, Busov V, Cao XH, Du Q, Gailing O, Isik F, Ko JH, Li C, Li Q, Niu S, Qu G, Vu THG, Wang XR, Wei Z, Zhang L, Wei H. Current status and trends in forest genomics. FORESTRY RESEARCH 2022; 2:11. [PMID: 39525413 PMCID: PMC11524260 DOI: 10.48130/fr-2022-0011] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2024]
Abstract
Forests are not only the most predominant of the Earth's terrestrial ecosystems, but are also the core supply for essential products for human use. However, global climate change and ongoing population explosion severely threatens the health of the forest ecosystem and aggravtes the deforestation and forest degradation. Forest genomics has great potential of increasing forest productivity and adaptation to the changing climate. In the last two decades, the field of forest genomics has advanced quickly owing to the advent of multiple high-throughput sequencing technologies, single cell RNA-seq, clustered regularly interspaced short palindromic repeats (CRISPR)-mediated genome editing, and spatial transcriptomes, as well as bioinformatics analysis technologies, which have led to the generation of multidimensional, multilayered, and spatiotemporal gene expression data. These technologies, together with basic technologies routinely used in plant biotechnology, enable us to tackle many important or unique issues in forest biology, and provide a panoramic view and an integrative elucidation of molecular regulatory mechanisms underlying phenotypic changes and variations. In this review, we recapitulated the advancement and current status of 12 research branches of forest genomics, and then provided future research directions and focuses for each area. Evidently, a shift from simple biotechnology-based research to advanced and integrative genomics research, and a setup for investigation and interpretation of many spatiotemporal development and differentiation issues in forest genomics have just begun to emerge.
Collapse
Affiliation(s)
- Dulal Borthakur
- Dulal Borthakur, Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 96822, USA
| | - Victor Busov
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Xuan Hieu Cao
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Qingzhang Du
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Fikret Isik
- Cooperative Tree Improvement Program, North Carolina State University, Raleigh, NC 27695, USA
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Yongin 17104, Republic of Korea
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100093, P.R. China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, P.R. China
| | - Guanzheng Qu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, P.R. China
| | - Thi Ha Giang Vu
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Centre, Umeå University, Umeå 90187, Sweden
| | - Zhigang Wei
- College of Life Sciences, Heilongjiang University, Harbin 150080, P. R. China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, Hunan Province, P.R. China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
23
|
Zhang Y, Tan Q, Wang N, Meng X, He H, Wen B, Xiao W, Chen X, Li D, Fu X, Li L. PpMYB52 negatively regulates peach bud break through the gibberellin pathway and through interactions with PpMIEL1. FRONTIERS IN PLANT SCIENCE 2022; 13:971482. [PMID: 36035719 PMCID: PMC9413399 DOI: 10.3389/fpls.2022.971482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Bud dormancy, which enables damage from cold temperatures to be avoided during winter and early spring, is an important adaptive mechanism of deciduous fruit trees to cope with seasonal environmental changes and temperate climates. Understanding the regulatory mechanism of bud break in fruit trees is highly important for the artificial control of bud break and the prevention of spring frost damage. However, the molecular mechanism underlying the involvement of MYB TFs during the bud break of peach is still unclear. In this study, we isolated and identified the PpMYB52 (Prupe.5G240000.1) gene from peach; this gene is downregulated in the process of bud break, upregulated in response to ABA and downregulated in response to GA. Overexpression of PpMYB52 suppresses the germination of transgenic tomato seeds. In addition, Y2H, Bimolecular fluorescence complementation (BiFC) assays verified that PpMYB52 interacts with a RING-type E3 ubiquitin ligase, PpMIEL1, which is upregulated during bud break may positively regulate peach bud break by ubiquitination-mediated degradation of PpMYB52. Our findings are the first to characterize the molecular mechanisms underlying the involvement of MYB TFs in peach bud break, increasing awareness of dormancy-related molecules to avoid bud damage in perennial deciduous fruit trees.
Collapse
Affiliation(s)
- Yuzheng Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Qiuping Tan
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ning Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiangguang Meng
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Huajie He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Wei Xiao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiude Chen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Dongmei Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Xiling Fu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| | - Ling Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
24
|
Xia P, Hu W, Zheng Y, Wang Y, Yan K, Liang Z. Structural and interactions analysis of a transcription factor PnMYB2 in Panax notoginseng. JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153756. [PMID: 35767909 DOI: 10.1016/j.jplph.2022.153756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The main active ingredients of the traditional Chinese medicinal plant, Panax notoginseng, are the Panax notoginseng saponins (PNS). They can be synthesized via the mevalonate pathway; PnSS and PnSE1 are the key rate-limiting enzymes in this pathway. In this study, an interaction between PnMYB2 and the key enzymes was identified and characterized from the P. notoginseng cDNA library using the Y1H technique. Subsequently, X-α-gal color reaction confirmed the interaction between PnMYB2 and the upstream sequences of PnSS and PnSE1 promoters. Full-length cDNA sequence of PnMYB2 was isolated and characterized. PnMYB2 has an open reading frame of 864 bp, encoding 287 amino acids. 3D structural analysis of PnMYB2 indicated that its structure was similar to that of the template. Phylogenetic analysis revealed that PnMYB2 and PgMYB2 are highly homologous and belong to the R2R3 MYB transcription factor (TF). Subcellular localization analysis showed that PnMYB2 was localized in the nucleus. The recombinant protein PnMYB2 was successfully obtained through prokaryotic expression and was confirmed to be an inclusion body protein. Furthermore, electrophoretic mobility shift assay (EMSA) experiments demonstrated that PnMYB2 specifically binds to MYB core and AC-rich elements. This study provides a theoretical basis for transcriptional regulation of saponin biosynthesis in P. notoginseng.
Collapse
Affiliation(s)
- Pengguo Xia
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wanying Hu
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yujie Zheng
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yong Wang
- Institute of Sanqi Research, Wenshan University, Wenshan, 663000, China
| | - Kaijing Yan
- Tasly Pharmaceutical Group Co., Ltd, Tianjin, 300410, China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| |
Collapse
|
25
|
Yang G, Zhang Y, Wei X, Cui L, Nie X. Genetic Diversity of Transcription Factor Genes in Triticum and Mining for Promising Haplotypes for Beneficial Agronomic Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:899292. [PMID: 35873966 PMCID: PMC9305608 DOI: 10.3389/fpls.2022.899292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 05/28/2023]
Abstract
Transcription factor (TF) is a class of the sequence-specific DNA-binding proteins that modulate the transcription of target genes, and thus regulate their expressions. Variations in TF are the crucial determinants for phenotypic traits. Although much progress has been made in the functions of TF genes in wheat, one of the most important staple crops globally, the diversity of TF genes in wheat and its progenitors are not well understood, especially the agronomically promising haplotypes have not yet been characterized. Here, we identified a total of 6,023 TF genes from hexaploid wheat through a genome-search method and classified them into 59 gene families based on the conserved domain. The characteristics and dN/dS values of these genes showed evidently selective effects. Based on re-sequencing data, we found a strong genetic bottleneck among these TF genes on A and D subgenomes while no found in B subgenome during wheat domestication. Combined with selective signals and known QTLs on the whole genome, 21 TF genes were preliminarily found to be associated with yield-related traits. The haplotype frequency of these TF genes was further investigated in bread wheat and its progenitors and 13 major haplotypes were the casual loci related to key traits. Finally, the tissue-specific TF genes were also identified using RNA-seq analysis. This study provided insights into the diversity and evolution of TF genes and the identified TF genes and excellent haplotypes associating with traits will contribute to wheat genetic improvement.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ying Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xinyu Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Licao Cui
- College of Biological Science and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
26
|
Characterization of the Gene Expression Profile Response to Drought Stress in Populus ussuriensis Using PacBio SMRT and Illumina Sequencing. Int J Mol Sci 2022; 23:ijms23073840. [PMID: 35409200 PMCID: PMC8998571 DOI: 10.3390/ijms23073840] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022] Open
Abstract
In this study, we characterized the gene expression profile in the roots of Populus ussuriensis at 0, 6, 12, 24, 48 and 120 h after the start of polyethylene glycol (PEG)-induced drought stress using PacBio single-molecule real-time sequencing (SMRT-seq) and Illumina RNA sequencing. Compared to the control, 2244 differentially expressed genes (DEGs) were identified, and many of these DEGs were associated with the signal transduction, antioxidant system, ion accumulation and drought-inducing proteins. Changes in certain physiological and biochemical indexes, such as antioxidant activity and the contents of Ca2+, proline, and total soluble sugars, were further confirmed in P. ussuriensis roots. Furthermore, most of the differentially expressed transcription factors were members of the AP2/ERF, C2H2, MYB, NAC, C2C2 and WRKY families. Additionally, based on PacBio SMRT-seq results, 5955 long non-coding RNAs and 700 alternative splicing events were identified. Our results provide a global view of the gene expression profile that contributes to drought resistance in P. ussuriensis and meaningful information for genetic engineering research in the future.
Collapse
|
27
|
Blanco E, Curci PL, Manconi A, Sarli A, Zuluaga DL, Sonnante G. R2R3-MYBs in Durum Wheat: Genome-Wide Identification, Poaceae-Specific Clusters, Expression, and Regulatory Dynamics Under Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:896945. [PMID: 35795353 PMCID: PMC9252425 DOI: 10.3389/fpls.2022.896945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 05/14/2023]
Abstract
MYB transcription factors (TFs) represent one of the biggest TF families in plants, being involved in various specific plant processes, such as responses to biotic and abiotic stresses. The implication of MYB TFs in the tolerance mechanisms to abiotic stress is particularly interesting for crop breeding, since environmental conditions can negatively affect growth and productivity. Wheat is a worldwide-cultivated cereal, and is a major source of plant-based proteins in human food. In particular, durum wheat plays an important role in global food security improvement, since its adaptation to hot and dry conditions constitutes the base for the success of wheat breeding programs in future. In the present study, a genome-wide identification of R2R3-MYB TFs in durum wheat was performed. MYB profile search and phylogenetic analyses based on homology with Arabidopsis and rice MYB TFs led to the identification of 233 R2R3-TdMYB (Triticum durum MYB). Three Poaceae-specific MYB clusters were detected, one of which had never been described before. The expression of eight selected genes under different abiotic stress conditions, revealed that most of them responded especially to salt and drought stress. Finally, gene regulatory network analyses led to the identification of 41 gene targets for three TdR2R3-MYBs that represent novel candidates for functional analyses. This study provides a detailed description of durum wheat R2R3-MYB genes and contributes to a deeper understanding of the molecular response of durum wheat to unfavorable climate conditions.
Collapse
Affiliation(s)
- Emanuela Blanco
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- *Correspondence: Emanuela Blanco,
| | - Pasquale Luca Curci
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Pasquale Luca Curci,
| | - Andrea Manconi
- Institute of Biomedical Technologies, National Research Council (CNR), Milan, Italy
| | - Adele Sarli
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Diana Lucia Zuluaga
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council (CNR), Bari, Italy
- Gabriella Sonnante,
| |
Collapse
|
28
|
Wu Y, Li T, Cheng Z, Zhao D, Tao J. R2R3-MYB Transcription Factor PlMYB108 Confers Drought Tolerance in Herbaceous Peony ( Paeonia lactiflora Pall.). Int J Mol Sci 2021; 22:11884. [PMID: 34769317 PMCID: PMC8584830 DOI: 10.3390/ijms222111884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
The MYB transcription factor (TF) is crucial for plant growth, development, and response to abiotic stress, but it is rarely reported in the herbaceous peony (Paeonia lactiflora Pall.). Here, an MYB TF gene was isolated, and based on our prior mRNA data from P. lactiflora samples, it was treated with drought stress (DS). Its complete cDNA structure was 1314 bp, which encoded 291 amino acids (aa). Furthermore, using sequence alignment analysis, we demonstrated that PlMYB108 was an R2R3-MYB TF. We also revealed that PlMYB108 was primarily localized in the nucleus. Its levels rose during DS, and it was positively correlated with drought tolerance (DT) in P. lactiflora. In addition, when PlMYB108 was overexpressed in tobacco plants, the flavonoid content, antioxidant enzyme activities, and photosynthesis were markedly elevated. Hence, the transgenic plants had stronger DT with a higher leaf water content and lower H2O2 accumulation compared to the wild-type (WT) plants. Based on these results, PlMYB108 is a vital gene that serves to increase flavonoid accumulation, reactive oxygen species (ROS), scavenging capacity, and photosynthesis to confer DT. The results would provide a genetic resource for molecular breeding to enhance plant DT.
Collapse
Affiliation(s)
- Yanqing Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Tingting Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Zhuoya Cheng
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Daqiu Zhao
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| | - Jun Tao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China;
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (T.L.); (Z.C.); (D.Z.)
| |
Collapse
|
29
|
Han Z, Shang X, Shao L, Wang Y, Zhu X, Fang W, Ma Y. Meta-analysis of the effect of expression of MYB transcription factor genes on abiotic stress. PeerJ 2021; 9:e11268. [PMID: 34164229 PMCID: PMC8194419 DOI: 10.7717/peerj.11268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
Background MYB proteins are a large group of transcription factors. The overexpression of MYB genes has been reported to improve abiotic stress tolerance in plant. However, due to the variety of plant species studied and the types of gene donors/recipients, along with different experimental conditions, it is difficult to interpret the roles of MYB in abiotic stress tolerance from published data. Methods Using meta-analysis approach, we investigated the plant characteristics involved in cold, drought, and salt stress in MYB-overexpressing plants and analyzed the degrees of influence on plant performance by experimental variables. Results The results show that two of the four measured plant parameters in cold-stressed plants, two of the six in drought-stressed, and four of the 13 in salt-stressed were significantly impacted by MYB overexpression by 22% or more, and the treatment medium, donor/recipient species, and donor type significantly influence the effects of MYB-overexpression on drought stress tolerance. Also, the donor/recipient species, donor type, and stress duration all significantly affected the extent of MYB-mediated salt stress tolerance. In summary, this study compiles and analyzes the data across studies to help us understand the complex interactions that dictate the efficacy of heterologous MYB expression designed for improved abiotic stress tolerance in plants.
Collapse
Affiliation(s)
- Zhaolan Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaowen Shang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lingxia Shao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ya Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xujun Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchun Ma
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Manna M, Thakur T, Chirom O, Mandlik R, Deshmukh R, Salvi P. Transcription factors as key molecular target to strengthen the drought stress tolerance in plants. PHYSIOLOGIA PLANTARUM 2021; 172:847-868. [PMID: 33180329 DOI: 10.1111/ppl.13268] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/23/2020] [Accepted: 11/07/2020] [Indexed: 05/03/2023]
Abstract
Amid apprehension of global climate change, crop plants are inevitably confronted with a myriad of abiotic stress factors during their growth that inflicts a serious threat to their development and overall productivity. These abiotic stresses comprise extreme temperature, pH, high saline soil, and drought stress. Among different abiotic stresses, drought is considered the most calamitous stressor with its serious impact on the crops' yield stability. The development of climate-resilient crops that withstands reduced water availability is a major focus of the scientific fraternity to ensure the food security of the sharply increasing population. Numerous studies aim to recognize the key regulators of molecular and biochemical processes associated with drought stress tolerance response. A few potential candidates are now considered as promising targets for crop improvement. Transcription factors act as a key regulatory switch controlling the gene expression of diverse biological processes and, eventually, the metabolic processes. Understanding the role and regulation of the transcription factors will facilitate the crop improvement strategies intending to develop and deliver agronomically-superior crops. Therefore, in this review, we have emphasized the molecular avenues of the transcription factors that can be exploited to engineer drought tolerance potential in crop plants. We have discussed the molecular role of several transcription factors, such as basic leucine zipper (bZIP), dehydration responsive element binding (DREB), DNA binding with one finger (DOF), heat shock factor (HSF), MYB, NAC, TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP), and WRKY. We have also highlighted candidate transcription factors that can be used for the development of drought-tolerant crops.
Collapse
Affiliation(s)
- Mrinalini Manna
- National Institute of Plant Genome Research, New Delhi, India
| | - Tanika Thakur
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Oceania Chirom
- National Institute of Plant Genome Research, New Delhi, India
| | - Rushil Mandlik
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Rupesh Deshmukh
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Prafull Salvi
- Agriculture Biotechnology Department, National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| |
Collapse
|
31
|
Li D, Peng S, Chen S, Li Z, He Y, Ren B, Yang G. Identification and characterization of 5 walnut MYB genes in response to drought stress involved in ABA signaling. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1323-1335. [PMID: 34177150 PMCID: PMC8212255 DOI: 10.1007/s12298-021-01008-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 05/17/2023]
Abstract
UNLABELLED Walnut is a popular nut tree species and usually suffers from drought stress. However, little information is available on the mechanism of walnut responding to drought stress, resulting in lack of basic understanding for its resistance. In order to excavate more functional genes that can respond to stressors, and enrich the theoretical basis for walnut resistance, in this study, 5 MYB genes with complete ORFs were identified from J. regia and the basic bio-information as well as expression patterns in different tissues and response to drought and ABA stresses were confirmed using qRT-PCR assay. The results showed that 2 JrMYB genes belong to R1-MYB subfamily and 3 JrMYBs belong to R2R3-MYB, encoding the proteins from 212 to 362 aa in length. The phylogenetic analysis categorized proteins of 5 JrMYBs and 40 Arabidopsis AtMYBs into 10 subgroups. JrMYBs in the same subgroup exhibited significant similarities in the composition of conserved domains and motifs in amino acid sequences and exon/intron organization in DNA sequences. The results of qRT-PCR analysis revealed that JrMYB genes diversely expressed in various tissues. Moreover, the expression values of JrMYBs were upregulated or downregulated significantly under drought and ABA stresses. Most attractively, in contrast with suffering from drought stress alone, the treatments with drought and additional ABA greatly enhanced the transcript levels of JrMYBs. All these results suggested that JrMYB genes play a vital role in plant biological processes and drought as well as ABA stress response, and possibly perform as ABA-dependent drought response transcription factors in plant. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01008-z.
Collapse
Affiliation(s)
- Dapei Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shaobing Peng
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Shuwen Chen
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Ziyi Li
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yi He
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Bin Ren
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Guiyan Yang
- Laboratory of Walnut Research Center, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
- Key Laboratory of Economic Plant Resources Development and Utilization in Shaanxi Province, College of Forestry, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
32
|
Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:572137. [PMID: 33488639 PMCID: PMC7820124 DOI: 10.3389/fpls.2020.572137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|
33
|
Zhou F, Chen Y, Wu H, Yin T. Genome-Wide Comparative Analysis of R2R3 MYB Gene Family in Populus and Salix and Identification of Male Flower Bud Development-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:721558. [PMID: 34594352 PMCID: PMC8477045 DOI: 10.3389/fpls.2021.721558] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/17/2021] [Indexed: 05/09/2023]
Abstract
The MYB transcription factor (TF) family is one of the largest plant transcription factor gene family playing vital roles in plant growth and development, including defense, cell differentiation, secondary metabolism, and responses to biotic and abiotic stresses. As a model tree species of woody plants, in recent years, the identification and functional prediction of certain MYB family members in the poplar genome have been reported. However, to date, the characterization of the gene family in the genome of the poplar's sister species willow has not been done, nor are the differences and similarities between the poplar and willow genomes understood. In this study, we conducted the first genome-wide investigation of the R2R3 MYB subfamily in the willow, identifying 216 R2R3 MYB gene members, and combined with the poplar R2R3 MYB genes, performed the first comparative analysis of R2R3 MYB genes between the poplar and willow. We identified 81 and 86 pairs of R2R3 MYB paralogs in the poplar and willow, respectively. There were 17 pairs of tandem repeat genes in the willow, indicating active duplication of willow R2R3 MYB genes. A further 166 pairs of poplar and willow orthologs were identified by collinear and synonymous analysis. The findings support the duplication of R2R3 MYB genes in the ancestral species, with most of the R2R3 MYB genes being retained during the evolutionary process. The phylogenetic trees of the R2R3 MYB genes of 10 different species were drawn. The functions of the poplar and willow R2R3 MYB genes were predicted using reported functional groupings and clustering by OrthoFinder. Identified 5 subgroups in general expanded in woody species, three subgroups were predicted to be related to lignin synthesis, and we further speculate that the other two subgroups also play a role in wood formation. We analyzed the expression patterns of the GAMYB gene of subgroup 18 (S18) related to pollen development in the male flower buds of poplar and willow at different developmental stages by qRT-PCR. The results showed that the GAMYB gene was specifically expressed in the male flower bud from pollen formation to maturity, and that the expression first increased and then decreased. Both the specificity of tissue expression specificity and conservation indicated that GAMYB played an important role in pollen development in both poplar and willow and was an ideal candidate gene for the analysis of male flower development-related functions of the two species.
Collapse
|
34
|
Lv K, Wei H, Liu G. A R2R3-MYB Transcription Factor Gene, BpMYB123, Regulates BpLEA14 to Improve Drought Tolerance in Betula platyphylla. FRONTIERS IN PLANT SCIENCE 2021; 12:791390. [PMID: 34956289 PMCID: PMC8702527 DOI: 10.3389/fpls.2021.791390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 05/07/2023]
Abstract
Drought stress causes various negative impacts on plant growth and crop production. R2R3-MYB transcription factors (TFs) play crucial roles in the response to abiotic stress. However, their functions in Betula platyphylla haven't been fully investigated. In this study, a R2R3 MYB transcription factor gene, BpMYB123, was identified from Betula platyphylla and reveals its significant role in drought stress. Overexpression of BpMYB123 enhances tolerance to drought stress in contrast to repression of BpMYB123 by RNA interference (RNAi) in transgenic experiment. The overexpression lines increased peroxidase (POD) and superoxide dismatase (SOD) activities, while decreased hydrogen peroxide (H2O2), superoxide radicals (O2 -), electrolyte leakage (EL) and malondialdehyde (MDA) contents. Our study showed that overexpression of BpMYB123 increased BpLEA14 gene expression up to 20-fold due to BpMYB123 directly binding to the MYB1AT element of BpLEA14 promoter. These results indicate that BpMYB123 acts as a regulator via regulating BpLEA14 to improve drought tolerance in birch.
Collapse
Affiliation(s)
- Kaiwen Lv
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI, United States
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- *Correspondence: Guifeng Liu,
| |
Collapse
|
35
|
Rosero A, Granda L, Berdugo-Cely JA, Šamajová O, Šamaj J, Cerkal R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1263. [PMID: 32987964 PMCID: PMC7600178 DOI: 10.3390/plants9101263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/19/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023]
Abstract
Water scarcity is the primary constraint on crop productivity in arid and semiarid tropical areas suffering from climate alterations; in accordance, agricultural systems have to be optimized. Several concepts and strategies should be considered to improve crop yield and quality, particularly in vulnerable regions where such environmental changes cause a risk of food insecurity. In this work, we review two strategies aiming to increase drought stress tolerance: (i) the use of natural genes that have evolved over time and are preserved in crop wild relatives and landraces for drought tolerance breeding using conventional and molecular methods and (ii) exploiting the reservoir of neglected and underutilized species to identify those that are known to be more drought-tolerant than conventional staple crops while possessing other desired agronomic and nutritive characteristics, as well as introducing them into existing cropping systems to make them more resilient to water deficiency conditions. In the past, the existence of drought tolerance genes in crop wild relatives and landraces was either unknown or difficult to exploit using traditional breeding techniques to secure potential long-term solutions. Today, with the advances in genomics and phenomics, there are a number of new tools available that facilitate the discovery of drought resistance genes in crop wild relatives and landraces and their relatively easy transfer into advanced breeding lines, thus accelerating breeding progress and creating resilient varieties that can withstand prolonged drought periods. Among those tools are marker-assisted selection (MAS), genomic selection (GS), and targeted gene editing (clustered regularly interspaced short palindromic repeat (CRISPR) technology). The integration of these two major strategies, the advances in conventional and molecular breeding for the drought tolerance of conventional staple crops, and the introduction of drought-tolerant neglected and underutilized species into existing production systems has the potential to enhance the resilience of agricultural production under conditions of water scarcity.
Collapse
Affiliation(s)
- Amparo Rosero
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Leiter Granda
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| | - Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria–AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería, 250047 Cereté, Colombia;
| | - Olga Šamajová
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; (O.Š.); (J.Š.)
| | - Radim Cerkal
- Department of Crop Science, Breeding and Plant Medicine, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic; (L.G.); (R.C.)
| |
Collapse
|
36
|
Cao Y, Li K, Li Y, Zhao X, Wang L. MYB Transcription Factors as Regulators of Secondary Metabolism in Plants. BIOLOGY 2020; 9:biology9030061. [PMID: 32213912 PMCID: PMC7150910 DOI: 10.3390/biology9030061] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/12/2020] [Accepted: 03/19/2020] [Indexed: 11/25/2022]
Abstract
MYB transcription factors (TFs), as one of the largest gene families in plants, play important roles in multiple biological processes, such as plant growth and development, cell morphology and pattern building, physiological activity metabolism, primary and secondary metabolic reactions, and responses to environmental stresses. The function of MYB TFs in crops has been widely studied, but few studies have been done on medicinal plants. In this review, we summarized the MYB TFs that play important roles in secondary metabolism and emphasized the possible mechanisms underlying how MYB TFs are regulated at the protein, posttranscriptional, and transcriptional levels, as well as how they regulate the downstream target gene networks related to secondary metabolism in plants, especially in medicinal plants.
Collapse
Affiliation(s)
- Yunpeng Cao
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Kui Li
- Science and Technology Promotion Center, Huaihua Forestry Research Institute, Huaihua 418000, China;
| | - Yanli Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; (Y.C.); (Y.L.)
- Key Lab of Non-wood Forest Products of State Forestry Administration, College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiaopei Zhao
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China;
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
- Correspondence:
| |
Collapse
|