1
|
Sissons M, Palombieri S, Sestili F, Lafiandra D. Impact of Variation in Amylose Content on Durum Wheat cv. Svevo Technological and Starch Properties. Foods 2023; 12:4112. [PMID: 38002170 PMCID: PMC10670430 DOI: 10.3390/foods12224112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Reserve starch, the main component of durum wheat semolina, is constituted of two glucan homopolymers (amylose and amylopectin) that differ in their chemical structure. Amylose is mainly a linear structure formed of α-1,4-linked glucose units, with a lower polymerization degree, whereas amylopectin is a highly branched structure of α-1,4-chains linked by α-1,6-bonds. Variation of the amylose/amylopectin ratio has a profound effect on the starch properties which may impact the wheat technological and nutritional characteristics and their possible use in the food and non-food sector. In this work a set of genotypes, with a range of amylose from 14.9 to 57.8%, derived from the durum wheat cv. Svevo was characterised at biochemical and rheological level and used to produce pasta to better understand the role of amylose content in a common genetic background. A negative correlation was observed between amylose content and semolina swelling power, starch peak viscosity, and pasta stickiness. A worsening of the firmness was observed in the low amylose pasta compared to the control (cv. Svevo), whereas no difference was highlighted in the high amylose samples. The resistant starch was higher in the high amylose (HA) pasta compared to the control and low amylose (LA) pasta. Noteworthy, the extent of starch digestion was reduced in the HA pasta while the LA genotypes offered a higher starch digestion, suggesting other possible applications.
Collapse
Affiliation(s)
- Mike Sissons
- NSW Department of Primary Industries, Tamworth Agricultural Institute, 4 Marsden Park Road, Tamworth, NSW 2340, Australia
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy; (S.P.); (F.S.); (D.L.)
| |
Collapse
|
2
|
Zhang X, Karim H, Feng X, Lan J, Tang H, Guzmán C, Xu Q, Zhang Y, Qi P, Deng M, Ma J, Wang J, Chen G, Lan X, Wei Y, Zheng Y, Jiang Q. A single base change at exon of Wx-A1 caused gene inactivation and starch properties modified in a wheat EMS mutant line. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:2012-2022. [PMID: 34558070 DOI: 10.1002/jsfa.11540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/01/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Wheat is an essential source of starch. The GBSS or waxy genes are responsible for synthesizing amylose in cereals. The present study identified a novel Wx-A1 null mutant line from an ethyl methanesulfonate (EMS)-mutagenized population of common wheat cv. SM126 using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and agarose gel analyses. RESULTS The alignment of the Wx-A1 gene sequences from the mutant and parental SM126 lines showed only one single nucleotide polymorphism causing the appearance of a premature stop codon and Wx-A1 inactivation. The lack of Wx-A1 protein resulted in decreased amylose, total starch and resistant starch. The starch morphology assessment revealed that starch from mutant seeds was more wrinkled, increasing its susceptibility to digestion. Regarding the starch thermodynamic properties, the gelatinization temperature was remarkably reduced in the mutant compared to parental line SM126. The digestibility of native, gelatinized, and retrograded starches was analyzed for mutant M4-627 and the parental SM126 line. In the M4-627 line, rapidly digestible starch contents were increased, whereas resistant starch was decreased in the three types of starch. CONCLUSION Waxy protein is essential for starch synthesis. The thermodynamic characteristics were decreased in the Wx-A1 mutant line. The digestibility properties of starch were also affected. Therefore, the partial waxy mutant M3-627 might play a significant role in food improvement. Furthermore, it might also be used to produce high-quality noodles. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuteng Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hassan Karim
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiuqin Feng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jingyu Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Huaping Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, Cordoba, Spain
| | - Qiang Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yazhou Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Pengfei Qi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mei Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoyue Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiujin Lan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
3
|
Inokuma T, Vrinten P, Shimbata T, Sunohara A, Fujita M, Nakamura K, Ishikawa N, Takata K, Kiribuchi-Otobe C, Nakamura T. Longer Bread Shelf-Life and Improved Noodle-Making Properties Imparted by a Novel Wheat Genotype Are Stable in Different Genetic Backgrounds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2271-2278. [PMID: 33567823 DOI: 10.1021/acs.jafc.0c05626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A recently developed wheat variety, known as 5-5 wheat, which has inactive GBSSI-B1, GBSSI-D1, SSIIa-B1, and SSIIa-D1 isozymes, accumulates a novel type of starch, affecting bread texture and leading to reduction in bread staling. These properties are potentially useful for commercial bakery products; thus, the 5-5 genotype represents a new resource for wheat breeding. In this study, the 5-5 alleles were backcrossed into the hard wheat variety "Minaminokaori" and the soft wheat variety "Shirogane-Komugi", which are both leading Japanese wheat varieties. In comparison to their parental varieties, the two 5-5 near-isogenic lines (NILs) showed a decrease in amylose levels, an increase in the proportion of short chains of amylopectin, a lower gelatinization temperature and enthalpy change, a higher peak viscosity and breakdown viscosity as measured by a Rapid Visco Analyzer, a reduced retrogradation rate, and an increase in grain hardness. Importantly, the 5-5 NILs also showed lower bread crumb firmness and reduced hardening after storage for 2 days at either 20 °C or 7 °C. Considering the results obtained here along with those from the original line, it is clear that the 5-5 genotype can generate specific changes in starch characteristics and staling regardless of its genetic background. Thus, we renamed the 5-5 wheat lines "Slow Staling" (SS) wheat. As expected, our results indicated that the hard wheat SS NIL was more suitable for bread-making. On the other hand, we found that white salted noodle made with the SS NIL of the soft wheat variety had a relatively shorter cooking time, a softer texture, and a reduction in textural changes during storage, all of which are potentially useful for noodle manufacturers.
Collapse
Affiliation(s)
- Takayuki Inokuma
- Central Laboratory Innovation Center, Nippn Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Patricia Vrinten
- Central Laboratory Innovation Center, Nippn Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Tomoya Shimbata
- Central Laboratory Innovation Center, Nippn Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Ai Sunohara
- Central Laboratory Innovation Center, Nippn Corporation, 5-1-3 Midorigaoka, Atsugi, Kanagawa 243-0041, Japan
| | - Masaya Fujita
- Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Kazuhiro Nakamura
- Kyusyu Okinawa Agricultural Research Center, NARO, Izumi 496, Chikugo, Fukuoka 833-0041 Japan
| | - Naoyuki Ishikawa
- Western Region Agricultural Research Center, NARO, 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514, Japan
| | - Kanenori Takata
- Western Region Agricultural Research Center, NARO, 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514, Japan
| | - Chikako Kiribuchi-Otobe
- Faculty of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Crop Science, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Toshiki Nakamura
- Tohoku Agricultural Research Center, NARO, 4 Akahira, Shimo-kuriyagawa, Morioka, Iwate 020-0198, Japan
| |
Collapse
|
4
|
Sissons M, Sestili F, Lafiandra D. Effect of Glu-D1
introgression on dough- and pasta-making quality of durum wheat lines with different glutenin composition and amylose content. Cereal Chem 2019. [DOI: 10.1002/cche.10137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mike Sissons
- NSW Department of Primary Industries; Tamworth Agricultural Institute; Calala New South Wales Australia
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences; University of Tuscia; Viterbo Italy
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences; University of Tuscia; Viterbo Italy
| |
Collapse
|
5
|
Ohm J, Dykes L, Graybosch RA. Variation of protein molecular weight distribution parameters and their correlations with gluten and mixing characteristics for winter waxy wheat. Cereal Chem 2018. [DOI: 10.1002/cche.10124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jae‐Bom Ohm
- Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, Edward T. Schafer Agricultural Research Center USDA‐ARS Fargo North Dakota
| | - Linda Dykes
- Cereal Crops Research Unit, Hard Spring and Durum Wheat Quality Laboratory, Edward T. Schafer Agricultural Research Center USDA‐ARS Fargo North Dakota
| | | |
Collapse
|
6
|
Ma F, Ji T, Baik BK. Quality characteristics of northern-style Chinese steamed bread prepared from soft red winter wheat flours with waxy wheat flour substitution. J Cereal Sci 2017. [DOI: 10.1016/j.jcs.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Tandem MS Characterization of Endosperm Lipid Profile in Isogenic Waxy Wheat Versus Wildtype Parent Cultivars. J AM OIL CHEM SOC 2016. [DOI: 10.1007/s11746-016-2823-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Guzmán C, Alvarez JB. Wheat waxy proteins: polymorphism, molecular characterization and effects on starch properties. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1-16. [PMID: 26276148 DOI: 10.1007/s00122-015-2595-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/05/2015] [Indexed: 05/21/2023]
Abstract
The starch fraction, comprising about 70% of the total dry matter in the wheat grain, can greatly affect the end-use quality of products made from wheat kernels, especially Asian noodles. Starch is associated with the shelf life and nutritional value (glycaemic index) of different wheat products. Starch quality is closely associated with the ratio of amylose to amylopectin, the two main macromolecules forming starch. In this review, we briefly summarise the discovery of waxy proteins-shown to be the sole enzymes responsible for amylose synthesis in wheat. The review particularly focuses on the different variants of these proteins, together with their molecular characterisation and evaluation of their effects on starch composition. There have been 19 different waxy protein variants described using protein electrophoresis; and at a molecular level 19, 15 and seven alleles described for Wx-A1, Wx-B1 and Wx-D1, respectively. This large variability, found in modern wheat and genetic resources such as wheat ancestors and wild relatives, is in some cases not properly ordered. The proper ordering of all the data generated is the key to enhancing use in breeding programmes of the current variability described, and thus generating wheat with novel starch properties to satisfy the demand of industry and consumers for novel high-quality processed food.
Collapse
Affiliation(s)
- Carlos Guzmán
- CIMMYT. Global Wheat Program, Km 45 Carretera México-Veracruz, El Batán, C.P. 56237, Texcoco, Estado De México, Mexico.
| | - Juan B Alvarez
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba, 14071, Córdoba, Spain
| |
Collapse
|
9
|
Ramachandran A, Hucl P, Briggs C. Functional Characteristics of Bread Wheat (Triticum aestivum L.) Near-Isogenic Lines Differing at the Waxy (Wx) Locus. Cereal Chem 2016. [DOI: 10.1094/cchem-04-15-0085-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | - Pierre Hucl
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Connie Briggs
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
10
|
Gao X, Liu T, Yu J, Li L, Feng Y, Li X. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chem 2015; 197 Pt B:1184-90. [PMID: 26675856 DOI: 10.1016/j.foodchem.2015.11.085] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 10/28/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
Glutenin is one of the critical gluten proteins that affect the processing quality of wheat dough. High-molecular-weight glutenin subunits (HMW-GS) affect rheological behavior of wheat dough. This research demonstrated the effects of four variations of HMW-GS composition at the Glu-B1 locus on secondary and micro structures of gluten and rheological properties of wheat dough, using the bread wheat Xinong 1330 and its three near-isogenic lines (NILs). Results indicated that the Amide I bands of the four wheat lines shifted slightly, but the secondary structure, such as content of α-helices, β-sheets, disulfide bands, tryptophan bands and tyrosine bands, differed significantly among the four NILs. The micro structure of gluten in NIL 2 (Bx14+By15) and NIL 3 (Bx17+By18) showed more cross linkage, with two contrasting patterns. Correlation analysis demonstrated that the content of β-sheets and disulfide bonds has a significant relationship with dough stability, which suggests that the secondary structures could be used as predictors of wheat quality.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Tianhong Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Jing Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Yi Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.
| |
Collapse
|
11
|
|
12
|
Effect of wx genes on amylose content, physicochemical properties of wheat starch, and the suitability of waxy genotype for producing Chinese crisp sticks. J Cereal Sci 2013. [DOI: 10.1016/j.jcs.2013.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Kang CS, Jeung JU, Baik BK, Park CS. Effects of Allelic Variations inWx-1, Glu-D1, Glu-B3, andPinb-D1Loci on Flour Characteristics and White Salted Noodle-Making Quality of Wheat Flour. Cereal Chem 2012. [DOI: 10.1094/cchem-03-12-0034-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chon-Sik Kang
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Korea
| | - Ji-Ung Jeung
- National Institute of Crop Science, Rural Development Administration, Suwon 441-857, Korea
| | - Byung-Kee Baik
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164-6420
| | - Chul Soo Park
- Department of Crop Science and Biotechnology, Chonbuk National University, Jeon-ju 561-756, Korea
- Corresponding author. Phone: +82-63-270-2533. Fax: +82-63-270-2640. E-mail:
| |
Collapse
|
14
|
Beckles DM, Tananuwong K, Shoemaker CF. Starch characteristics of transgenic wheat (Triticum aestivum L.) overexpressing the Dx5 high molecular weight glutenin subunit are substantially equivalent to those in nonmodified wheat. J Food Sci 2012; 77:C437-42. [PMID: 22515236 DOI: 10.1111/j.1750-3841.2012.02648.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
UNLABELLED The effects of engineering higher levels of the High Molecular Weight Glutenin Dx5 subunit on starch characteristics in transgenic wheat (Triticum aestivum L.) grain were evaluated. This is important because of the interrelationship between starch and protein accumulation in grain, the strong biotechnological interest in modulating Dx5 levels and the increasing likelihood that transgenic wheat will be commercialized in the U.S. Unintended effects of Dx5 overexpression on starch could affect wheat marketability and therefore should be examined. Two controls with native levels of Dx5 were used: (i) the nontransformed Bobwhite cultivar, and (ii) a transgenic line (Bar-D) expressing a herbicide resistant (bar) gene, and they were compared with 2 transgenic lines (Dx5G and Dx5J) containing bar and additional copies of Dx5. There were few changes between Bar-D and Dx5G compared to Bobwhite. However, Dx5J, the line with the highest Dx5 protein (×3.5) accumulated 140% more hexose, 25% less starch and the starch had a higher frequency of longer amylopectin chains. These differences were not of sufficient magnitude to influence starch functionality, because granule morphology, crystallinity, amylose-to-amylopectin ratio, and the enthalpy of starch gelatinization and the amylose-lipid complex melting were similar to the control (P > 0.05). This overall similarity was borne out by Partial Least Squares-Discriminant Function Analysis, which could not distinguish among genotypes. Collectively our data imply that higher Dx5 can affect starch accumulation and some aspects of starch molecular structure but that the starches of the Dx5 transgenic wheat lines are substantially equivalent to the controls. PRACTICAL APPLICATION Transgenic manipulation of biochemical pathways is an effective way to enhance food sensory quality, but it can also lead to unintended effects. These spurious changes are a concern to Government Regulatory Agencies and to those Industries that market the product. In this study we examined if making "specific" changes to the composition of gluten proteins in wheat seeds would simultaneously alter starch, as their synthesis is interrelated and the molecular structure of both determine flour functionality. This information may be used to address issues of "substantial equivalence" and to inform Industrial End-Users of possible changes in product performance.
Collapse
Affiliation(s)
- Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA 95616, USA.
| | | | | |
Collapse
|
15
|
Jonnala RS, MacRitchie F, Herald TJ, Lafiandra D, Margiotta B, Tilley M. Protein and Quality Characterization of Triticale Translocation Lines in Breadmaking. Cereal Chem 2010. [DOI: 10.1094/cchem-02-10-0025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ramakanth S. Jonnala
- Kansas State University, Dept. of Grain Science and Industry, Manhattan, KS 66506
- Corresponding author. Phone: +01 (405)-880-2684. E-mail:
| | - Finlay MacRitchie
- Kansas State University, Dept. of Grain Science and Industry, Manhattan, KS 66506
| | - Thomas J. Herald
- USDA-ARS, Center for Grain & Animal Health Research, Manhattan, KS 66502. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| | - Domenico Lafiandra
- Dept. of Agrobiology and Agrochemistry, University of Tuscia, Viterbo, Italy
| | | | - Michael Tilley
- USDA-ARS, Center for Grain & Animal Health Research, Manhattan, KS 66502. Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by the USDA implies no approval of the product to the exclusion of others that may also be suitable
| |
Collapse
|