1
|
Borges Martins da Silva L, Vieira Arruda K, Yumi Suzuki J, Edgar Herkenhoff M. Survival of the probiotic strain Lacticaseibacillus paracasei subsp. paracasei F19 in high-hopped beers. Food Res Int 2024; 196:115040. [PMID: 39614485 DOI: 10.1016/j.foodres.2024.115040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/12/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
This study aims to enhance understanding of probiotic lactic acid bacteria (LAB) survival in high-hopped beer formulations and their interactions with different yeasts and highlights the fermentation processes, microbial metabolism, and production of distinctive beer flavors. For this, this research used Lacticaseibacillus paracasei F19 (F19), Saccharomycodes ludwigii, and Saccharomyces cerevisiae strains US-05 (US-05) and Kveik (Kveik) for brewing. Bacterial and yeast cultures were prepared, fermented in wort, and analyzed in different hop concentrations (International Bitterness Units - IBU 0, 20, 40). Methods included physicochemical analysis, yeast and bacterial counts, RT-qPCR for gene expression, statistical analysis, and sensory evaluation by sommeliers following BJCP guidelines. Physicochemical analysis showed efficient fermentation across all hop concentrations (IBU 0, 20, 40), with decreasing SG and pH over time due to lactic acid bacteria and yeast metabolism. Higher hop levels (IBU 20 and 40) resulted in less acidic beer, indicating hop interference with bacterial activity. Yeast populations remained stable regardless of hop content, with Saccharomyces cerevisiae and Saccharomycodes ludwigii performing well. Probiotic strain F19 exhibited robust viability in all formulations. Sensory analysis favored higher hop content beers, suggesting consumer acceptance and potential health benefits of probiotic, high-hop beers. Higher hop content hindered sour beer production as only hop-free beers reached low pH levels. Probiotic strain F19 remained viable under high IBU formulations (20 and 40), with these being preferred by sommeliers using BJCP methodology. All yeast strains supported F19 survival. Further studies are needed on gastrointestinal resistance and clinical benefits.
Collapse
Affiliation(s)
- Lucas Borges Martins da Silva
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Katy Vieira Arruda
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Juliana Yumi Suzuki
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| | - Marcos Edgar Herkenhoff
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil; Food Research Center FoRC, University of São Paulo, Av. Professor Lineu Prestes, 580, São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
2
|
Roselli GE, Kerruish DWM, Crow M, Smart KA, Powell CD. The two faces of microorganisms in traditional brewing and the implications for no- and low-alcohol beers. Front Microbiol 2024; 15:1346724. [PMID: 38440137 PMCID: PMC10910910 DOI: 10.3389/fmicb.2024.1346724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/02/2024] [Indexed: 03/06/2024] Open
Abstract
The production of alcoholic beverages is intrinsically linked to microbial activity. This is because microbes such as yeast are associated with the production of ethanol and key sensorial compounds that produce desirable qualities in fermented products. However, the brewing industry and other related sectors face a step-change in practice, primarily due to the growth in sales of no- and low-alcohol (NoLo) alternatives to traditional alcoholic products. Here we review the involvement of microbes across the brewing process, including both their positive contributions and their negative (spoilage) effects. We also discuss the opportunities for exploiting microbes for NoLo beer production, as well as the spoilage risks associated with these products. For the latter, we highlight differences in composition and process conditions between traditional and NoLo beers and discuss how these may impact the microbial ecosystem of each product stream in relation to microbiological stability and final beer quality.
Collapse
Affiliation(s)
- Giulia E. Roselli
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| | | | - Matthew Crow
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Katherine A. Smart
- Diageo International Technical Centre, Menstrie, Scotland, United Kingdom
| | - Chris D. Powell
- Division of Microbiology, Biotechnology and Brewing Science, School of Biosciences, University of Nottingham, Loughborough, Leicestershire, United Kingdom
| |
Collapse
|
3
|
Rodríguez-Saavedra M, González de Llano D, Moreno-Arribas MV. Beer spoilage lactic acid bacteria from craft brewery microbiota: Microbiological quality and food safety. Food Res Int 2020; 138:109762. [PMID: 33292943 DOI: 10.1016/j.foodres.2020.109762] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 01/28/2023]
Abstract
Craft beer is more susceptible to microbial spoilage because it does not have a pasteurization or filtration process, with lactic acid bacteria (LAB) being the most common beer spoilage microorganism. The aim of this study was to isolate LAB in a craft brewery and their characterization from a food safety and microbiological quality perspective, with a special focus on their abilities to produce biogenic amines (BA) and spoil the beer. The results of 60 monitored points inside the craft brewery showed that LAB associated with the craft brewing processes belonged to Lactobacillus, Pediococcus, and Leuconostoc genera, and most of them were detected in the filling area, which can lead to secondary contamination. Two isolates of L. brevis showed the most significant beer spoilage ability because they could grow in more acidic conditions, at a higher hop and alcohol content, and they displayed horA, horC, and hitA genes, which spoiled the vast majority of the tested beers. In addition, the aforementioned L. brevis isolates showed the highest BA production.
Collapse
Affiliation(s)
- Magaly Rodríguez-Saavedra
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain
| | - Dolores González de Llano
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain
| | - M Victoria Moreno-Arribas
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, c/Nicolás Cabrera, 9. Campus de Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
4
|
Suzuki K, Shinohara Y, Kurniawan YN. Role of Plasmids in Beer Spoilage Lactic Acid Bacteria: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1843899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yuji Shinohara
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| | - Yohanes Novi Kurniawan
- Department of Safety Technology Development, Analytical Science Laboratories, Asahi Quality and Innovations, Ltd., Moriya, Japan
| |
Collapse
|
5
|
Suzuki K. Emergence of New Spoilage Microorganisms in the Brewing Industry and Development of Microbiological Quality Control Methods to Cope with This Phenomenon: A Review. JOURNAL OF THE AMERICAN SOCIETY OF BREWING CHEMISTS 2020. [DOI: 10.1080/03610470.2020.1782101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Koji Suzuki
- Asahi Quality and Innovations, Ltd, Moriya, Ibaraki, Japan
| |
Collapse
|
6
|
Liu J, Li L, Peters BM, Li B, Deng Y, Xu Z, Shirtliff ME. Draft genome sequence and annotation ofLactobacillus acetotoleransBM-LA14527, a beer-spoilage bacteria. FEMS Microbiol Lett 2016; 363:fnw201. [DOI: 10.1093/femsle/fnw201] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 01/07/2023] Open
|
7
|
Role of plasmids in Lactobacillus brevis BSO 464 hop tolerance and beer spoilage. Appl Environ Microbiol 2016; 81:1234-41. [PMID: 25501474 DOI: 10.1128/aem.02870-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Specific isolates of lactic acid bacteria (LAB) can grow in the harsh beer environment, thus posing a threat to brew quality and the economic success of breweries worldwide. Plasmid-localized genes, such as horA, horC, and hitA, have been suggested to confer hop tolerance, a trait required for LAB survival in beer. The presence and expression of these genes among LAB, however, do not universally correlate with the ability to grow in beer. Genome sequencing of the virulent beer spoilage organism Lactobacillus brevis BSO 464 revealed the presence of eight plasmids, with plasmids 1, 2, and 3 containing horA, horC, and hitA, respectively. To investigate the roles that these and the other five plasmids play in L. brevis BSO 464 growth in beer, plasmid curing with novobiocin was used to derive 10 plasmid variants. Multiplex PCRs were utilized to determine the presence or absence of each plasmid, and how plasmid loss affected hop tolerance and growth in degassed (noncarbonated) beer was assessed. Loss of three of the eight plasmids was found to affect hop tolerance and growth in beer. Loss of plasmid 2 (horC and 28 other genes) had the most dramatic effect, with loss of plasmid 4 (120 genes) and plasmid 8 (47 genes) having significant, but smaller, impacts. These results support the contention that genes on mobile genetic elements are essential for bacterial growth in beer and that beer spoilage ability is not dependent solely on the three previously described hop tolerance genes or on the chromosome of a beer spoilage LAB isolate.
Collapse
|
8
|
Beer-spoiling ability of lactic acid bacteria and its relation with genes horA, horC and hitA. KVASNY PRUMYSL 2012. [DOI: 10.18832/kp2012030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Abstract
Lactobacillus rhamnosus is found in the human gastrointestinal tract and is important for probiotics. We became interested in L. rhamnosus isolate ATCC 8530 in relation to beer spoilage and hops resistance. We report here the genome sequence of this isolate, along with a brief comparison to other available L. rhamnosus genome sequences.
Collapse
|
10
|
Effect of tetrahydroiso-ɑ-acids on the growth of beer-spoiling and -nonspoiling bacteria. KVASNY PRUMYSL 2010. [DOI: 10.18832/kp2010041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Haakensen M, Schubert A, Ziola B. Broth and agar hop-gradient plates used to evaluate the beer-spoilage potential of Lactobacillus and Pediococcus isolates. Int J Food Microbiol 2009; 130:56-60. [PMID: 19187996 DOI: 10.1016/j.ijfoodmicro.2009.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/16/2008] [Accepted: 01/01/2009] [Indexed: 10/21/2022]
Abstract
Identification of the beer-spoilage Lactobacillus and Pediococcus bacteria has largely taken two approaches; identification of spoilage-associated genes or identification of specific species of bacteria regardless of ability to grow in beer. The problem with these two approaches is that they are either overly inclusive (i.e., detect all bacteria of a given species regardless of spoilage potential) or overly selective (i.e., rely upon individual, putative spoilage-associated genes). Our goal was to design a method to assess the ability of Lactobacillus and Pediococcus to spoil beer that is independent of speciation or genetic background. In searching for a method by which to differentiate between beer-spoilage bacteria and bacteria that cannot grow in beer, we explored the ability of lactobacilli and pediococci isolates to grow in the presence of varying concentrations of hop-compounds and ethanol in broth medium versus on agar medium. The best method for differentiating between bacteria that can grow in beer and bacteria that do not pose a threat as beer-spoilage organisms was found to be a hop-gradient agar plate containing ethanol. This hop-gradient agar plate technique provides a rapid and simple solution to the dilemma of assessing the ability of Lactobacillus and Pediococcus isolates to grow in beer, and provides new insights into the different strategies used by these bacteria to survive under the stringent conditions of beer.
Collapse
Affiliation(s)
- M Haakensen
- Department of Pathology and Laboratory Medicine, Room 2841 Royal University Hospital, 103 Hospital Drive, University of Saskatchewan, Saskatoon, SK Canada S7N 0W8
| | | | | |
Collapse
|
12
|
Lodolo EJ, Kock JLF, Axcell BC, Brooks M. The yeast Saccharomyces cerevisiae- the main character in beer brewing. FEMS Yeast Res 2008; 8:1018-36. [PMID: 18795959 DOI: 10.1111/j.1567-1364.2008.00433.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Historically, mankind and yeast developed a relationship that led to the discovery of fermented beverages. Numerous inventions have led to improved technologies and capabilities to optimize fermentation technology on an industrial scale. The role of brewing yeast in the beer-making process is reviewed and its importance as the main character is highlighted. On considering the various outcomes of functions in a brewery, it has been found that these functions are focused on supporting the supply of yeast requirements for fermentation and ultimately to maintain the integrity of the product. The functions/processes include: nutrient supply to the yeast (raw material supply for brewhouse wort production); utilities (supply of water, heat and cooling); quality assurance practices (hygiene practices, microbiological integrity measures and other specifications); plant automation (vessels, pipes, pumps, valves, sensors, stirrers and centrifuges); filtration and packaging (product preservation until consumption); distribution (consumer supply); and marketing (consumer awareness). Considering this value chain of beer production and the 'bottle neck' during production, the spotlight falls on fermentation, the age-old process where yeast transforms wort into beer.
Collapse
|
13
|
Haakensen M, Dobson C, Deneer H, Ziola B. Real-time PCR detection of bacteria belonging to the Firmicutes Phylum. Int J Food Microbiol 2008; 125:236-41. [DOI: 10.1016/j.ijfoodmicro.2008.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/07/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
|