1
|
Savelkoel J, Tiemensma M, Birnie E, Wiersinga WJ, Currie BJ, Roelofs JJTH. A Graphical Overview of the Histopathology of Human Melioidosis: A Case Series. Open Forum Infect Dis 2023; 10:ofad367. [PMID: 37547853 PMCID: PMC10400137 DOI: 10.1093/ofid/ofad367] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/11/2023] [Indexed: 08/08/2023] Open
Abstract
Background Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, has a major global health impact and a wide range of different disease manifestations. Histopathological descriptions of melioidosis remain limited. Granulomatous inflammation with multinucleated giant cells are considered classic features. We aim to present a graphical overview of histopathological manifestations of melioidosis, serving as an aid in diagnosing this disease. Methods We performed a retrospective international multicenter laboratory-based analysis of formalin-fixed paraffin-embedded (FFPE) tissue from culture-confirmed melioidosis autopsy and biopsy cases. Available FFPE tissue was stained with hematoxylin and eosin and immunostainings including a monoclonal antibody targeting the capsular polysaccharide (CPS) of B pseudomallei. Tissue with site-specific cultures and/or positive CPS staining were included in the graphical histopathological overview. Results We identified tissue of 8 autopsy and 5 biopsy cases. Pneumonia and soft tissue abscesses were the leading foci of disease displaying mainly necrosis and suppuration. Infrequent disease manifestations included involvement of bone marrow and adrenal glands in an autopsy case and biopsied mediastinal tissue, the latter being the only case in which we identified multinucleated giant cells. Using the CPS staining, we demonstrated granulomata as part of rare gastric tissue involvement. Conclusions We found fatal melioidosis to be a necrotizing and suppurative inflammation, usually without multinucleated giant cell formation. Gastric and mediastinal involvement points to ingestion and inhalation as possible routes of infection. The CPS staining proved beneficial as an aid to establish a histopathological diagnosis. Our graphical overview can be used by infectious diseases specialists, microbiologists, and pathologists.
Collapse
Affiliation(s)
- Jelmer Savelkoel
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Marianne Tiemensma
- Territory Pathology, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Emma Birnie
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Infectious Diseases Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Joris J T H Roelofs
- Department of Pathology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
An Investigation into the Re-Emergence of Disease Following Cessation of Antibiotic Treatment in Balb/c Mice Infected with Inhalational Burkholderia pseudomallei. Antibiotics (Basel) 2022; 11:antibiotics11101442. [PMID: 36290100 PMCID: PMC9598772 DOI: 10.3390/antibiotics11101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Burkholderia pseudomallei is the causative agent of melioidosis, a multifaceted disease. A proportion of the mortality and morbidity reported as a result of infection with this organism may be due to the premature cessation of antibiotic therapy typically lasting for several months. The progression of re-emergent disease was characterised in Balb/c mice following cessation of a 14 day treatment course of co-trimoxazole or finafloxacin, delivered at a human equivalent dose. Mice were culled weekly and the infection characterised in terms of bacterial load in tissues, weight loss, clinical signs of infection, cytokine levels and immunological cell counts. Following cessation of treatment, the infection re-established in some animals. Finafloxacin prevented the re-establishment of the infection for longer than co-trimoxazole, and it is apparent based on the protection offered, the development of clinical signs of disease, bodyweight loss and bacterial load, that finafloxacin was more effective at controlling infection when compared to co-trimoxazole.
Collapse
|
3
|
Trinh TT, Vu TA, Bui LNH, Nguyen HV, Nguyen DTH, Dang NX, Le Tran QT. Thermal and gastric stability of antimicrobial activity of juices and aqueous extracts prepared from common eligible herbs and traditional medicinal plants against Burkholderia pseudomallei and other enteric bacteria. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2025] Open
Abstract
Abstract
Background
Burkholderia pseudomallei is a causative agent of melioidosis, a fatal infectious disease highly prevalent in the tropics where traditional medicinal plants are widely used for the treatment of various human ailments. In this study, we aimed to evaluate the in vitro antibacterial activity of common eligible herbs and medicinal plants against B. pseudomallei. Thermal and gastric stability, antibacterial spectrum, bactericidal activity, and cell cytotoxicity were also tested to verify the possible usage of these plants in the treatment of melioidosis.
Results
Eighteen eligible herbs and twenty-one medicinal plants were collected. Herb juices and aqueous plant samples extracted at different temperatures were prepared for antibacterial testing. A higher proportion of aqueous plant extracts (17/21; 80.9%) against B. pseudomallei was observed, in comparison with that of herb juices (8/18; 44.5%). Two herb juices and twelve aqueous plant extracts were selected for further tests. The juices of A. sativum and A. tuberosum decreased their antimicrobial activity when treated at higher temperatures whereas the aqueous plant extracts increased their antimicrobial activity when prepared at 70 and 100 °C. The herb juices showed a broader spectrum of antimicrobial activity than the aqueous plant extracts. All samples showed less cytotoxicity on the HT29, HepG2, and HEK293 cell lines. At the 2× minimal inhibitory concentration (MIC), aqueous extracts of Blechnum orientale, Breynia fruticose, Psidium guajava, Rhodomyrtus tomentosa, Rosa odorata, and Schima wallichii showed similar bactericidal activity to that of amoxicillin clavulanic acid. The antimicrobial activity of Mangifera indica, Punica granatum, and R. tomentosa remained under the stimulated gastric conditions.
Conclusion
Our data indicate that traditional medicinal plants prepared by decoction could be effectively used to treat melioidosis via the oral route. Further in vivo investigations are needed to explore other alternative therapies for the prevention and treatment of tested pathogenic bacterial species.
Collapse
|
4
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
5
|
Burkholderia pseudomallei as an Enteric Pathogen: Identification of Virulence Factors Mediating Gastrointestinal Infection. Infect Immun 2020; 89:IAI.00654-20. [PMID: 33106293 DOI: 10.1128/iai.00654-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/24/2022] Open
Abstract
Burkholderia pseudomallei is a Gram-negative bacterium and the causative agent of melioidosis. Despite advances in our understanding of the disease, B. pseudomallei poses a significant health risk, especially in regions of endemicity, where treatment requires prolonged antibiotic therapy. Even though the respiratory and percutaneous routes are well documented and considered the main ways to acquire the pathogen, the gastrointestinal tract is believed to be an underreported and underrecognized route of infection. In the present study, we describe the development of in vitro and in vivo models to study B. pseudomallei gastrointestinal infection. Further, we report that the type 6 secretion system (T6SS) and type 1 fimbriae are important virulence factors required for gastrointestinal infection. Using a human intestinal epithelial cell line and mouse primary intestinal epithelial cells (IECs), we demonstrated that B. pseudomallei adheres, invades, and forms multinucleated giant cells, ultimately leading to cell toxicity. We demonstrated that mannose-sensitive type 1 fimbria is involved in the initial adherence of B. pseudomallei to IECs, although the impact on full virulence was limited. Finally, we also showed that B. pseudomallei requires a functional T6SS for full virulence, bacterial dissemination, and lethality in mice infected by the intragastric route. Overall, we showed that B. pseudomallei is an enteric pathogen and that type 1 fimbria is important for B. pseudomallei intestinal adherence, and we identify a new role for T6SS as a key virulence factor in gastrointestinal infection. These studies highlight the importance of gastrointestinal melioidosis as an understudied route of infection and open a new avenue for the pathogenesis of B. pseudomallei.
Collapse
|
6
|
Chang CY, Lau NLJ, Currie BJ, Podin Y. Disseminated melioidosis in early pregnancy - an unproven cause of foetal loss. BMC Infect Dis 2020; 20:201. [PMID: 32143598 PMCID: PMC7060584 DOI: 10.1186/s12879-020-4937-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/28/2020] [Indexed: 11/22/2022] Open
Abstract
Background Melioidosis is a potentially life-threatening infection caused by the Gram-negative bacterium Burkholderia pseudomallei. Melioidosis is difficult to diagnose due to its diverse clinical manifestations, which often delays administration of appropriate antibiotic therapy. Case presentation Melioidosis is uncommon in pregnancy but both spontaneous abortion and neonatal melioidosis have been reported. We report a case of bacteraemic melioidosis in a young woman with a subsequent spontaneous abortion, with B. pseudomallei cultured from a high vaginal swab as well as blood. Conclusion It remains unclear in this and previously reported cases as to whether the maternal melioidosis was sexually transmitted.
Collapse
Affiliation(s)
- Chee Yik Chang
- Medical Department, Kapit Hospital, Ministry of Health, Kapit, Malaysia
| | - Nina Lee Jing Lau
- Obstetrics and Gynaecology Department, Kapit Hospital, Ministry of Health, Kapit, Malaysia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Yuwana Podin
- Institute of Health and Community Medicine, University Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia.
| |
Collapse
|
7
|
Chewapreecha C, Mather AE, Harris SR, Hunt M, Holden MTG, Chaichana C, Wuthiekanun V, Dougan G, Day NPJ, Limmathurotsakul D, Parkhill J, Peacock SJ. Genetic variation associated with infection and the environment in the accidental pathogen Burkholderia pseudomallei. Commun Biol 2019; 2:428. [PMID: 31799430 PMCID: PMC6874650 DOI: 10.1038/s42003-019-0678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
The environmental bacterium Burkholderia pseudomallei causes melioidosis, an important endemic human disease in tropical and sub-tropical countries. This bacterium occupies broad ecological niches including soil, contaminated water, single-cell microbes, plants and infection in a range of animal species. Here, we performed genome-wide association studies for genetic determinants of environmental and human adaptation using a combined dataset of 1,010 whole genome sequences of B. pseudomallei from Northeast Thailand and Australia, representing two major disease hotspots. With these data, we identified 47 genes from 26 distinct loci associated with clinical or environmental isolates from Thailand and replicated 12 genes in an independent Australian cohort. We next outlined the selective pressures on the genetic loci (dN/dS) and the frequency at which they had been gained or lost throughout their evolutionary history, reflecting the bacterial adaptability to a wide range of ecological niches. Finally, we highlighted loci likely implicated in human disease.
Collapse
Affiliation(s)
- Claire Chewapreecha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Bioinformatics and Systems Biology Program, School of Bioresource and Technology, King Mongkut’s University of Technology Thonburi, Bangkok, 10150 Thailand
- Wellcome Sanger Institute, Hinxton, CB10 1SA UK
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Alison E. Mather
- Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich, NR4 7TJ UK
| | | | - Martin Hunt
- Wellcome Sanger Institute, Hinxton, CB10 1SA UK
| | | | - Chutima Chaichana
- Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok, 10140 Thailand
| | - Vanaporn Wuthiekanun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| | - Nicholas P. J. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF UK
| | - Direk Limmathurotsakul
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7LF UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES UK
| | - Sharon J. Peacock
- Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ UK
| |
Collapse
|