1
|
Valent B. Dynamic Gene-for-Gene Interactions Undermine Durable Resistance. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:104-117. [PMID: 40272515 DOI: 10.1094/mpmi-02-25-0022-hh] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Harold Flor's gene-for-gene model explained boom-bust cycles in which resistance (R) genes are deployed in farmers' fields, only to have pathogens overcome resistance by modifying or losing corresponding active avirulence (AVR) genes. Flor understood that host R genes with corresponding low rates of virulence mutation in the pathogen should maintain resistance for longer periods of time. This review focuses on AVR gene dynamics of the haploid Ascomycete fungus Pyricularia oryzae, which causes rice blast disease, a gene-for-gene system with a complex race structure and a very rapid boom-bust cycle due to high rates of AVR gene mutation. Highly mutable blast AVR genes are often characterized by deletion and by movement to new chromosomal locations, implying a loss/regain mechanism in response to R gene deployment. Beyond rice blast, the recent emergence of two serious new blast diseases on wheat and Lolium ryegrasses highlighted the role of AVR genes that act at the host genus level and serve as infection barriers that separate host genus-specialized P. oryzae subpopulations. Wheat and ryegrass blast diseases apparently evolved through sexual crosses involving fungal individuals from five host-adapted subpopulations, with the host jump enabled by the introduction of virulence alleles of key host-specificity AVR genes. Despite identification of wheat AVR/R gene interactions operating at the host genus specificity level, the paucity of effective R genes identified thus far limits control of wheat blast disease. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Barbara Valent
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, U.S.A
| |
Collapse
|
2
|
Cazal-Martínez CC, Reyes-Caballero YM, Chávez AR, Pérez-Estigarribia PE, Kohli MM, Rojas A, Arrua AA, Moura-Mendes J, Souza-Perera R, Zúñiga Agilar JJ, Gluck-Thaler E, Lopez-Nicora H, Iehisa JCM. Pyricularia pennisetigena and Pyricularia oryzae isolates from Paraguay's wheat-growing regions and the impact on wheat. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100361. [PMID: 40104553 PMCID: PMC11919303 DOI: 10.1016/j.crmicr.2025.100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The Pyricularia genus includes species causing blast disease in monocots, posing significant challenges for disease management due to their ability to infect multiple hosts. This study aimed to identify the pathogenicity and species identity of Pyricularia isolates from 11 plant species in wheat-growing regions of Paraguay and assess their capacity to infect wheat. Twenty-four monosporic isolates were analyzed based on macroscopic and microscopic and phylogenetic characteristics. Three phylogenetic clades corresponding to P. oryzae, P. grisea, and P. pennisetigena were identified through five barcoding genes. For the first time, wheat blast was reported in San Pedro Department, and blast disease was observed in weeds in Cordillera and Central Departments. In greenhouse trials, P. oryzae isolates from wheat successfully infected both susceptible and resistant wheat cultivars, whereas isolates from non-wheat hosts did not elicit symptoms. Notably, P. pennisetigena isolates derived from Cenchrus echinatus were capable of infecting wheat spikes, producing typical blast symptoms, highlighting the potential for cross-species pathogen transmission. This finding suggests P. pennisetigena may pose an emerging threat to wheat in Paraguay, as its primary host is prevalent near wheat fields. These results highlight the critical importance of integrated disease management strategies, particularly the identification of inoculum sources, to mitigate cross-species pathogen transmission. This approach aligns with the One Health paradigm by addressing interconnected risks to plant health, food security, and environmental sustainability.
Collapse
Affiliation(s)
- Cinthia Carolina Cazal-Martínez
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Programa de Doctorado de Ingeniería Agraria, Alimentaria, Forestal y de Desarrollo Rural Sostenible. Universidad de Córdoba, Córdoba, España
- Departamento de Biotecnología. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Yessica Magaliz Reyes-Caballero
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
- Instituto Paraguayo de Tecnología Agraria, Centro de Investigaciones Capitán Miranda. Capitán Miranda, 6990, Paraguay
| | - Alice Rocio Chávez
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
| | | | - Man Mohan Kohli
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Departamento de Investigación, Cámara Paraguaya de exportadores y comercilzadores de cereales y oleaginosas, Asunción, 1207, Paraguay
| | - Alcides Rojas
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
| | - Andrea Alejandra Arrua
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Departamento de Biotecnología. Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Juliana Moura-Mendes
- Centro Multidisciplinario de Investigaciones Tecnológicas, Universidad Nacional de Asunción, San Lorenzo, 111421, Paraguay
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
| | - Ramón Souza-Perera
- Unidad de Bioquímica y Biología Molecular en Plantas, Centro de Investigación Científica de Yucatán, A.C., Yucatan, 97205, Mexico
| | - José Juan Zúñiga Agilar
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Universidad Tecnológica del Usumacinta, Tabasco, 86980, Mexico
| | - Emile Gluck-Thaler
- Laboratory of Evolutionary Genetics, University of Neuchâtel, Neuchâtel, 2000, Switzerland
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, USA
- Wisconsin Institute for Discovery, Madison, USA
| | - Horacio Lopez-Nicora
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Department of Plant Pathology, The Ohio State University, Columbus, USA
| | - Julio Cesar Masaru Iehisa
- Grupo de Investigación en Mejora Genética Vegetal para una Agricultura Sostenible, Paraguay
- Departamento de Biotecnología, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| |
Collapse
|
3
|
Asuke S, Horie A, Komatsu K, Mori R, Vy TTP, Inoue Y, Jiang Y, Tatematsu Y, Shimizu M, Tosa Y. Loss of PWT7, Located on a Supernumerary Chromosome, Is Associated with Parasitic Specialization of Pyricularia oryzae on Wheat. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:716-725. [PMID: 37432132 DOI: 10.1094/mpmi-06-23-0078-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Pyricularia oryzae, a blast fungus of gramineous plants, is composed of various host genus-specific pathotypes. The avirulence of an Avena isolate on wheat is conditioned by PWT3 and PWT4. We isolated the third avirulence gene from the Avena isolate and designated it as PWT7. PWT7 was effective as an avirulence gene only at the seedling stage or on leaves. PWT7 homologs were widely distributed in a subpopulation of the Eleusine pathotype and the Lolium pathotype but completely absent in the Triticum pathotype (the wheat blast fungus). The PWT7 homolog found in the Eleusine pathotype was one of the five genes involved in its avirulence on wheat. A comparative analysis of distribution of PWT7 and the other two genes previously identified in the Eleusine pathotype suggested that, in the course of parasitic specialization toward the wheat blast fungus, a common ancestor of the Eleusine, Lolium, Avena, and Triticum pathotypes first lost PWT6, secondly PWT7, and, finally, the function of PWT3. PWT7 or its homologs were located on core chromosomes in Setaria and Eleusine isolates but on supernumerary chromosomes in Lolium and Avena isolates. This is an example of interchromosomal translocations of effector genes between core and supernumerary chromosomes. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Akiko Horie
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kaori Komatsu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Ryota Mori
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Yushan Jiang
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuna Tatematsu
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, Iwate 024-0003, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
4
|
Le Naour—Vernet M, Charriat F, Gracy J, Cros-Arteil S, Ravel S, Veillet F, Meusnier I, Padilla A, Kroj T, Cesari S, Gladieux P. Adaptive evolution in virulence effectors of the rice blast fungus Pyricularia oryzae. PLoS Pathog 2023; 19:e1011294. [PMID: 37695773 PMCID: PMC10513199 DOI: 10.1371/journal.ppat.1011294] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/21/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023] Open
Abstract
Plant pathogens secrete proteins called effectors that target host cellular processes to promote disease. Recently, structural genomics has identified several families of fungal effectors that share a similar three-dimensional structure despite remarkably variable amino-acid sequences and surface properties. To explore the selective forces that underlie the sequence variability of structurally-analogous effectors, we focused on MAX effectors, a structural family of effectors that are major determinants of virulence in the rice blast fungus Pyricularia oryzae. Using structure-informed gene annotation, we identified 58 to 78 MAX effector genes per genome in a set of 120 isolates representing seven host-associated lineages. The expression of MAX effector genes was primarily restricted to the early biotrophic phase of infection and strongly influenced by the host plant. Pangenome analyses of MAX effectors demonstrated extensive presence/absence polymorphism and identified gene loss events possibly involved in host range adaptation. However, gene knock-in experiments did not reveal a strong effect on virulence phenotypes suggesting that other evolutionary mechanisms are the main drivers of MAX effector losses. MAX effectors displayed high levels of standing variation and high rates of non-synonymous substitutions, pointing to widespread positive selection shaping the molecular diversity of MAX effectors. The combination of these analyses with structural data revealed that positive selection acts mostly on residues located in particular structural elements and at specific positions. By providing a comprehensive catalog of amino acid polymorphism, and by identifying the structural determinants of the sequence diversity, our work will inform future studies aimed at elucidating the function and mode of action of MAX effectors.
Collapse
Affiliation(s)
- Marie Le Naour—Vernet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Florian Charriat
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Jérôme Gracy
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Sandrine Cros-Arteil
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sébastien Ravel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Florian Veillet
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Isabelle Meusnier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - André Padilla
- Centre de Biologie Structurale (CBS), Univ Montpellier, INSERM, CNRS, Montpellier, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Stella Cesari
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| |
Collapse
|
5
|
Masaki HI, de Villiers S, Qi P, Prado KA, Kaimenyi DK, Tesfaye K, Alemu T, Takan J, Dida M, Ringo J, Mbinda W, Khang CH, Devos KM. Host Specificity Controlled by PWL1 and PWL2 Effector Genes in the Finger Millet Blast Pathogen Magnaporthe oryzae in Eastern Africa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:584-591. [PMID: 37245238 DOI: 10.1094/mpmi-01-23-0012-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Magnaporthe oryzae, a devastating pathogen of finger millet (Eleusine coracana), secretes effector molecules during infection to manipulate host immunity. This study determined the presence of avirulence effector genes PWL1 and PWL2 in 221 Eleusine blast isolates from eastern Africa. Most Ethiopian isolates carried both PWL1 and PWL2. Kenyan and Ugandan isolates largely lacked both genes, and Tanzanian isolates carried either PWL1 or lacked both. The roles of PWL1 and PWL2 towards pathogenicity on alternative chloridoid hosts, including weeping lovegrass (Eragrostis curvula), were also investigated. PWL1 and PWL2 were cloned from Ethiopian isolate E22 and were transformed separately into Ugandan isolate U34, which lacked both genes. Resulting transformants harboring either gene gained varying degrees of avirulence on Eragrostis curvula but remained virulent on finger millet. Strains carrying one or both PWL1 and PWL2 infected the chloridoid species Sporobolus phyllotrichus and Eleusine tristachya, indicating the absence of cognate resistance (R) genes for PWL1 and PWL2 in these species. Other chloridoid grasses, however, were fully resistant, regardless of the presence of one or both PWL1 and PWL2, suggesting the presence of effective R genes against PWL and other effectors. Partial resistance in some Eragrostis curvula accessions to some blast isolates lacking PWL1 and PWL2 also indicated the presence of other interactions between fungal avirulence (AVR) genes and host resistance (R) genes. Related chloridoid species thus harbor resistance genes that could be useful to improve finger millet for blast resistance. Conversely, loss of AVR genes in the fungus could expand its host range, as demonstrated by the susceptibility of Eragrostis curvula to finger millet blast isolates that had lost PWL1 and PWL2. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Hosea Isanda Masaki
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Santie de Villiers
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Peng Qi
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| | - Kathryn A Prado
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Davies Kiambi Kaimenyi
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Kilifi, Kenya
| | - Kassahun Tesfaye
- Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute, Addis Ababa, Ethiopia
| | | | - John Takan
- National Semi-Arid Resources Research Institute Serere, Soroti, Uganda
| | | | - Justin Ringo
- Tanzania Agricultural Research Institute, Illonga, Tanzania
| | - Wilton Mbinda
- Pwani University, Department of Biochemistry and Biotechnology, Kilifi, Kenya
| | - Chang Hyun Khang
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
| | - Katrien M Devos
- University of Georgia, Department of Plant Biology, Athens, GA 30602, U.S.A
- Institute of Plant Breeding, Genetics and Genomics Department of Crop and Soil Sciences, University of Georgia, Athens, GA 30602, U.S.A
| |
Collapse
|
6
|
Thierry M, Charriat F, Milazzo J, Adreit H, Ravel S, Cros-Arteil S, borron S, Sella V, Kroj T, Ioos R, Fournier E, Tharreau D, Gladieux P. Maintenance of divergent lineages of the Rice Blast Fungus Pyricularia oryzae through niche separation, loss of sex and post-mating genetic incompatibilities. PLoS Pathog 2022; 18:e1010687. [PMID: 35877779 PMCID: PMC9352207 DOI: 10.1371/journal.ppat.1010687] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 08/04/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Many species of fungal plant pathogens coexist as multiple lineages on the same host, but the factors underlying the origin and maintenance of population structure remain largely unknown. The rice blast fungus Pyricularia oryzae is a widespread model plant pathogen displaying population subdivision. However, most studies of natural variation in P. oryzae have been limited in genomic or geographic resolution, and host adaptation is the only factor that has been investigated extensively as a contributor to population subdivision. In an effort to complement previous studies, we analyzed genetic and phenotypic diversity in isolates of the rice blast fungus covering a broad geographical range. Using single-nucleotide polymorphism genotyping data for 886 isolates sampled from 152 sites in 51 countries, we showed that population subdivision of P. oryzae in one recombining and three clonal lineages with broad distributions persisted with deeper sampling. We also extended previous findings by showing further population subdivision of the recombining lineage into one international and three Asian clusters, and by providing evidence that the three clonal lineages of P. oryzae were found in areas with different prevailing environmental conditions, indicating niche separation. Pathogenicity tests and bioinformatic analyses using an extended set of isolates and rice varieties indicated that partial specialization to rice subgroups contributed to niche separation between lineages, and differences in repertoires of putative virulence effectors were consistent with differences in host range. Experimental crosses revealed that female sterility and early post-mating genetic incompatibilities acted as strong additional barriers to gene flow between clonal lineages. Our results demonstrate that the spread of a fungal pathogen across heterogeneous habitats and divergent populations of a crop species can lead to niche separation and reproductive isolation between distinct, widely distributed, lineages.
Collapse
Affiliation(s)
- Maud Thierry
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
- ANSES Plant Health Laboratory, Mycology Unit, Malzéville, France
| | - Florian Charriat
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Joëlle Milazzo
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Henri Adreit
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Sébastien Ravel
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
| | - Sandrine Cros-Arteil
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Sonia borron
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Violaine Sella
- ANSES Plant Health Laboratory, Mycology Unit, Malzéville, France
| | - Thomas Kroj
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Renaud Ioos
- ANSES Plant Health Laboratory, Mycology Unit, Malzéville, France
| | - Elisabeth Fournier
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
| | - Didier Tharreau
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- CIRAD, UMR PHIM, Montpellier, France
- * E-mail: (DT); (PG)
| | - Pierre Gladieux
- PHIM Plant Health Institute, Univ Montpellier, INRAE, CIRAD, Institut Agro, IRD, Montpellier, France
- * E-mail: (DT); (PG)
| |
Collapse
|
7
|
Asuke S, Umehara Y, Inoue Y, Vy TTP, Iwakawa M, Matsuoka Y, Kato K, Tosa Y. Origin and Dynamics of Rwt6, a Wheat Gene for Resistance to Nonadapted Pathotypes of Pyricularia oryzae. PHYTOPATHOLOGY 2021; 111:2023-2029. [PMID: 34009007 DOI: 10.1094/phyto-02-21-0080-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Avirulence of Eleusine isolates of Pyricularia oryzae on common wheat is conditioned by at least five avirulence genes. One is PWT3 corresponding to resistance gene Rwt3 located on chromosome 1D. We identified a resistance gene corresponding to a second avirulence gene, PWT6, and named it Rmg9 (Rwt6). Rwt6 was closely linked to Rwt3. A survey of the population of Aegilops tauschii, the D genome donor to common wheat, revealed that some accessions from the southern coastal region of the Caspian Sea, the birthplace of common wheat, carried both genes. Rwt6 and Rwt3 carriers accounted for 65 and 80%, respectively, of accessions in a common wheat landrace collection. The most likely explanation of our results is that both resistance genes were simultaneously introduced into common wheat at the time of hybridization of Triticum turgidum and A. tauschii. However, a prominent difference was recognized in their geographical distributions in modern wheat; Rwt3 and Rwt6 co-occurred at high frequencies in regions to the east of the Caspian Sea, whereas Rwt6 occurred at a lower frequency than Rwt3 in regions to the west. This difference was considered to be associated with range of pathotypes to which these genes were effective. A. tauschii accessions carrying Rwt3 and Rwt6 also carried Rwt4, another resistance gene involved in the species specificity. We suggest that the gain of the D genome should have given an adaptive advantage to the genus Triticum by conferring disease resistance.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yuta Umehara
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshihiro Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Mizuki Iwakawa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yoshihiro Matsuoka
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Kenji Kato
- Graduate School of Environmental and Life Science, Okayama University, Okayama 700-8530, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
8
|
Shizhen W, Jiaoyu W, Zhen Z, Zhongna H, Xueming Z, Rongyao C, Haiping Q, Yanli W, Fucheng L, Guochang S. The Risk of Wheat Blast in Rice-Wheat Co-Planting Regions in China: MoO Strains of Pyricularia oryzae Cause Typical Symptom and Host Reaction on Both Wheat Leaves and Spikes. PHYTOPATHOLOGY 2021; 111:1393-1400. [PMID: 33471560 DOI: 10.1094/phyto-10-20-0470-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The Triticum pathotype of Magnaporthe oryzae (syn. Pyricularia oryzae) causes wheat blast, which has recently spread to Asia. To assess the potential risk of wheat blast in rice-wheat growing regions, we investigated the pathogenicity of 14 isolates of P. oryzae on 32 wheat cultivars, among which Oryzae pathotype of P. oryzae (MoO) isolates were completely avirulent on the wheat cultivars at 22°C but caused various degrees of infection 25°C. These reactions at 25°C were isolate and cultivar dependent, like race-cultivar specificity, which was also recognized at the heading stage and caused typical blast symptoms on spikes. Microscopic analyses indicated that a compatible MoO isolate produced appressoria and infection hyphae on wheat as on rice. When we compared transcriptomes in wheat-MoO interactions, the bulk of pathogen-related genes were upregulated or downregulated in compatible and incompatible patterns, but changes in gene transcription were more significant in a compatible pattern. These results indicate that temperature could influence the infection ratio of wheat with MoO, and some MoO strains could be potential pathogens that increase the risk of wheat blast outbreaks in wheat-rice growing regions with global warming. In addition, certain wheat cultivars exhibited resistance and are assumed to carry resistance-promoting genes to the MoO strains.
Collapse
Affiliation(s)
- Wang Shizhen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Jiaoyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhang Zhen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hao Zhongna
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhu Xueming
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Chai Rongyao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qiu Haiping
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wang Yanli
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lin Fucheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Sun Guochang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
9
|
Asuke S, Magculia NJ, Inoue Y, Vy TTP, Tosa Y. Correlation of Genomic Compartments with Contrastive Modes of Functional Losses of Host Specificity Determinants During Pathotype Differentiation in Pyricularia oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:680-690. [PMID: 33522841 DOI: 10.1094/mpmi-12-20-0339-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The specificity between pathotypes of Pyricularia oryzae and genera of gramineous plants is governed by gene-for-gene interactions. Here, we show that avirulence genes involved in this host specificity have undergone different modes of functional losses dependent on or affected by genomic compartments harboring them. The avirulence of an Eleusine pathotype on wheat is controlled by five genes, including PWT3, which played a key role in the evolution of the Triticum pathotype (the wheat blast fungus). We cloned another gene using an association of its presence or absence with pathotypes and designated it as PWT6. PWT6 was widely distributed in a lineage composed of Eleusine and Eragrostis isolates but was completely absent in a lineage composed of Lolium and Triticum isolates. On the other hand, PWT3 homologs were present in all isolates, and their loss of function in Triticum isolates was caused by insertions of transposable elements or nucleotide substitutions. Analyses of whole-genome sequences of representative isolates revealed that these two genes were located in different genomic compartments; PWT6 was located in a repeat-rich region, while PWT3 was located in a repeat-poor region. These results suggest that the course of differentiation of the pathotypes in P. oryzae appears to be illustrated as processes of functional losses of avirulence genes but that modes of the losses are affected by genomic compartments in which they reside.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Soichiro Asuke
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | | | - Yoshihiro Inoue
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Trinh Thi Phuong Vy
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| | - Yukio Tosa
- Graduate School of Agricultural Science, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
10
|
Ebbole DJ, Chen M, Zhong Z, Farmer N, Zheng W, Han Y, Lu G, Wang Z. Evolution and Regulation of a Large Effector Family of Pyricularia oryzae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:255-269. [PMID: 33211639 DOI: 10.1094/mpmi-07-20-0210-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Plant pathogen effectors play important roles in parasitism, including countering plant immunity. However, investigations of the emergence and diversification of fungal effectors across host-adapted populations has been limited. We previously identified a gene encoding a suppressor of plant cell death in Pyricularia oryzae (syn. Magnaporthe oryzae). Here, we report the gene is one of a 21-member gene family and we characterize sequence diversity in different populations. Within the rice pathogen population, nucleotide diversity is low, however; the majority of gene family members display presence-absence polymorphism or other null alleles. Gene family allelic diversity is greater between host-adapted populations and, thus, we named them host-adapted genes (HAGs). Multiple copies of HAGs were found in some genome assemblies and sequence divergence between the alleles in two cases suggested they were the result of repeat-induced point mutagenesis. Transfer of family members between populations and novel HAG haplotypes resulting from apparent recombination were observed. HAG family transcripts were induced in planta and a subset of HAGs are dependent on a key regulator of pathogenesis, PMK1. We also found differential intron splicing for some HAGs that would prevent ex planta protein expression. For some genes, spliced transcript was expressed in antiphase with an overlapping antisense transcript. Characterization of HAG expression patterns and allelic diversity reveal novel mechanisms for HAG regulation and mechanisms generating sequence diversity and novel allele combinations. This evidence of strong in planta-specific expression and selection operating on the HAG family is suggestive of a role in parasitism.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Daniel J Ebbole
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, U.S.A
| | - Meilian Chen
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, U.S.A
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhenhui Zhong
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Nicholas Farmer
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX, 77843, U.S.A
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Yijuan Han
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China
| | - Zonghua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fujian 350002, China
- Fujian Universities Key Laboratory of Plant-Microbe Interactions, College of Life Science, Fujian Agriculture and Forestry University, Fujian 350002, China
| |
Collapse
|
11
|
Pordel A, Ravel S, Charriat F, Gladieux P, Cros-Arteil S, Milazzo J, Adreit H, Javan-Nikkhah M, Mirzadi-Gohari A, Moumeni A, Tharreau D. Tracing the Origin and Evolutionary History of Pyricularia oryzae Infecting Maize and Barnyard Grass. PHYTOPATHOLOGY 2021; 111:128-136. [PMID: 33100147 DOI: 10.1094/phyto-09-20-0423-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Blast disease is a notorious fungal disease leading to dramatic yield losses on major food crops such as rice and wheat. The causal agent, Pyricularia oryzae, encompasses different lineages, each having a different host range. Host shifts are suspected to have occurred in this species from Setaria spp. to rice and from Lolium spp. to wheat. The emergence of blast disease on maize in Iran was observed for the first time in the north of the country in 2012. We later identified blast disease in two additional regions of Iran: Gilan in 2013 and Golestan in 2016. Epidemics on the weed barnyard grass (Echinochloa spp.) were also observed in the same maize fields. Here, we showed that P. oryzae is the causal agent of this disease on both hosts. Pathogenicity assays in the greenhouse revealed that strains from maize can infect barnyard grass and conversely. However, genotyping with simple sequence repeat markers and comparative genomics showed that strains causing field epidemics on maize and on barnyard grass are different, although they belong to the same previously undescribed clade of P. oryzae. Phylogenetic analyses including these strains and a maize strain collected in Gabon in 1985 revealed two independent host-range expansion events from barnyard grass to maize. Comparative genomics between maize and barnyard grass strains revealed the presence or absence of five candidate genes associated with host specificity on maize, with the deletion of a small genomic region possibly responsible for adaptation to maize. This recent emergence of P. oryzae on maize provides a case study to understand host range expansion. Epidemics on maize raise concerns about potential yield losses on this crop in Iran and potential geographic expansion of the disease.
Collapse
Affiliation(s)
- Adel Pordel
- Plant Protection Research Department, Baluchestan Agricultural and Natural Resources Research and Education Center, AREEO, Iranshahr, Iran
| | - Sebastien Ravel
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- South Green Bioinformatics Platform, Bioversity, CIRAD, INRAE, IRD, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Florian Charriat
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | - Pierre Gladieux
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
| | | | - Joelle Milazzo
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Henri Adreit
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Amir Mirzadi-Gohari
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Moumeni
- Rice Research Institute of Iran, Mazandaran Branch, Agricultural Research, Education and Extension Organization, Postal-Code46191-91951, Km 8 Babol Rd., Amol, Mazandaran, Iran
| | - Didier Tharreau
- BGPI, Univ Montpellier, CIRAD, INRAE, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR BGPI, F-34398 Montpellier, France
| |
Collapse
|
12
|
Chung H, Goh J, Han SS, Roh JH, Kim Y, Heu S, Shim HK, Jeong DG, Kang IJ, Yang JW. Comparative Pathogenicity and Host Ranges of Magnaporthe oryzae and Related Species. THE PLANT PATHOLOGY JOURNAL 2020; 36:305-313. [PMID: 32788889 PMCID: PMC7403518 DOI: 10.5423/ppj.ft.04.2020.0068] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/27/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Host shifting and host expansion of fungal plant pathogens increases the rate of emergence of new pathogens and the incidence of disease in various crops, which threaten global food security. Magnaporthe species cause serious disease in rice, namely rice blast disease, as well as in many alternative hosts, including wheat, barley, and millet. A severe outbreak of wheat blast due to Magnaporthe oryzae occurred recently in Bangladesh, after the fungus was introduced from South America, causing great loss of yield. This outbreak of wheat blast is of growing concern, because it might spread to adjacent wheat-producing areas. Therefore, it is important to understand the host range and population structure of M. oryzae and related species for determining the evolutionary relationships among Magnaporthe species and for managing blast disease in the field. Here, we collected isolates of M. oryzae and related species from various Poaceae species, including crops and weeds surrounding rice fields, in Korea and determined their phylogenetic relationships and host species specificity. Internal transcribed spacer-mediated phylogenetic analysis revealed that M. oryzae and related species are classified into four groups primarily including isolates from rice, crabgrass, millet and tall fescue. Based on pathogenicity assays, M. oryzae and related species can infect different Poaceae hosts and move among hosts, suggesting the potential for host shifting and host expansion in nature. These results provide important information on the diversification of M. oryzae and related species with a broad range of Poaceae as hosts in crop fields.
Collapse
Affiliation(s)
- Hyunjung Chung
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jaeduk Goh
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Seong-Sook Han
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jae-Hwan Roh
- Bioenergy Crop Research Institute, National Institute of Crop Science, Rural Development Administration, Muan 58545, Korea
| | - Yangseon Kim
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup 56212, Korea
| | - Sunggi Heu
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Hyeong-Kwon Shim
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Da Gyeong Jeong
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - In Jeong Kang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| | - Jung-Wook Yang
- Crop Cultivation and Environment Research Division, National Institute of Crop Science, Rural Development Administration, Suwon 16613, Korea
| |
Collapse
|