1
|
Tundo S, Mandalà G, Sella L, Favaron F, Bedre R, Kalunke RM. Xylanase Inhibitors: Defense Players in Plant Immunity with Implications in Agro-Industrial Processing. Int J Mol Sci 2022; 23:ijms232314994. [PMID: 36499321 PMCID: PMC9739030 DOI: 10.3390/ijms232314994] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Xylanase inhibitors (XIs) are plant cell wall proteins largely distributed in monocots that inhibit the hemicellulose degrading activity of microbial xylanases. XIs have been classified into three classes with different structures and inhibition specificities, namely Triticum aestivum xylanase inhibitors (TAXI), xylanase inhibitor proteins (XIP), and thaumatin-like xylanase inhibitors (TLXI). Their involvement in plant defense has been established by several reports. Additionally, these inhibitors have considerable economic relevance because they interfere with the activity of xylanases applied in several agro-industrial processes. Previous reviews highlighted the structural and biochemical properties of XIs and hypothesized their role in plant defense. Here, we aimed to update the information on the genomic organization of XI encoding genes, the inhibition properties of XIs against microbial xylanases, and the structural properties of xylanase-XI interaction. We also deepened the knowledge of XI regulation mechanisms in planta and their involvement in plant defense. Finally, we reported the recently studied strategies to reduce the negative impact of XIs in agro-industrial processes and mentioned their allergenicity potential.
Collapse
Affiliation(s)
- Silvio Tundo
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
- Correspondence:
| | - Giulia Mandalà
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | - Luca Sella
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Francesco Favaron
- Department of Land, Environment, Agriculture, and Forestry (TESAF), University of Padova, 35020 Legnaro, Italy
| | - Renesh Bedre
- Texas A&M AgriLife Research and Extension Center, Texas A&M University System, Weslaco, TX 78596, USA
| | - Raviraj M. Kalunke
- Donald Danforth Plant Science Center, 975 N Warson Rd, 7 Olivette, St. Louis, MO 63132, USA
| |
Collapse
|
2
|
Nishitsuji Y, Whitney K, Nakamura K, Hayakawa K, Simsek S. Analysis of molecular weight and structural changes in water-extractable arabinoxylans during the breadmaking process. Food Chem 2022; 386:132772. [PMID: 35344729 DOI: 10.1016/j.foodchem.2022.132772] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/24/2022] [Accepted: 03/21/2022] [Indexed: 11/26/2022]
Abstract
Arabinoxylans are important for dough and breadmaking properties. It is not clear how arabinoxylans of different molecular weights behave during the breadmaking process as well as the changes in individual structures. We investigated changes in the molecular weight and structure of water-extractable arabinoxylans. It was revealed that molecules larger than high molecular weight arabinoxylans were formed during the mixing and 1st fermentation (105 min before 1st punch). High molecular weight arabinoxylan continued to be degraded from mixing to the proofing stage. The arabinose to xylose ratio increased at mixing and the 1st fermentation due to solubilization of highly substituted arabinoxylan. Low molecular weight arabinoxylan did not show degradation and structural changes during the fermentation process, whereas the weight average molecular weight of low molecular weight arabinoxylan significantly decreased (P < 0.05) at mixing. Water extractable arabinoxylan shows different behaviors for molecular weight and structural changes during the breadmaking process.
Collapse
Affiliation(s)
- Yasuyuki Nishitsuji
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan.
| | - Kristin Whitney
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA
| | - Kenji Nakamura
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Katsuyuki Hayakawa
- Cereal Science Research Center of Tsukuba, Nisshin Flour Milling Inc, 13 Ohkubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Senay Simsek
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Wang P, Li D, Hou C, Yang T, Yang R, Gu Z, Jiang D. Tailormade Wheat Arabinoxylan Reveals the Role of Substitution in Regulating Gelatinization and Retrogradation Behavior of Wheat Starch. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1659-1669. [PMID: 35099184 DOI: 10.1021/acs.jafc.1c07722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
To elucidate the role of substitution of arabinoxylan (AX) in the characteristics of wheat starch, this study prepared AX with a well-defined structure by targeted enzymatic hydrolysis and comparatively investigated the effects of AX with different degrees of substitution on gelatinization and retrogradation behavior of starch. Removal of major arabinofuranosyl (Araf) of mono- or disubstituted xylopyranosyl (Xylp) of both low-molecular-weight (Mw: 62.5 kDa, Araf/Xylp: 0.61) and high-molecular-weight AX (Mw: 401.2 kDa, Araf/Xylp: 0.61) reversed the decreased gelatinization viscosity and recrystallization of amylose induced by AX to a similar extent. Upon retrogradation for 30 days, the Araf of mono- and disubstituted Xylp contributed to the water distribution and the effect depended on the molecular chain length. The C3-linked Araf of disubstituted Xylp was more involved in prohibiting the retardation of recrystallization of amylopectin, while the presence of Araf of monosubstituted Xylp might hinder the interactions between AX and amylopectin.
Collapse
Affiliation(s)
- Pei Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dandan Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Cuidan Hou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tao Yang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Runqiang Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zhenxin Gu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Dong Jiang
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology, Ecology and Management, Ministry of Agriculture/National Engineering and Technology Center for Information Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
4
|
Khalid KH, Ohm J, Simsek S. Influence of bread‐making method, genotype, and growing location on whole‐wheat bread quality in hard red spring wheat. Cereal Chem 2021. [DOI: 10.1002/cche.10509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Jae‐Bom Ohm
- USDA‐ARS Edward T. Schafer Agricultural Research Center Cereal Crops Research Unit Hard Red Spring and Durum Wheat Quality Laboratory North Dakota State University Fargo North Dakota USA
| | - Senay Simsek
- Department of Plant Science North Dakota State University Fargo North Dakota USA
- Department of Food Science Purdue University West Lafayette Indiana USA
| |
Collapse
|
5
|
Effect of Bran Pre-Treatment with Endoxylanase on the Characteristics of Intermediate Wheatgrass ( Thinopyrum intermedium) Bread. Foods 2021; 10:foods10071464. [PMID: 34202754 PMCID: PMC8303953 DOI: 10.3390/foods10071464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Previous work indicated that bran removal promotes network formation in breads prepared from intermediate wheatgrass (IWG) flour. However, refinement reduces yields as well as contents of nutritionally beneficial compounds such as fiber. This study evaluated xylanase pretreatment of IWG bran as a processing option to enhance the properties of bread made with half of the original bran content. Xylanase pretreatment did not affect stickiness but significantly reduced hardness and increased specific loaf volumes compared to negative (without xylanase) and positive controls (with xylanase but without pretreatment). However, the surface of breads with pretreated bran was uneven due to structural collapse during baking. Fewer but larger gas cells were present due to pretreatment. Addition of ascorbic acid modulated these effects, but did not prevent uneven surfaces. Accessible thiol concentrations were slightly but significantly increased by xylanase pretreatment, possibly due to a less compact crumb structure. Endogenous xylanases (apparent activity 0.46 and 5.81 XU/g in flour and bran, respectively) may have been activated during the pretreatment. Moreover, Triticum aestivum xylanase inhibitor activity was also detected (193 and 410 InU/g in flour and bran). Overall, xylanase pretreatment facilitates incorporation of IWG bran into breads, but more research is needed to improve bread appearance.
Collapse
|
6
|
Dai Y, Tyl C. A review on mechanistic aspects of individual versus combined uses of enzymes as clean label-friendly dough conditioners in breads. J Food Sci 2021; 86:1583-1598. [PMID: 33890293 DOI: 10.1111/1750-3841.15713] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/16/2021] [Accepted: 03/11/2021] [Indexed: 12/24/2022]
Abstract
Numerous dough improvers are used alone or in combination to enhance the quality of baked goods such as breads. While modern consumers demand consistent quality, the expectations for ingredients have changed over the past few years, and reformulations have taken place to provide "clean label" options. However, the effects and mechanisms of blended dough conditioners suitable for such baked products have not been systematically summarized. In this review, dough and bread properties as affected by different improver combinations are examined, with a focus on additive or synergistic interactions between enzymes or between enzymes and ascorbic acid. The combination of enzymes that hydrolyze starch and cell wall polysaccharides has been shown to reduce textural hardness in fresh and stored bakes goods such as breads. Enzymes that hydrolyze arabinoxylans, the main nonstarch polysaccharide in wheat, have synergistic effects with enzymes that result in cross-linking of wheat flour biopolymers. In some studies, the effects of bread improvers varied for wheat flours of different strength. Overall, bread products in which wheat is used in whole grain form or in a blend with other flours especially benefit from multiple improvers that target different flour constituents in doughs.
Collapse
Affiliation(s)
- Yaxi Dai
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| | - Catrin Tyl
- Department of Food Science and Technology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
7
|
Nishitsuji Y, Whitney K, Nakamura K, Hayakawa K, Simsek S. Changes in structure and solubility of wheat arabinoxylan during the breadmaking process. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Simsek S, Budak B, Schwebach CS, Ovando‐Martínez M. Historical vs. modern hard red spring wheat: Analysis of the chemical composition. Cereal Chem 2019. [DOI: 10.1002/cche.10198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Senay Simsek
- Department of Plant Sciences North Dakota State University Fargo ND USA
| | - Bilge Budak
- Department of Chemistry, School of Science Kocaeli University, Umuttepe Campus Kocaeli Turkey
| | | | - Maribel Ovando‐Martínez
- Department of Plant Sciences North Dakota State University Fargo ND USA
- Departamento de Investigaciones Científicas y Tecnológicas Universidad de Sonora Hermosillo Mexico
| |
Collapse
|
9
|
|
10
|
Park CS, Park I, Kim BG. Effects of an enzyme cocktail on digestible and metabolizable energy concentrations in barley, corn, and wheat fed to growing pigs. Livest Sci 2016. [DOI: 10.1016/j.livsci.2016.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Lindgren A, Simsek S. Evaluation of Hard Red Spring Wheat Mill Stream Fractions Using Solvent Retention Capacity Test. J FOOD PROCESS PRES 2016. [DOI: 10.1111/jfpp.12590] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Amber Lindgren
- Department of Plant Sciences; North Dakota State University; PO Box 6050, Department 7670 Fargo ND 58105
| | - Senay Simsek
- Department of Plant Sciences; North Dakota State University; PO Box 6050, Department 7670 Fargo ND 58105
| |
Collapse
|
12
|
Hammed AM, Ozsisli B, Ohm JB, Simsek S. Relationship Between Solvent Retention Capacity and Protein Molecular Weight Distribution, Quality Characteristics, and Breadmaking Functionality of Hard Red Spring Wheat Flour. Cereal Chem 2015. [DOI: 10.1094/cchem-12-14-0262-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Ademola Monsur Hammed
- North Dakota State University, Department of Plant Sciences, P.O. Box 6050, Department 7670, Fargo, ND 58105, U.S.A
| | - Bahri Ozsisli
- North Dakota State University, Department of Plant Sciences, P.O. Box 6050, Department 7670, Fargo, ND 58105, U.S.A
- Kahramanmaras Sutcu Imam University, Department of Food Engineering, Kahramanmaras, Turkey
| | - Jae-Bom Ohm
- USDA-ARS, Cereal Crops Research Unit, Hard Red Spring and Durum Wheat Quality Laboratory, Harris Hall, North Dakota State University, Fargo, ND 58108, U.S.A
| | - Senay Simsek
- North Dakota State University, Department of Plant Sciences, P.O. Box 6050, Department 7670, Fargo, ND 58105, U.S.A
| |
Collapse
|