1
|
Wu X, Chen Q, Liu H, Gu W, Deng Y, Zhang L, Liang Z. A Lrp/AsnC Family Transcriptional Regulator Lrp Is Essential for the Pathogenicity of Dickeya oryzae. MOLECULAR PLANT PATHOLOGY 2025; 26:e70100. [PMID: 40483543 PMCID: PMC12145271 DOI: 10.1111/mpp.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/23/2025] [Accepted: 05/14/2025] [Indexed: 06/11/2025]
Abstract
Dickeya oryzae causes severe soft rot diseases in a range of important crops. To understand its complicated pathogenic mechanisms, we tried to identify the key virulence regulators through transposon mutagenesis. This led to the identification of a member of the Lrp/AsnC family transcriptional regulators in D. oryzae EC1, designated as Lrp. Phenotype analyses showed that Lrp positively regulated biofilm formation and the production of zeamines, proteases and polygalacturonases, but negatively regulated bacterial swimming motility. Deletion of lrp caused a drastic attenuation in bacterial virulence, indicating that Lrp is a key regulator in the modulation of D. oryzae pathogenicity. We further showed that the transcription of the lrp gene was negatively regulated by the transcriptional regulators SlyA, Fis and OhrR, and the transcriptional expression of tzpA, ohrR and fis was positively modulated by Lrp. Moreover, we demonstrated that Lrp can directly bind to the promoter regions of zmsA, zmsK, prtG, prtX, pehK, pehX, fis, tzpA and ohrR. DNase I footprinting assay determined that Lrp was capable of binding to a specific site (5'-GTGTAATTATGGGCGTGCTCCGGG-3') in the promoter of zmsA. Furthermore, we found that four amino acid residues of Lrp, L20, L23, G111 and T146, are essential to the biological function of Lrp. Overall, this study demonstrated that Lrp is an essential virulence modulator in D. oryzae and suggested that Lrp can be a potent target for controlling the soft rot diseases caused by D. oryzae.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Qunyi Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Huidi Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Weihan Gu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
2
|
Shi Z, Liang Z, Yang Q, Zhang LH, Wang Q. Alarmone ppGpp modulates bacterial motility, zeamine production, and virulence of Dickeya oryzae through the regulation of and cooperation with the putrescine signaling mechanism. mSphere 2025; 10:e0068224. [PMID: 40111050 PMCID: PMC12039241 DOI: 10.1128/msphere.00682-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/26/2024] [Indexed: 03/22/2025] Open
Abstract
Putrescine is an important interspecies and interkingdom communication signal, modulating the bacterial motility, biofilm formation, and virulence of D. oryzae. The understanding of the regulation of putrescine biosynthesis and transport in D. oryzae is limited. In this study, we report that alarmone ppGpp hierarchically modulates putrescine biosynthesis and transport and synergistically cooperates with putrescine to regulate virulence traits and the virulence of D. oryzae. We found that the alarmone ppGpp synthesized by RelA regulated putrescine biosynthesis through modulating speA expression, and the product putrescine would thus inhibit the expression of potF and plaP. Remarkably, we unveiled the synergistic effect of alarmone ppGpp and putrescine on the modulation of swimming motility and zeamine production. Compared with the single deletion of either relA or speA, the double deletion of relA and speA could decrease the expression of RNA chaperone encoded gene hfq and the production of phytotoxin zeamine, which further attenuated the capability of D. oryzae EC1 in inhibition of rice seed germination. Collectively, the findings from this study depict alarmone ppGpp regulation on putrescine biosynthesis and transport and present the cooperation of regulation of alarmone ppGpp and putrescine in the virulence of D. oryzae.IMPORTANCEDickeya oryzae is the causal agent of rice root rot disease. Bacterial motility and phytotoxic zeamines are characterized as two major virulent factors during D. oryzea infecting rice seed. Putrescine, as an interspecies and interkingdom communication signal for the infections of D. oryzae, has been previously demonstrated to be involved in the modulation of bacterial motility. Here we report the novel synergistic effect of putrescine signal and alarmone ppGpp on the regulation of both zeamine production and bacterial motility via modulating the expression of RNA chaperone-encoded gene hfq. In addition, we also showed that alarmone ppGpp hierarchically modulates putrescine biosynthesis and transport. Therefore, the findings of this study unveil the previously undetermined contribution of putrescine in the modulation of virulence determinants, and the regulatory mechanism of putrescine biosynthesis and transport in D. oryzae.
Collapse
Affiliation(s)
- Zurong Shi
- School of Biological Engineering, HuaiNan Normal University, Huainan, China
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qian Yang
- School of Biological Engineering, HuaiNan Normal University, Huainan, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Qingwei Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
3
|
Zhou J, Hu M, Zhang L. Dickeya Diversity and Pathogenic Mechanisms. Annu Rev Microbiol 2024; 78:621-642. [PMID: 39565948 DOI: 10.1146/annurev-micro-041222-012242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The Dickeya genus comprises numerous pathogenic species that cause diseases in various crops, vegetables, and ornamental plants across the globe. The pathogens have become very widespread in recent years, and numerous newly identified Dickeya-associated plant diseases have been reported, which poses an immense threat to agricultural production and is a serious concern internationally. Evidence is accumulating that a diversity of hosts, environmental habitats, and climates seems to shape the abundance of Dickeya species in nature and the differentiation of pathogenic mechanisms. This review summarizes the latest findings on the genome diversity and pathogenic mechanisms of Dickeya spp., with a focus on the intricate virulence regulatory mechanisms mediated by quorum sensing and pathogen-host interkingdom communication systems.
Collapse
Affiliation(s)
- Jianuan Zhou
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Ming Hu
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Lianhui Zhang
- National Key Laboratory of Green Pesticide; Guangdong Laboratory for Lingnan Modern Agriculture; Guangdong Province Key Laboratory of Microbial Signals and Disease Control; Engineering Research Center of Biological Control, Ministry of Education; Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
4
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Xie C, Gu W, Chen Z, Liang Z, Huang S, Zhang LH, Chen S. Polyamine signaling communications play a key role in regulating the pathogenicity of Dickeya fangzhongdai. Microbiol Spectr 2023; 11:e0196523. [PMID: 37874149 PMCID: PMC10715095 DOI: 10.1128/spectrum.01965-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023] Open
Abstract
IMPORTANCE Dickeya fangzhongdai is a newly identified plant bacterial pathogen with a wide host range. A clear understanding of the cell-to-cell communication systems that modulate the bacterial virulence is of key importance for elucidating its pathogenic mechanisms and for disease control. In this study, we present evidence that putrescine molecules from the pathogen and host plants play an essential role in regulating the bacterial virulence. The significance of this study is in (i) demonstrating that putrescine signaling system regulates D. fangzhongdai virulence mainly through modulating the bacterial motility and production of PCWD enzymes, (ii) outlining the signaling and regulatory mechanisms with which putrescine signaling system modulates the above virulence traits, and (iii) validating that D. fangzhongdai could use both arginine and ornithine pathways to synthesize putrescine signals. To our knowledge, this is the first report to show that putrescine signaling system plays a key role in modulating the pathogenicity of D. fangzhongdai.
Collapse
Affiliation(s)
- Congcong Xie
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Weihan Gu
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhongqiao Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Zhibin Liang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Shufen Huang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| | - Lian-Hui Zhang
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- National Key Laboratory of Green Pesticide, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University Integrative Microbiology Research Centre, Guangzhou, China
| |
Collapse
|
6
|
Liang Z, Huang L, Liu H, Zheng Y, Feng J, Shi Z, Chen Y, Lv M, Zhou J, Zhang L, Chen S. Characterization of the Arn lipopolysaccharide modification system essential for zeamine resistance unveils its new roles in Dickeya oryzae physiology and virulence. MOLECULAR PLANT PATHOLOGY 2023; 24:1480-1494. [PMID: 37740253 PMCID: PMC10632790 DOI: 10.1111/mpp.13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/14/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023]
Abstract
The zeamines produced by Dickeya oryzae are potent polyamine antibiotics and phytotoxins that are essential for bacterial virulence. We recently showed that the RND efflux pump DesABC in D. oryzae confers partial resistance to zeamines. To fully elucidate the bacterial self-protection mechanisms, in this study we used transposon mutagenesis to identify the genes encoding proteins involved in zeamine resistance in D. oryzae EC1. This led to the identification of a seven-gene operon, arnEC1 , that encodes enzyme homologues associated with lipopolysaccharide modification. Deletion of the arnEC1 genes in strain EC1 compromised its zeamine resistance 8- to 16-fold. Further deletion of the des gene in the arnEC1 mutant background reduced zeamine resistance to a level similar to that of the zeamine-sensitive Escherichia coli DH5α. Intriguingly, the arnEC1 mutants showed varied bacterial virulence on rice, potato, and Chinese cabbage. Further analyses demonstrated that ArnBCATEC1 are involved in maintenance of the bacterial nonmucoid morphotype by repressing the expression of capsular polysaccharide genes and that ArnBEC1 is a bacterial virulence determinant, influencing transcriptional expression of over 650 genes and playing a key role in modulating bacterial motility and virulence. Taken together, these findings decipher a novel zeamine resistance mechanism in D. oryzae and document new roles of the Arn enzymes in modulation of bacterial physiology and virulence.
Collapse
Affiliation(s)
- Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Luhao Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Huidi Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ying Zheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Jiani Feng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
| | - Zurong Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- School of Biological EngineeringHuainan Normal UniversityHuainanChina
| | - Yufan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Research Center of Chinese Herbal Resource Science and EngineeringGuangzhou University of Chinese MedicineGuangzhouChina
| | - Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- College of Plant ProtectionFujian Agriculture and Forestry UniversityFuzhouChina
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Shaohua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
7
|
Zhou J, Ma H, Zhang L. Mechanisms of Virulence Reprogramming in Bacterial Pathogens. Annu Rev Microbiol 2023; 77:561-581. [PMID: 37406345 DOI: 10.1146/annurev-micro-032521-025954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Bacteria are single-celled organisms that carry a comparatively small set of genetic information, typically consisting of a few thousand genes that can be selectively activated or repressed in an energy-efficient manner and transcribed to encode various biological functions in accordance with environmental changes. Research over the last few decades has uncovered various ingenious molecular mechanisms that allow bacterial pathogens to sense and respond to different environmental cues or signals to activate or suppress the expression of specific genes in order to suppress host defenses and establish infections. In the setting of infection, pathogenic bacteria have evolved various intelligent mechanisms to reprogram their virulence to adapt to environmental changes and maintain a dominant advantage over host and microbial competitors in new niches. This review summarizes the bacterial virulence programming mechanisms that enable pathogens to switch from acute to chronic infection, from local to systemic infection, and from infection to colonization. It also discusses the implications of these findings for the development of new strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Hongmei Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China;
| |
Collapse
|
8
|
Hugouvieux-Cotte-Pattat N, Pédron J, Van Gijsegem F. Insight into biodiversity of the recently rearranged genus Dickeya. FRONTIERS IN PLANT SCIENCE 2023; 14:1168480. [PMID: 37409305 PMCID: PMC10319131 DOI: 10.3389/fpls.2023.1168480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/22/2023] [Indexed: 07/07/2023]
Abstract
The genus Dickeya includes plant pathogenic bacteria attacking a wide range of crops and ornamentals as well as a few environmental isolates from water. Defined on the basis of six species in 2005, this genus now includes 12 recognized species. Despite the description of several new species in recent years, the diversity of the genus Dickeya is not yet fully explored. Many strains have been analyzed for species causing diseases on economically important crops, such as for the potato pathogens D. dianthicola and D. solani. In contrast, only a few strains have been characterized for species of environmental origin or isolated from plants in understudied countries. To gain insights in the Dickeya diversity, recent extensive analyzes were performed on environmental isolates and poorly characterized strains from old collections. Phylogenetic and phenotypic analyzes led to the reclassification of D. paradisiaca (containing strains from tropical or subtropical regions) in the new genus, Musicola, the identification of three water species D. aquatica, D. lacustris and D. undicola, the description of a new species D. poaceaphila including Australian strains isolated from grasses, and the characterization of the new species D. oryzae and D. parazeae, resulting from the subdivision of the species D. zeae. Traits distinguishing each new species were identified from genomic and phenotypic comparisons. The high heterogeneity observed in some species, notably for D. zeae, indicates that additional species still need to be defined. The objective of this study was to clarify the present taxonomy of the genus Dickeya and to reassign the correct species to several Dickeya strains isolated before the current classification.
Collapse
Affiliation(s)
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences, Sorbonne University, CNRS, INRAE, Paris, France
| |
Collapse
|
9
|
Robic K, Munier E, Effantin G, Lachat J, Naquin D, Gueguen E, Faure D. Dissimilar gene repertoires of Dickeya solani involved in the colonization of lesions and roots of Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2023; 14:1154110. [PMID: 37223796 PMCID: PMC10202176 DOI: 10.3389/fpls.2023.1154110] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/12/2023] [Indexed: 05/25/2023]
Abstract
Dickeya and Pectobacterium species are necrotrophic pathogens that macerate stems (blackleg disease) and tubers (soft rot disease) of Solanum tuberosum. They proliferate by exploiting plant cell remains. They also colonize roots, even if no symptoms are observed. The genes involved in pre-symptomatic root colonization are poorly understood. Here, transposon-sequencing (Tn-seq) analysis of Dickeya solani living in macerated tissues revealed 126 genes important for competitive colonization of tuber lesions and 207 for stem lesions, including 96 genes common to both conditions. Common genes included acr genes involved in the detoxification of plant defense phytoalexins and kduD, kduI, eda (=kdgA), gudD, garK, garL, and garR genes involved in the assimilation of pectin and galactarate. In root colonization, Tn-seq highlighted 83 genes, all different from those in stem and tuber lesion conditions. They encode the exploitation of organic and mineral nutrients (dpp, ddp, dctA, and pst) including glucuronate (kdgK and yeiQ) and synthesis of metabolites: cellulose (celY and bcs), aryl polyene (ape), and oocydin (ooc). We constructed in-frame deletion mutants of bcsA, ddpA, apeH, and pstA genes. All mutants were virulent in stem infection assays, but they were impaired in the competitive colonization of roots. In addition, the ΔpstA mutant was impaired in its capacity to colonize progeny tubers. Overall, this work distinguished two metabolic networks supporting either an oligotrophic lifestyle on roots or a copiotrophic lifestyle in lesions. This work revealed novel traits and pathways important for understanding how the D. solani pathogen efficiently survives on roots, persists in the environment, and colonizes progeny tubers.
Collapse
Affiliation(s)
- Kévin Robic
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Euphrasie Munier
- French Federation of Seed Potato Growers (FN3PT/inov3PT), Paris, France
| | - Géraldine Effantin
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Joy Lachat
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Erwan Gueguen
- Univ Lyon, Université Claude Bernard Lyon1, CNRS, INSA Lyon, UMR5240 MAP, Lyon, France
| | - Denis Faure
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
10
|
Liang Z, Lin Q, Wang Q, Huang L, Liu H, Shi Z, Cui Z, Zhou X, Gao YG, Zhou J, Zhang LH, Deng Y. Gram-negative bacteria resist antimicrobial agents by a DzrR-mediated envelope stress response. BMC Biol 2023; 21:62. [PMID: 36978084 PMCID: PMC10052836 DOI: 10.1186/s12915-023-01565-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Envelope stress responses (ESRs) are critical for adaptive resistance of Gram-negative bacteria to envelope-targeting antimicrobial agents. However, ESRs are poorly defined in a large number of well-known plant and human pathogens. Dickeya oryzae can withstand a high level of self-produced envelope-targeting antimicrobial agents zeamines through a zeamine-stimulated RND efflux pump DesABC. Here, we unraveled the mechanism of D. oryzae response to zeamines and determined the distribution and function of this novel ESR in a variety of important plant and human pathogens. RESULTS In this study, we documented that a two-component system regulator DzrR of D. oryzae EC1 mediates ESR in the presence of envelope-targeting antimicrobial agents. DzrR was found modulating bacterial response and resistance to zeamines through inducing the expression of RND efflux pump DesABC, which is likely independent on DzrR phosphorylation. In addition, DzrR could also mediate bacterial responses to structurally divergent envelope-targeting antimicrobial agents, including chlorhexidine and chlorpromazine. Significantly, the DzrR-mediated response was independent on the five canonical ESRs. We further presented evidence that the DzrR-mediated response is conserved in the bacterial species of Dickeya, Ralstonia, and Burkholderia, showing that a distantly located DzrR homolog is the previously undetermined regulator of RND-8 efflux pump for chlorhexidine resistance in B. cenocepacia. CONCLUSIONS Taken together, the findings from this study depict a new widely distributed Gram-negative ESR mechanism and present a valid target and useful clues to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qiqi Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Qingwei Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Luhao Huang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Huidi Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zurong Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- School of Biological Engineering, HuaiNan Normal University, Huainan, 232038, China
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yong-Gui Gao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Yizhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Comparative Pathogenomic Analysis of Two Banana Pathogenic Dickeya Strains Isolated from China and the Philippines. Int J Mol Sci 2022; 23:ijms232112758. [DOI: 10.3390/ijms232112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Dickeya is a major and typical member of soft rot Pectobacteriaceae (SRP) with a wide range of plant hosts worldwide. Previous studies have identified D. zeae as the causal agent of banana soft rot disease in China. In 2017, we obtained banana soft rot pathogen strain FZ06 from the Philippines. Genome sequencing and analysis indicated that FZ06 can be classified as D. dadantii and represents a novel subspecies of D. dadantii, which we propose to name as subsp. paradisiaca. Compared with Chinese banana soft rot pathogenic strain D. zeae MS2, strain FZ06 has a similar host range but different virulence; FZ06 is significantly less virulent to banana and potato but more virulent to Chinese cabbage and onion. Characterization of virulence factors revealed obviously less production of pectate lyases (Pels), polygalacturonases (Pehs), proteases (Prts), and extrapolysaccharides (EPSs), as well as lower swimming and swarming motility and biofilm formation in strain FZ06. Genomic comparison of the two strains revealed five extra gene clusters in FZ06, including one Stt-type T2SS, three T4SSs, and one T4P. Expression of cell wall degrading enzyme (CWDE)-encoding genes is significantly lower in FZ06 than in MS2.
Collapse
|
12
|
Lv M, Ye S, Hu M, Xue Y, Liang Z, Zhou X, Zhang L, Zhou J. Two-component system ArcBA modulates cell motility and biofilm formation in Dickeya oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:1033192. [PMID: 36340374 PMCID: PMC9634086 DOI: 10.3389/fpls.2022.1033192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Phytopathogen Dickeya oryzae is a causal agent of rice foot rot disease and the pathogen has an array of virulence factors, such as phytotoxin zeamines, plant cell wall degrading enzymes, cell motility, and biofilms, collectively contributing to the bacterial pathogenesis. In this study, through deletion analysis of predicted regulatory genes in D. oryzae EC1, we identified a two-component system associated with the regulation of bacterial virulence. The two-component system contains a histidine kinase ArcB and a response regulator ArcA, and deletion of their coding genes resulted in changed phenotypes in cell motility, biofilm formation, and bacterial virulence. Electrophoretic mobility shift assay revealed that ArcA bound to the promoters of the bcs operon and bssS, which respectively encode enzymes for the synthesis of celluloses and a biofilm formation regulatory protein. ArcA could also bind to the promoters of three virulence associated transcriptional regulatory genes, i.e., fis, slyA and ohrR. Surprisingly, although these three regulators were shown to modulate the production of cell wall degrading enzymes and zeamines, deletion of arcB and arcA did not seem to affect these phenotypes. Taken together, the findings from this study unveiled a new two-component system associated with the bacterial pathogenesis, which contributes to the virulence of D. oryzae mainly through its action on bacterial motility and biofilm formation.
Collapse
Affiliation(s)
- Mingfa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Sixuan Ye
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Ming Hu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Lianhui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, Guangdong Province, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
13
|
Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol 2022; 106:4387-4399. [PMID: 35723692 DOI: 10.1007/s00253-022-12023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.
Collapse
|
14
|
Chen Y, Lv M, Liang Z, Liu Z, Zhou J, Zhang L. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors. MOLECULAR PLANT PATHOLOGY 2022; 23:870-884. [PMID: 35254732 PMCID: PMC9104268 DOI: 10.1111/mpp.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice-growing countries. We showed recently that the universal bacterial second messenger c-di-GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c-di-GMP receptor domain, known as the PilZ-domain. By deleting all the genes encoding c-di-GMP-degrading enzymes in D. oryzae EC1, the resultant mutant 7ΔPDE with high c-di-GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild-type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c-di-GMP, which together play a critical role in regulating the c-di-GMP-associated functionality. The findings from this study fill a gap in our understanding of how c-di-GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
15
|
Shi Z, Wang Q, Wang S, Wang C, Zhang LH, Liang Z. Hfq Is a Critical Modulator of Pathogenicity of Dickeya oryzae in Rice Seeds and Potato Tubers. Microorganisms 2022; 10:microorganisms10051031. [PMID: 35630473 PMCID: PMC9144144 DOI: 10.3390/microorganisms10051031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/05/2023] Open
Abstract
The frequent outbreaks of soft-rot diseases caused by Dickeya oryzae have emerged as severe problems in plant production in recent years and urgently require the elucidation of the virulence mechanisms of D. oryzae. Here, we report that Hfq, a conserved RNA chaperone protein in bacteria, is involved in modulating a series of virulence-related traits and bacterial virulence in D. oryzae EC1. The findings show that the null mutation of the hfqEC1 gene totally abolished the production of zeamine phytotoxins and protease, significantly attenuated the production of two other types of cell wall degrading enzymes, i.e., pectate lyase and cellulase, as well as attenuating swarming motility, biofilm formation, the development of hypersensitive response to Nicotiana benthamiana, and bacterial infections in rice seeds and potato tubers. QRT-PCR analysis and promoter reporter assay further indicated that HfqEC1 regulates zeamine production via modulating the expression of the key zeamine biosynthesis (zms) cluster genes. Taken together, these findings highlight that the Hfq of D. oryzae is one of the key regulators in modulating the production of virulence determinants and bacterial virulence in rice seeds and potato tubers.
Collapse
Affiliation(s)
- Zurong Shi
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qingwei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
| | - Shunchang Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
| | - Chengrun Wang
- School of Biological Engineering, Huainan Normal University, Huainan 232038, China; (S.W.); (C.W.)
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- Correspondence: (L.-H.Z.); (Z.L.)
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (Z.S.); (Q.W.)
- Correspondence: (L.-H.Z.); (Z.L.)
| |
Collapse
|
16
|
Chen Y, Li Y, Zhu M, Lv M, Liu Z, Chen Z, Huang Y, Gu W, Liang Z, Chang C, Zhou J, Zhang LH, Liu Q. The GacA-GacS Type Two-Component System Modulates the Pathogenicity of Dickeya oryzae EC1 Mainly by Regulating the Production of Zeamines. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:369-379. [PMID: 35100009 DOI: 10.1094/mpmi-11-21-0292-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The GacS-GacA type two-component system (TCS) positively regulates pathogenicity-related phenotypes in many plant pathogens. In addition, Dickeya oryzae EC1, the causative agent of soft rot disease, produces antibiotic-like toxins called zeamines as one of the major virulence factors that inhibit the germination of rice seeds. The present study identified a GacS-GacA type TCS, named TzpS-TzpA, that positively controls the virulence of EC1, mainly by regulating production of the toxin zeamines. RNA-seq analysis of strain EC1 and its tzpA mutant showed that the TCS regulated a wide range of virulence genes, especially those encoding zeamines. Protein-protein interaction was detected between TzpS and TzpA through the bacterial two-hybrid system and pull-down assay. In trans expression of tzpA failed to rescue the defective phenotypes in both the ΔtzpS and ΔtzpSΔtzpA mutants. Furthermore, TzpA controls target gene expression by direct binding to DNA promoters that contain a Gac-box motif, including a regulatory RNA rsmB and the vfm quorum-sensing system regulator vfmE. These findings therefore suggested that the EC1 TzpS-TzpA TCS system mediates the pathogenicity of Dickeya oryzae EC1 mainly by regulating the production of zeamines.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Yanchang Li
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Minya Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhongqiao Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Ying Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihan Gu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Changqing Chang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Lian-Hui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Integrative Microbiology Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Hu A, Hu M, Chen S, Xue Y, Tan X, Zhou J. Five Plant Natural Products Are Potential Type III Secretion System Inhibitors to Effectively Control Soft-Rot Disease Caused by Dickeya. Front Microbiol 2022; 13:839025. [PMID: 35273588 PMCID: PMC8901885 DOI: 10.3389/fmicb.2022.839025] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/01/2022] [Indexed: 11/23/2022] Open
Abstract
Dickeya zeae, a plant soft-rot pathogen, possesses a type III secretion system (T3SS) as one of the major virulence factors, infecting a wide variety of monocotyledonous and dicotyledonous plants and causing serious losses to the production of economic crops. In order to alleviate the problem of pesticide resistance during bacterial disease treatment, compounds targeting at T3SS have been screened using a hrpA-gfp bioreporter. After screening by Multifunctional Microplate Reader and determining by flow cytometer, five compounds including salicylic acid (SA), p-hydroxybenzoic acid (PHBA), cinnamyl alcohol (CA), p-coumaric acid (PCA), and hydrocinnamic acid (HA) significantly inhibiting hrpA promoter activity without affecting bacterial growth have been screened out. All the five compounds reduced hypersensitive response (HR) on non-host tobacco leaves and downregulated the expression of T3SS, especially the master regulator encoding gene hrpL. Inhibition efficacy of the five compounds against soft rot were also evaluated and results confirmed that the above compounds significantly lessened the soft-rot symptoms caused by Dickeya dadantii 3937 on potato, Dickeya fangzhongdai CL3 on taro, Dickeya oryzae EC1 on rice, and D. zeae MS2 on banana seedlings. Findings in this study provide potential biocontrol agents for prevention of soft-rot disease caused by Dickeya spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Liu F, Hu M, Zhang Z, Xue Y, Chen S, Hu A, Zhang LH, Zhou J. Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors. FRONTIERS IN PLANT SCIENCE 2022; 13:838125. [PMID: 35211146 PMCID: PMC8860905 DOI: 10.3389/fpls.2022.838125] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 06/12/2023]
Abstract
Soft rot Pectobacteriaceae (SRP), typical of Pectobacterium and Dickeya, are a class of Gram-negative bacterial pathogens that cause devastating diseases on a wide range of crops and ornamental plants worldwide. Quorum sensing (QS) is a cell-cell communication mechanism regulating the expression of specific genes by releasing QS signal molecules associated with cell density, in most cases, involving in the vital process of virulence and infection. In recent years, several types of QS systems have been uncovered in Dickeya pathogens to control diverse biological behaviors, especially bacterial pathogenicity and transkingdom interactions. This review depicts an integral QS regulation network of Dickeya, elaborates in detail the regulation of specific QS system on different biological functions of the pathogens and hosts, aiming at providing a systematic overview of Dickeya pathogenicity and interactions with hosts, and, finally, expects the future prospective of effectively controlling the bacterial soft rot disease caused by Dickeya by quenching the key QS signal.
Collapse
|
19
|
Genomic and Functional Dissections of Dickeya zeae Shed Light on the Role of Type III Secretion System and Cell Wall-Degrading Enzymes to Host Range and Virulence. Microbiol Spectr 2022; 10:e0159021. [PMID: 35107329 PMCID: PMC8809351 DOI: 10.1128/spectrum.01590-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dickeya zeae is a worldwide destructive pathogen that causes soft rot diseases on various hosts such as rice, maize, banana, and potato. The strain JZL7 we recently isolated from clivia represents the first monocot-specific D. zeae and also has reduced pathogenicity compared to that of other D. zeae strains (e.g., EC1 and MS2). To elucidate the molecular mechanisms underlying its more restricted host range and weakened pathogenicity, we sequenced the complete genome of JZL7 and performed comparative genomic and functional analyses of JZL7 and other D. zeae strains. We found that, while having the largest genome among D. zeae strains, JZL7 lost almost the entire type III secretion system (T3SS), which is a key component of the virulence suite of many bacterial pathogens. Importantly, the deletion of T3SS in MS2 substantially diminished the expression of most type III secreted effectors (T3SEs) and MS2's pathogenicity on both dicots and monocots. Moreover, although JZL7 and MS2 share almost the same repertoire of cell wall-degrading enzymes (CWDEs), we found broad reduction in the production of CWDEs and expression levels of CWDE genes in JZL7. The lower expression of CWDEs, pectin lyases in particular, would probably make it difficult for JZL7 to break down the cell wall of dicots, which is rich in pectin. Together, our results suggest that the loss of T3SS and reduced CWDE activity together might have contributed to the host specificity and virulence of JZL7. Our findings also shed light on the pathogenic mechanism of Dickeya and other soft rot Pectobacteriaceae species in general. IMPORTANCE Dickeya zeae is an important, aggressive bacterial phytopathogen that can cause severe diseases in many crops and ornamental plants, thus leading to substantial economic losses. Strains from different sources showed significant diversity in their natural hosts, suggesting complicated evolution history and pathogenic mechanisms. However, molecular mechanisms that cause the differences in the host range of D. zeae strains remain poorly understood. This study carried out genomic and functional dissections of JZL7, a D. zeae strain with restricted host range, and revealed type III secretion system (T3SS) and cell wall-degrading enzymes (CWDEs) as two major factors contributing to the host range and virulence of D. zeae, which will provide a valuable reference for the exploration of pathogenic mechanisms in other bacteria and present new insights for the control of bacterial soft rot diseases on crops.
Collapse
|
20
|
Lv M, Chen Y, Hu M, Yu Q, Duan C, Ye S, Ling J, Zhou J, Zhou X, Zhang L. OhrR is a central transcriptional regulator of virulence in Dickeya zeae. MOLECULAR PLANT PATHOLOGY 2022; 23:45-59. [PMID: 34693617 PMCID: PMC8659590 DOI: 10.1111/mpp.13141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/20/2021] [Accepted: 09/01/2021] [Indexed: 06/12/2023]
Abstract
Dickeya zeae is the causal agent of rice foot rot disease. The pathogen is known to rely on a range of virulence factors, including phytotoxin zeamines, extracellular enzymes, cell motility, and biofilm, which collectively contribute to the establishment of infections. Phytotoxin zeamines play a critical role in bacterial virulence; signalling pathways and regulatory mechanisms that govern bacterial virulence remain unclear. In this study, we identified a transcriptional regulator OhrR (organic hydroperoxide reductase regulator) that is involved in the regulation of zeamine production in D. zeae EC1. The OhrR null mutant was significantly attenuated in its virulence against rice seed, potato tubers and radish roots. Phenotype analysis showed that OhrR was also involved in the regulation of other virulence traits, including the production of extracellular cellulase, biofilm formation, and swimming/swarming motility. DNA electrophoretic mobility shift assay showed that OhrR directly regulates the transcription of key virulence genes and genes encoding bis-(3'-5')-cyclic dimeric guanosine monophosphate synthetases. Furthermore, OhrR positively regulates the transcription of regulatory genes slyA and fis through binding to their promoter regions. Our findings identify a key regulator of the virulence of D. zeae and add new insights into the complex regulatory network that modulates the physiology and virulence of D. zeae.
Collapse
Affiliation(s)
- Mingfa Lv
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Yufan Chen
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Ming Hu
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Qinglin Yu
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Cheng Duan
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Sixuan Ye
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Jinfeng Ling
- Guangdong Provincial Key Laboratory of High Technology for Plant ProtectionResearch Institute of Plant ProtectionGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Jianuan Zhou
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Xiaofan Zhou
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| | - Lianhui Zhang
- Integrative Microbiology Research CentreSouth China Agricultural UniversityGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
21
|
Dąbrowska GB, Tylman-Mojżeszek W, Mierek-Adamska A, Richert A, Hrynkiewicz K. Potential of Serratia plymuthica IV-11-34 strain for biodegradation of polylactide and poly(ethylene terephthalate). Int J Biol Macromol 2021; 193:145-153. [PMID: 34678385 DOI: 10.1016/j.ijbiomac.2021.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/15/2023]
Abstract
Serratia plymuthica strain IV-11-34 belongs to the plant growth promoting bacteria (PGPR). In the sequenced genome of S. plymuthica IV-11-34, we have identified the genes involved in biodegradation and metabolisms of xenobiotics. The potential of S. plymuthica IV-11-34 for the degradation of biodegradable aliphatic polyester polylactide (PLA) and resistant to biodegradation - poly(ethylene terephthalate) (PET) was assessed by biochemical oxygen consumption (BOD) and carbon dioxide methods. After seven days of growth, the bacteria strain showed more than 80% and 60% increase in respiratory activity in the presence of PLA and PET, respectively. We assume that during biodegradation, S. plymuthica IV-11-34 colonise the surface of PLA and PET, since the formation of a biofilm on the surface of polymers was shown by the LIVE/DEAD method. We have demonstrated for the relA gene, which is an alarmone synthetase, a 1.2-fold increase in expression in the presence of PLA, and a 4-fold decrease in expression in the presence of PET for the spoT gene, which is a hydrolase of alarmones. Research has shown that the bacterium has the ability to biodegrade PLA and PET, and the first stage of this process involves bacterial stringent response genes responsible for survival under extreme conditions.
Collapse
Affiliation(s)
- Grażyna B Dąbrowska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Wioleta Tylman-Mojżeszek
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Agnieszka Richert
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland.
| |
Collapse
|
22
|
Zhang W, Fan X, Li J, Ye T, Mishra S, Zhang L, Chen S. Exploration of the Quorum-Quenching Mechanism in Pseudomonas nitroreducens W-7 and Its Potential to Attenuate the Virulence of Dickeya zeae EC1. Front Microbiol 2021; 12:694161. [PMID: 34413838 PMCID: PMC8369503 DOI: 10.3389/fmicb.2021.694161] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/13/2021] [Indexed: 12/13/2022] Open
Abstract
Quorum quenching (QQ) is a novel, promising strategy that opens up a new perspective for controlling quorum-sensing (QS)-mediated bacterial pathogens. QQ is performed by interfering with population-sensing systems, such as by the inhibition of signal synthesis, catalysis of degrading enzymes, and modification of signals. In many Gram-negative pathogenic bacteria, a class of chemically conserved signaling molecules named N-acyl homoserine lactones (AHLs) have been widely studied. AHLs are involved in the modulation of virulence factors in various bacterial pathogens including Dickeya zeae. Dickeya zeae is the causal agent of plant-rot disease of bananas, rice, maize, potatoes, etc., causing enormous economic losses of crops. In this study, a highly efficient AHL-degrading bacterial strain W-7 was isolated from activated-sludge samples and identified as Pseudomonas nitroreducens. Strain W-7 revealed a superior ability to degrade N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL) and completely degraded 0.2 mmol/L of OdDHL within 48 h. Gas chromatography-mass spectrometry (GC-MS) identified N-cyclohexyl-propanamide as the main intermediate metabolite during AHL biodegradation. A metabolic pathway for AHL in strain W-7 was proposed based on the chemical structure of AHL and intermediate products. In addition to the degradation of OdDHL, this strain was also found to be capable of degrading a wide range of AHLs including N-(3-oxohexanoyl)-l-homoserine lactone (OHHL), N-(3-oxooctanoyl)-l-homoserine lactone (OOHL), and N-hexanoyl-l-homoserine lactone (HHL). Moreover, the application of strain W-7 as a biocontrol agent could substantially attenuate the soft rot caused by D. zeae EC1 to suppress tissue maceration in various host plants. Similarly, the application of crude enzymes of strain W-7 significantly reduced the disease incidence and severity in host plants. These original findings unveil the biochemical aspects of a highly efficient AHL-degrading bacterial isolate and provide useful agents that exhibit great potential for the control of infectious diseases caused by AHL-dependent bacterial pathogens.
Collapse
Affiliation(s)
- Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xinghui Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Tian Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Lianhui Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
23
|
Bez C, Esposito A, Thuy HD, Nguyen Hong M, Valè G, Licastro D, Bertani I, Piazza S, Venturi V. The rice foot rot pathogen Dickeya zeae alters the in-field plant microbiome. Environ Microbiol 2021; 23:7671-7687. [PMID: 34398481 PMCID: PMC9292192 DOI: 10.1111/1462-2920.15726] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/13/2021] [Indexed: 01/04/2023]
Abstract
Studies on bacterial plant diseases have thus far been focused on the single bacterial species causing the disease, with very little attention given to the many other microorganisms present in the microbiome. This study intends to use pathobiome analysis of the rice foot rot disease, caused by Dickeya zeae, as a case study to investigate the effects of this bacterial pathogen to the total resident microbiome and to highlight possible interactions between the pathogen and the members of the community involved in the disease process. The microbiome of asymptomatic and the pathobiome of foot‐rot symptomatic field‐grown rice plants over two growing periods and belonging to two rice cultivars were determined via 16S rRNA gene amplicon sequencing. Results showed that the presence of D. zeae is associated with an alteration of the resident bacterial community in terms of species composition, abundance and richness, leading to the formation of microbial consortia linked to the disease state. Several bacterial species were significantly co‐presented with the pathogen in the two growing periods suggesting that they could be involved in the disease process. Besides, culture‐dependent isolation and in planta inoculation studies of a bacterial member of the pathobiome, identified as positive correlated with the pathogen in our in silico analysis, indicated that it benefits from the presence of D. zeae. A similar microbiome/pathobiome experiment was also performed in a symptomatically different rice disease evidencing that not all plant diseases have the same consequence/relationship with the plant microbiome. This study moves away from a pathogen‐focused stance and goes towards a more ecological perception considering the effect of the entire microbial community which could be involved in the pathogenesis, persistence, transmission and evolution of plant pathogens.
Collapse
Affiliation(s)
- Cristina Bez
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Alfonso Esposito
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Hang Dinh Thuy
- VNU Institute of Microbiology and Biotechnology, Hanoi, Vietnam
| | | | - Giampiero Valè
- DiSIT, Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Piazza San Eusebio 5, Vercelli, 13100, Italy
| | - Danilo Licastro
- ARGO Laboratorio Genomica ed Epigenomica, AREA Science Park, Basovizza, Trieste, 34149, Italy
| | - Iris Bertani
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Silvano Piazza
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| | - Vittorio Venturi
- International Centre for Genetic Engineering and Biotechnology Padriciano, 99, Trieste, 34149, Italy
| |
Collapse
|
24
|
Boluk G, Arizala D, Dobhal S, Zhang J, Hu J, Alvarez AM, Arif M. Genomic and Phenotypic Biology of Novel Strains of Dickeya zeae Isolated From Pineapple and Taro in Hawaii: Insights Into Genome Plasticity, Pathogenicity, and Virulence Determinants. FRONTIERS IN PLANT SCIENCE 2021; 12:663851. [PMID: 34456933 PMCID: PMC8386352 DOI: 10.3389/fpls.2021.663851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 06/30/2021] [Indexed: 05/04/2023]
Abstract
Dickeya zeae, a bacterial plant pathogen of the family Pectobacteriaceae, is responsible for a wide range of diseases on potato, maize, rice, banana, pineapple, taro, and ornamentals and significantly reduces crop production. D. zeae causes the soft rot of taro (Colocasia esculenta) and the heart rot of pineapple (Ananas comosus). In this study, we used Pacific Biosciences single-molecule real-time (SMRT) sequencing to sequence two high-quality complete genomes of novel strains of D. zeae: PL65 (size: 4.74997 MB; depth: 701x; GC: 53.6%) and A5410 (size: 4.7792 MB; depth: 558x; GC: 53.5%) isolated from economically important Hawaiian crops, taro, and pineapple, respectively. Additional complete genomes of D. zeae representing three additional hosts (philodendron, rice, and banana) and other species used for a taxonomic comparison were retrieved from the NCBI GenBank genome database. Genomic analyses indicated the truncated type III and IV secretion systems (T3SS and T4SS) in the taro strain, which only harbored one and two genes of T3SS and T4SS, respectively, and showed high heterogeneity in the type VI secretion system (T6SS). Unlike strain EC1, which was isolated from rice and recently reclassified as D. oryzae, neither the genome PL65 nor A5410 harbors the zeamine biosynthesis gene cluster, which plays a key role in virulence of other Dickeya species. The percentages of average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) between the two genomes were 94.47 and 57.00, respectively. In this study, we compared the major virulence factors [plant cell wall-degrading extracellular enzymes and protease (Prt)] produced by D. zeae strains and evaluated the virulence on taro corms and pineapple leaves. Both strains produced Prts, pectate lyases (Pels), and cellulases but no significant quantitative differences were observed (p > 0.05) between the strains. All the strains produced symptoms on taro corms and pineapple leaves, but the strain PL65 produced symptoms more rapidly than others. Our study highlights the genetic constituents of pathogenicity determinants and genomic heterogeneity that will help to understand the virulence mechanisms and aggressiveness of this plant pathogen.
Collapse
Affiliation(s)
- Gamze Boluk
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Shefali Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Jingxin Zhang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
25
|
Xue Y, Hu M, Chen S, Hu A, Li S, Han H, Lu G, Zeng L, Zhou J. Enterobacter asburiae and Pantoea ananatis Causing Rice Bacterial Blight in China. PLANT DISEASE 2021; 105:2078-2088. [PMID: 33342235 DOI: 10.1094/pdis-10-20-2292-re] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice bacterial blight is a devastating bacterial disease threatening rice yield all over the world and Xanthomonas oryzae pv. oryzae is traditionally believed to be the pathogen. In recent years, we have received diseased rice samples with symptoms of blighted leaves from Sichuan and Guangdong provinces, China. Pathogen isolation and classification identified two different enterobacteria as the causal agents, namely Enterobacter asburiae and Pantoea ananatis. Among them, E. asburiae was isolated from samples of both provinces, and P. ananatis was only isolated from the Sichuan samples. Different from rice foot rot pathogen Dickeya zeae EC1 and rice bacterial blight pathogen X. oryzae pv. oryzae PXO99A, strains SC1, RG1, and SC7 produced rare cell wall degrading enzymes (CWDEs) but more extrapolysaccharides (EPS). E. asburiae strains SC1 and RG1 produced bacteriostatic substances while P. ananatis strain SC7 produced none. Pathogenicity tests indicated that all of them infected monocotyledonous rice and banana seedlings, but not dicotyledonous potato, radish, or cabbage. Moreover, strain RG1 was most virulent, while strains SC1 and SC7 were similarly virulent on rice leaves, even though strain SC1 propagated significantly faster in rice leaf tissues than strain SC7. This study firstly discovered E. asburiae as a new pathogen of rice bacterial blight, and in some cases, P. ananatis could be a companion pathogen. Analysis on production of virulence factors suggested that both pathogens probably employ a different mechanism to infect hosts other than using cell wall degrading enzymes to break through host cell walls.
Collapse
Affiliation(s)
- Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Shimao Li
- Agricultural Technology Service Centre of Daojiao Town, Dongguan 523170, China
| | - Haiya Han
- Dongguan Agricultural Technology Extension Management Office, Dongguan 523010, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Lisha Zeng
- Dongguan Banana and Vegetable Research Institute, Dongguan 523061, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Huang S, Chen Z, Hu M, Xue Y, Liao L, Zhang LH. First Report of Bacterial Soft Rot Disease on Taro Caused by Dickeya fangzhongdai in China. PLANT DISEASE 2021; 105:3737. [PMID: 33934636 DOI: 10.1094/pdis-10-20-2225-pdn] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Taro [Colocasia esculenta (L.) Schott.] is an important root crop in the world with great economic value. In recent years, outbreaks of soft rot were observed on taro plants in several plantation areas located in Shaoguan, Guangdong Province, China (25°7'57" N, 113°19'5" E). Root tubers of taro (Paodan variety) infected by soft rot had water-soaked lesions with a dark brown-black margin including a rotten smell, they also had internal rot that was also found in root tubers with no external symptoms. In some areas, the incidence of soft rot can reach up to 30%. To isolate the causal agent, ten pieces of taro root tubers with typical symptoms were surface-sterilized with 75% ethanol and 0.1% HgCl2 solution and then washed thrice with sterile water. The tuber slices were soaked in 50 ml sterile water and shaken at 28°C, 200 rpm for 2 h, and 100 µl was streaked onto the modified Yeast Extract Beef (YEB) agar medium (1% peptone, 0.5% yeast extract, 0.5% sucrose, 0.5% NaCl, 1 Mmol/L MgSO4•7H2O, 1.5% agar, pH 7.0) plates (Zhou et al. 2011) and incubated at 28°C for 24 h. Single colonies grown on YEB were selected for preliminary inoculation onto healthy taro (Paodan variety) slices. Two of the Gram-negative bacteria, named as ZXC1 and MPC2, developed symptoms consistent in rotted decay inside the root tubers after incubation for 24h at 30°C. ZXC1 and MPC2 were biochemically profiled using a Biolog Gen III MicroPlate (Microlog 3, 5.2) (Shen et al. 2019) and resulted Dickeya sp. (SIM 0.856 and 0.704). To determine the species of the Dickeya isolates, 16S rRNA sequences were amplified by primers 27F and 1492R (Hauben et al. 1998). Housekeeping genes including gyrB, atpD, rpoB, and infB were also amplified using degenerate primers (Brady et al. 2008). Results from the BLASTn analysis of the 16S rRNA (GenBank accession numbers MN853405, MN853406), gyrB (GenBank accession numbers MN866299, MN866303), atpD (GenBank accession numbers MN866298, MN866302), rpoB (GenBank accession numbers MN866301, MN866305), and infB (GenBank accession numbers MN866300, MN866304) genes in the isolates ZXC1 and MPC2 showed 99% identities to those of the previously reported D. fangzhongdai isolates from Phalaenopsis (Zhang et al. 2018). Multilocus sequence analysis (MLSA) by MEGA 7.0 performed with four housekeeping genes (gyrB, atpD, rpoB, infB) showed that they clustered with D. fangzhongdai isolates. Analyses using scanning and transmission electron microscopy showed that ZXC1 and MPC2 bacteria were rod-shaped, 0.5-1.0 μm × 1.0-3.0 µm, with peritrichous flagella. Pathogenicity tests were performed thrice using surface-sterilized 2-month-old taro seedlings (Paodan variety). Six individual seedlings were inoculated using a sterile syringe with ten microliters of bacterial suspension (108 CFU/ml) in Tris buffer (0.1 mol/L Tris and 0.1 mol/L HCl, pH 7.4). Taro seedlings injected with sterile Tris buffer were used as the negative control. These taro seedlings were grown in the greenhouse (30 ± 2°C, 90 ± 5% relative humidity). At the 25th day post inoculation, soft rot symptoms were observed in inoculated taro, while all control taro plants remained symptom-free. Small and pale yellow with irregular margins colonies consistent with morphological characteristics of those of D. fangzhongdai were re-isolated from symptomatic taro tubers and the housekeeping genes presence was verified by sequencing as described above, fulfilling Koch's postulates. D. fangzhongdai is a newly emerging bacterial pathogen, which causes bleeding cankers in pear trees (Tian et al. 2016), and soft rot of Phalaenopsis (Zhang et al. 2018). This is the first report of D. fangzhongdai causing soft rot disease in taro. Considering the high incidence of soft rot, this pathogen might pose a significant threat to taro and other economically important crops. Therefore, further researches are needed to investigate host range of the pathogen and develop appropriate integrated management to contain this disease spreading.
Collapse
Affiliation(s)
- Shufen Huang
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre,, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| | - Zhongqiao Chen
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre,, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| | - Ming Hu
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre,, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| | - Yang Xue
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| | - Lisheng Liao
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre,, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| | - Lian-Hui Zhang
- South China Agricultural University, 12526, Guangdong Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre,, Guangzhou, Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China;
| |
Collapse
|
27
|
Cleto S, Haslinger K, Prather KLJ, Lu TK. Natural combinatorial genetics and prolific polyamine production enable siderophore diversification in Serratia plymuthica. BMC Biol 2021; 19:46. [PMID: 33722216 PMCID: PMC7962358 DOI: 10.1186/s12915-021-00971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/31/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Iron is essential for bacterial survival. Bacterial siderophores are small molecules with unmatched capacity to scavenge iron from proteins and the extracellular milieu, where it mostly occurs as insoluble Fe3+. Siderophores chelate Fe3+ for uptake into the cell, where it is reduced to soluble Fe2+. Siderophores are key molecules in low soluble iron conditions. The ability of bacteria to synthesize proprietary siderophores may have increased bacterial evolutionary fitness; one way that bacteria diversify siderophore structure is by incorporating different polyamine backbones while maintaining the catechol moieties. RESULTS We report that Serratia plymuthica V4 produces a variety of siderophores, which we term the siderome, and which are assembled by the concerted action of enzymes encoded in two independent gene clusters. Besides assembling serratiochelin A and B with diaminopropane, S. plymuthica utilizes putrescine and the same set of enzymes to assemble photobactin, a siderophore found in the bacterium Photorhabdus luminescens. The enzymes encoded by one of the gene clusters can independently assemble enterobactin. A third, independent operon is responsible for biosynthesis of the hydroxamate siderophore aerobactin, initially described in Enterobacter aerogenes. Mutant strains not synthesizing polyamine-siderophores significantly increased enterobactin production levels, though lack of enterobactin did not impact the production of serratiochelins. Knocking out SchF0, an enzyme involved in the assembly of enterobactin alone, significantly reduced bacterial fitness. CONCLUSIONS This study shows the natural occurrence of serratiochelins, photobactin, enterobactin, and aerobactin in a single bacterial species and illuminates the interplay between siderophore biosynthetic pathways and polyamine production, indicating routes of molecular diversification. Given its natural yields of diaminopropane (97.75 μmol/g DW) and putrescine (30.83 μmol/g DW), S. plymuthica can be exploited for the industrial production of these compounds.
Collapse
Affiliation(s)
- Sara Cleto
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kristina Haslinger
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Groningen, The Netherlands
| | - Kristala L J Prather
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Timothy K Lu
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Abstract
Dickeya zeae is the etiological agent of bacterial foot rot disease, which can cause massive economic losses in banana and rice plantations. Genome sequence analysis showed that D. zeae strain EC1 contains multiple c-di-GMP turnover genes, but their roles and regulatory mechanisms in bacterial physiology and virulence remain vague. By generating consecutive in-frame deletion mutants of the genes encoding c-di-GMP biosynthesis and degradation, respectively, we analyzed the individual and collective impacts of these c-di-GMP metabolic genes on the c-di-GMP global pool, bacterial physiology, and virulence. The significance of our study is in identifying the mechanism of c-di-GMP signaling in strain EC1 more clearly, which expands the c-di-GMP regulating patterns in Gram-negative species. The methods and experimental designs in this research will provide a valuable reference for the exploration of the complex c-di-GMP regulation mechanisms in other bacteria. Dickeya zeae is an important and aggressive bacterial phytopathogen that can cause substantial economic losses in banana and rice plantations. We previously showed that c-di-GMP signaling proteins (cyclases/phosphodiesterases) in D. zeae strain EC1 play a significant role in the bacterial sessile-to-motile transition. To determine whether there is any synergistic effect among these c-di-GMP signaling proteins, we prepared a series of mutant strains by generating consecutive in-frame deletions of the genes encoding diguanylate cyclases (which make c-di-GMP) and phosphodiesterases (which break down c-di-GMP), respectively, using EC1 as a parental strain. The results showed that the complete deletion of all the putative diguanylate cyclases resulted in significantly increased bacterial motility and abrogated biofilm formation but did not appear to affect pathogenicity and virulence factor production. In contrast, the deletion of all the c-di-GMP phosphodiesterase genes disabled motility and prevented the invasion of EC1 into rice seeds. By measuring the c-di-GMP concentrations and swimming motility of all the mutants, we propose that c-di-GMP controlled swimming behavior through a multitiered program in a c-di-GMP concentration-dependent manner, which could be described as an L-shaped regression curve. These features are quite different from those that have been shown for other bacterial species such as Salmonella and Caulobacter crescentus. Further analysis identified three c-di-GMP signaling proteins, i.e., PDE10355, DGC14945, and PDE14950, that play dominant roles in influencing the global c-di-GMP pool of strain EC1. The findings from this study highlight the complexity and plasticity of c-di-GMP regulatory circuits in different bacterial species.
Collapse
|
29
|
Genomic divergence between Dickeya zeae strain EC2 isolated from rice and previously identified strains, suggests a different rice foot rot strain. PLoS One 2020; 15:e0240908. [PMID: 33079956 PMCID: PMC7575072 DOI: 10.1371/journal.pone.0240908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 10/06/2020] [Indexed: 11/19/2022] Open
Abstract
Rice foot rot caused by Dickeya zeae is an important bacterial disease of rice worldwide. In this study, we identified a new strain EC2 from rice in Guangdong province, China. This strain differed from the previously identified strain from rice in its biochemical characteristics, pathogenicity, and genomic constituents. To explore genomic discrepancies between EC2 and previously identified strains from rice, a complete genome sequence of EC2 was obtained and used for comparative genomic analyses. The complete genome sequence of EC2 is 4,575,125 bp in length. EC2 was phylogenetically closest to previously identified Dickeya strains from rice, but not within their subgroup. In terms of secretion systems, genomic comparisons revealed that EC2 harbored only type I (T1SS), typeⅡ (T2SS), and type VI (T6SS) secretion systems. The flagella cluster of this strain possessed specific genomic characteristics like other D. zeae strains from Guangdong and from rice; within this locus, the genetic diversity among strains from rice was much lower than that of within strains from non-rice hosts. Unlike other strains from rice, EC2 lost the zeamine cluster, but retained the clustered regularly interspaced short palindromic repeats-1 (CRISPR-1) array. Compared to the other D. zeae strains containing both exopolysaccharide (EPS) and capsular polysaccharide (CPS) clusters, EC2 harbored only the CPS cluster, while the other strains from rice carried only the EPS cluster. Furthermore, we found strain MS1 from banana, carrying both EPS and CPS clusters, produced significantly more EPS than the strains from rice, and exhibited different biofilm-associated phenotypes. Comparative genomics analyses suggest EC2 likely evolved through a pathway different from the other D. zeae strains from rice, producing a new type of rice foot rot pathogen. These findings emphasize the emergence of a new type of D. zeae strain causing rice foot rot, an essential step in the early prevention of this rice bacterial disease.
Collapse
|
30
|
Wang X, He SW, Guo HB, Han JG, Thin KK, Gao JS, Wang Y, Zhang XX. Dickeya oryzae sp. nov., isolated from the roots of rice. Int J Syst Evol Microbiol 2020; 70:4171-4178. [PMID: 32552985 DOI: 10.1099/ijsem.0.004265] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel Gram-stain-negative strain, designated ZYY5T, was isolated from rice roots. Results of 16S rRNA gene analysis indicated that strain ZYY5T was a member of the genus Dickeya, with a highest similarity to Dickeya zeae DSM 18068T (98.5%). The major fatty acids were summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0 and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). Multi-locus sequence analysis using five concatenated genes (16S rRNA, atpD, infB, recA and gyrB) and phylogenomic analysis based on 2940 core gene sequences showed that strain ZYY5T formed a robust cluster with strains EC1, ZJU1202, DZ2Q, NCPPB 3531 and CSL RW192, while separated from the other strains of D. zeae. The orthologous average nucleotide identity (ANI) and digital DNA-DNAhybridization (dDDH) values among these six strains ranged from 96.8-99.9% and 73.7-99.8%, which supported that they were belonged to the same species. However, strain ZYY5T shared 58.4 of dDDH and 94.5% of ANI values with type strain D. zeae DSM 18068T, which were lower than the proposed species boundary cut-off for dDDH and ANI. The genomic analysis revealed that strain ZYY5T contained virulence-associated genes, which is same as the phylogenetic-related strains of the genus Dickeya. Based on the results of the polyphasic approaches, we propose that strain ZYY5T represents a novel species in the genus Dickeya, for which the name Dickeya oryzae sp. nov. (=JCM 33020 T=ACCC 61554 T) is proposed. Strains EC1, ZJU1202, DZ2Q, NCPPB 3531 and CSL RW192 should also be classified in the same genomospecies of D. oryzae same as ZYY5T.
Collapse
Affiliation(s)
- Xing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Shan-Wen He
- College of life science, The Yangtze University, Jingzhou, 434025, PR China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - He-Bao Guo
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ji-Gang Han
- Shanghai Academy of Landscape Architecture Science and Planning, Shanghai 200232, PR China
| | - Kyu Kyu Thin
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Ju-Sheng Gao
- Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional, Chinese Academy of Agricultural Sciences, Qiyang 426182, PR China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Yao Wang
- College of life science, The Yangtze University, Jingzhou, 434025, PR China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiao-Xia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
31
|
Li J, Hu M, Xue Y, Chen X, Lu G, Zhang L, Zhou J. Screening, Identification and Efficacy Evaluation of Antagonistic Bacteria for Biocontrol of Soft Rot Disease Caused by Dickeya zeae. Microorganisms 2020; 8:microorganisms8050697. [PMID: 32397545 PMCID: PMC7285164 DOI: 10.3390/microorganisms8050697] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 12/23/2022] Open
Abstract
Dickeya zeae is the causal agent of bacterial soft rot disease, with a wide range of hosts all over the world. At present, chemical agents, especially agricultural antibiotics, are commonly used in the prevention and control of bacterial soft rot, causing the emergence of resistant pathogens and therefore increasing the difficulty of disease prevention and control. This study aims to provide a safer and more effective biocontrol method for soft rot disease caused by D. zeae. The spot-on-lawn assay was used to screen antagonistic bacteria, and three strains including SC3, SC11 and 3-10 revealed strong antagonistic effects and were identified as Pseudomonas fluorescens, P. parafulva and Bacillus velezensis, respectively, using multi-locus sequence analysis (MLSA) based on the sequences of 16S rRNA and other housekeeping genes. In vitro antimicrobial activity showed that two Pseudomonas strains SC3 and SC11 were only antagonistic to some pathogenic bacteria, while strain 3-10 had broad-spectrum antimicrobial activity on both pathogenic bacteria and fungi. Evaluation of control efficacy in greenhouse trials showed that they all restrained the occurrence and development of soft rot disease caused by D. zeae MS2 or EC1. Among them, strain SC3 had the most impressive biocontrol efficacy on alleviating the soft rot symptoms on both monocotyledonous and dicotyledonous hosts, and strain 3-10 additionally reduced the occurrence of banana wilt disease caused by Fusarium oxysporum f. sp. cubensis. This is the first report of P. fluorescens, P. parafulva and B. velezensis as potential bio-reagents on controlling soft rot disease caused by D. zeae.
Collapse
Affiliation(s)
- Jieling Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Xia Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Guangtao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China;
| | - Lianhui Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; (J.L.); (M.H.); (Y.X.); (X.C.); (L.Z.)
- Correspondence:
| |
Collapse
|
32
|
Five Fungal Pathogens Are Responsible for Bayberry Twig Blight and Fungicides Were Screened for Disease Control. Microorganisms 2020; 8:microorganisms8050689. [PMID: 32397322 PMCID: PMC7284972 DOI: 10.3390/microorganisms8050689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Bayberry (Myrica rubra) is a commercial fruit in China. For the past seven years, twig blight disease has been attacking bayberry plantations in Shantou City, Guangdong Province, China, leading to destructive damage and financial loss. In this study, five fungal species associated with twig dieback and stem blight were identified based on morphological characteristics combined with multilocus sequence analysis (MLSA) on the internal transcribed spacer (ITS) region, partial sequences of β-tubulin (tub2), translation elongation factor 1-α (tef1-α), large subunit ribosomal RNA (LSU) and small subunit ribosomal RNA (SSU) genes, which are Epicoccum sorghinum, Neofusicoccum parvum, Lasiodiplodia theobromae, Nigrospora oryzae and a Pestalotiopsis new species P. myricae. P. myricae is the chief pathogen in fields, based on its high isolation rate and fast disease progression after inoculation. To our knowledge, this is the first study reporting the above five fungi as the pathogens responsible for bayberry twig blight. Indoor screening of fungicides indicates that Prochloraz (copper salt) is the most promising fungicide for field application, followed by Pyraclostrobin, 15% Difenoconazole + 15% Propiconazole, Difenoconazole and Myclobutanil. Additionally, Bacillus velezensis strain 3–10 and zeamines from Dickeya zeae strain EC1 could be used as potential ecofriendly alternatives to control the disease.
Collapse
|
33
|
Wenski SL, Cimen H, Berghaus N, Fuchs SW, Hazir S, Bode HB. Fabclavine diversity in Xenorhabdus bacteria. Beilstein J Org Chem 2020; 16:956-965. [PMID: 32461774 PMCID: PMC7214866 DOI: 10.3762/bjoc.16.84] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
The global threat of multiresistant pathogens has to be answered by the development of novel antibiotics. Established antibiotic applications are often based on so-called secondary or specialized metabolites (SMs), identified in large screening approaches. To continue this successful strategy, new sources for bioactive compounds are required, such as the bacterial genera Xenorhabdus or Photorhabdus. In these strains, fabclavines are widely distributed SMs with a broad-spectrum bioactivity. Fabclavines are hybrid SMs derived from nonribosomal peptide synthetases (NRPS), polyunsaturated fatty acid (PUFA), and polyketide synthases (PKS). Selected Xenorhabdus and Photorhabdus mutant strains were generated applying a chemically inducible promoter in front of the suggested fabclavine (fcl) biosynthesis gene cluster (BGC), followed by the analysis of the occurring fabclavines. Subsequently, known and unknown derivatives were identified and confirmed by MALDI-MS and MALDI-MS2 experiments in combination with an optimized sample preparation. This led to a total number of 22 novel fabclavine derivatives in eight strains, increasing the overall number of fabclavines to 32. Together with the identification of fabclavines as major antibiotics in several entomopathogenic strains, our work lays the foundation for the rapid fabclavine identification and dereplication as the basis for future work of this widespread and bioactive SM class.
Collapse
Affiliation(s)
- Sebastian L Wenski
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Harun Cimen
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Natalie Berghaus
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Sebastian W Fuchs
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Selcuk Hazir
- Adnan Menderes University, Faculty of Arts and Sciences, Department of Biology, 09010 Aydin, Turkey
| | - Helge B Bode
- Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Feng L, Schaefer AL, Hu M, Chen R, Greenberg EP, Zhou J. Virulence Factor Identification in the Banana Pathogen Dickeya zeae MS2. Appl Environ Microbiol 2019; 85:e01611-19. [PMID: 31540986 PMCID: PMC6856320 DOI: 10.1128/aem.01611-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
The phytopathogen Dickeya zeae MS2 is a particularly virulent agent of banana soft rot disease. To begin to understand this banana disease and to understand the role of quorum sensing and quorum-sensing-related regulatory elements in D. zeae MS2, we sequenced its genome and queried the sequence for genes encoding LuxR homologs. We identified a canonical LuxR-LuxI homolog pair similar to those in other members of the genus Dickeya The quorum-sensing signal for this pair was N-3-oxo-hexanoyl-homoserine lactone, and the circuit affected motility, cell clumping, and production of the pigment indigoidine, but it did not affect infections of banana seedlings in our experiments. We also identified a luxR homolog linked to a gene annotated as encoding a proline iminopeptidase. Similar linked pairs have been associated with virulence in other plant pathogens. We show that mutants with deletions in the proline iminopeptidase gene are attenuated for virulence. Surprisingly, a mutant with a deletion in the gene encoding the LuxR homolog shows normal virulence.IMPORTANCEDickeya zeae is an emerging banana soft rot pathogen in China. We used genome sequencing and annotation to create an inventory of potential virulence factors and virulence gene regulators encoded in Dickeya zeae MS2, a particularly virulent strain. We created mutations in several genes and tested these mutants in a banana seedling infection model. A strain with a mutated proline iminopeptidase gene, homologs of which are important for disease in the Xanthomonas species phytopathogens, was attenuated for soft rot symptoms in our model. Understanding how the proline iminopeptidase functions as a virulence factor may lead to insights about how to control the disease, and it is of general importance as homologs of the proline iminopeptidase occur in dozens of plant-associated bacteria.
Collapse
Affiliation(s)
- Luwen Feng
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - Amy L Schaefer
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Ming Hu
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| | - Ruiyi Chen
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
| | - E Peter Greenberg
- Guangdong Province Sociomicrobiology Basic Science and Frontier Technology Research Team & Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, People's Republic of China
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, People's Republic of China
| |
Collapse
|
35
|
Shi Z, Wang Q, Li Y, Liang Z, Xu L, Zhou J, Cui Z, Zhang LH. Putrescine Is an Intraspecies and Interkingdom Cell-Cell Communication Signal Modulating the Virulence of Dickeya zeae. Front Microbiol 2019; 10:1950. [PMID: 31497009 PMCID: PMC6712546 DOI: 10.3389/fmicb.2019.01950] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 08/08/2019] [Indexed: 11/13/2022] Open
Abstract
The infections caused by Dickeya zeae become a severe problem in recent years, but the regulatory mechanisms that govern the bacterial virulence remain to be fragmental. Here we report the investigation of potential involvement of polyamines in regulation of D. zeae virulence. We showed that null mutation of speA encoding arginine decarboxylase dramatically decreased the bacterial swimming motility, swarming motility and biofilm formation, and exogenous addition of putrescine effectively rescues the defective phenotypes of D. zeae. HPLC and mass spectrometry analysis validated that speA was essential for production of putrescine in D. zeae. In addition, we demonstrated that D. zeae EC1 could detect and response to putrescine molecules produced by itself or from host plant through specific transporters. Among the two transporters identified, the one represented by PotF played a dominated role over the other represented by PlaP in modulation of putrescine-dependent biological functions. Furthermore, we provided evidence that putrescine signal is critical for D. zeae EC1 bacterial invasion and virulence against rice seeds. Our data depict a novel function of putrescine signal in pathogen-host communication and in modulation of the virulence of an important plant bacterial pathogen.
Collapse
Affiliation(s)
- Zurong Shi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,College of Agriculture and Biology, Zhongkai University of Agricluture and Engineering, Guangzhou, China
| | - Qingwei Wang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yasheng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zhibing Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Linghui Xu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Jianuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Zining Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Lian-Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.,Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Abstract
Zeamines are a family of newly identified phytotoxins and potent antibiotics produced by D. zeae EC1. Unlike most bacterial organisms, which are highly sensitive, D. zeae EC1 is tolerant to zeamines, but the mechanisms involved are unknown. Our study showed, for the first time, that a new RND efflux pump, DesABC, is indispensable for D. zeae EC1 against zeamines. We found that the DesABC efflux pump was zeamine specific and appeared to be conserved only in the Dickeya species, which may explain the high potency of zeamines against a wide range of bacterial pathogens. We also showed that expression of DesABC efflux system genes was induced by zeamines. These findings not only provide an answer to why D. zeae EC1 is much more tolerant to zeamines than other bacterial pathogens but also document a signaling role of zeamines in modulation of gene expression. Zeamines are a family of polyamino phytotoxins produced by Dickeya zeae EC1. These phytotoxins are also potent antibiotics against a range of microorganisms. To understand how D. zeae EC1 can protect itself from the antimicrobial activity of zeamines, we tested whether the ABC transporter genes within the zms (zeamine synthesis) gene cluster were related to zeamine resistance. Our results ruled out the possible involvement of these ABC transporters in zeamine resistance and instead unveiled an RND (resistance-nodulation-cell division) efflux pump, DesABC, which plays an important role in zeamine resistance in D. zeae EC1. The desAB genes are located next to the zms gene cluster, but desC is at a distant location in the bacterial genome. Null mutation of the desABC genes in a zeamine-minus derivative of strain EC1 led to about an 8- to 32-fold decrease in zeamine tolerance level. This efflux pump was zeamine specific and appeared to be conserved only in Dickeya species, which may explain the high potency of zeamines against a wide range of bacterial pathogens. Significantly, expression of the desAB genes was abolished by deletion of zmsA, which encodes zeamine biosynthesis but could be induced by exogenous addition of zeamines. The results suggest that sophisticated and coordinated regulatory mechanisms have evolved to govern zeamine production and tolerance. Taken together, these findings documented a novel signaling role of zeamines and the first resistance mechanism against zeamines, which is a family of potent and promising antibiotics against both Gram-positive and Gram-negative bacterial pathogens.
Collapse
|
37
|
Duprey A, Taib N, Leonard S, Garin T, Flandrois JP, Nasser W, Brochier-Armanet C, Reverchon S. The phytopathogenic nature of Dickeya aquatica 174/2 and the dynamic early evolution of Dickeya pathogenicity. Environ Microbiol 2019; 21:2809-2835. [PMID: 30969462 DOI: 10.1111/1462-2920.14627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/04/2019] [Accepted: 04/08/2019] [Indexed: 12/13/2022]
Abstract
Dickeya is a genus of phytopathogenic enterobacterales causing soft rot in a variety of plants (e.g. potato, chicory, maize). Among the species affiliated to this genus, Dickeya aquatica, described in 2014, remained particularly mysterious because it had no known host. Furthermore, while D. aquatica was proposed to represent a deep-branching species among Dickeya genus, its precise phylogenetic position remained elusive. Here, we report the complete genome sequence of the D. aquatica type strain 174/2. We demonstrate the affinity of D. aquatica strain 174/2 for acidic fruits such as tomato and cucumber and show that exposure of this bacterium to acidic pH induces twitching motility. An in-depth phylogenomic analysis of all available Dickeya proteomes pinpoints D. aquatica as the second deepest branching lineage within this genus and reclassifies two lineages that likely correspond to new genomospecies (gs.): Dickeya gs. poaceaephila (Dickeya sp NCPPB 569) and Dickeya gs. undicola (Dickeya sp 2B12), together with a new putative genus, tentatively named Prodigiosinella. Finally, from comparative analyses of Dickeya proteomes, we infer the complex evolutionary history of this genus, paving the way to study the adaptive patterns and processes of Dickeya to different environmental niches and hosts. In particular, we hypothesize that the lack of xylanases and xylose degradation pathways in D. aquatica could reflect adaptation to aquatic charophyte hosts which, in contrast to land plants, do not contain xyloglucans.
Collapse
Affiliation(s)
- Alexandre Duprey
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Najwa Taib
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Simon Leonard
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Tiffany Garin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Jean-Pierre Flandrois
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - William Nasser
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| | - Céline Brochier-Armanet
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, 69622, Villeurbanne, France
| | - Sylvie Reverchon
- Univ Lyon, Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240, Microbiologie, Adaptation et Pathogénie, 10 Rue Raphaël Dubois, 69622, Villeurbanne, France
| |
Collapse
|
38
|
Lv M, Hu M, Li P, Jiang Z, Zhang LH, Zhou J. A two-component regulatory system VfmIH modulates multiple virulence traits in Dickeya zeae. Mol Microbiol 2019; 111:1493-1509. [PMID: 30825339 DOI: 10.1111/mmi.14233] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2019] [Indexed: 12/27/2022]
Abstract
Bacterial pathogen Dickeya zeae strain EC1 produces antibiotics-like phytotoxins called zeamines, which are major virulence determinants encoded by the zms gene cluster. In this study, we identified a zeamine-deficient mutant with a Tn5 insertion in a gene designated as vfmI encoding a two-component system (TCS) sensor histidine kinase (HK), which is accompanied by vfmH encoding a response regulator (RR) at the same genetic locus. Domain analysis shows this TCS is analogous to the VfmIH of D. dadantii, with typical characteristics of sensor HK and RR, respectively, and sharing the same operon. Deletion of either vfmI or vfmH resulted in decreased production of zeamines and cell wall degrading enzymes (CWDEs), and alleviated virulence on rice seeds and potato tubers. In D. dadantii 3937, VfmH was shown to bind to the promoters of vfmA and vfmE, while in D. zeae EC1, VfmH could bind to the promoters of vfmA, vfmE and vfmF. RNA-seq analysis of strain EC1 and its vfmH mutant also showed that the TCS positively regulated a range of virulence genes, including zms, T1SS, T2SS, T3SS, T6SS, flagellar and CWDE genes.
Collapse
Affiliation(s)
- Mingfa Lv
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Ming Hu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Peng Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Hainan Normal University, Haikou, 571158, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Lian-Hui Zhang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.,Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
39
|
Chen X, Yu C, Li S, Li X, Liu Q. Integration Host Factor Is Essential for Biofilm Formation, Extracellular Enzyme, Zeamine Production, and Virulence in Dickeya zeae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:325-335. [PMID: 30226395 DOI: 10.1094/mpmi-04-18-0096-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dickeya zeae is a globally important pathogenic bacterium that infects many crops, including rice, maize, potato, and banana. Bacterial foot rot of rice caused by D. zeae is one of the most important bacterial diseases of rice in China and some Southeast Asian countries. To investigate the functions of integration host factor (IHF) in D. zeae, we generated knockout mutants of ihfA and ihfB. Phenotypic assays showed that both the ΔihfA and ΔihfB strains had greatly reduced mobility, biofilm formation, extracellular protease, and pectinase activities, and toxin production compared with the wild-type strain. In addition, the mutants did not inhibit the germination of rice seeds, failed to cause soft rot in potatoes and a hypersensitive response in tobacco, and were avirulent in rice. Quantitative reverse-transcription polymerase chain reaction analysis demonstrated that IHF positively regulates the expression of zmsA, hrpN/Y, pelA/B/C, pehX, celZ, prtG, fliC, and DGC (diguanylate cyclase). Electrophoretic mobility shift assays further confirmed that IhfA binds to the promoter region of the DGC gene and may alter the levels of a second bacterial messenger, c-di-GMP, to regulate the pathogenicity or other physiological functions of D. zeae. In summary, IHF is an important integrated regulator of pathogenicity in D. zeae.
Collapse
Affiliation(s)
- Xuefeng Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Chengpeng Yu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Shuangchun Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xinwei Li
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Qiongguang Liu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
40
|
Alič Š, Pédron J, Dreo T, Van Gijsegem F. Genomic characterisation of the new Dickeya fangzhongdai species regrouping plant pathogens and environmental isolates. BMC Genomics 2019; 20:34. [PMID: 30634913 PMCID: PMC6329079 DOI: 10.1186/s12864-018-5332-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 11/29/2018] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND The Dickeya genus is part of the Pectobacteriaceae family that is included in the newly described enterobacterales order. It comprises a group of aggressive soft rot pathogens with wide geographic distribution and host range. Among them, the new Dickeya fangzhongdai species groups causative agents of maceration-associated diseases that impact a wide variety of crops and ornamentals. It affects mainly monocot plants, but D. fangzhongdai strains have also been isolated from pear trees and water sources. Here, we analysed which genetic novelty exists in this new species, what are the D. fangzhongdai-specific traits and what is the intra-specific diversity. RESULTS The genomes of eight D. fangzhongdai strains isolated from diverse environments were compared to 31 genomes of strains belonging to other Dickeya species. The D. fangzhongdai core genome regroups approximately 3500 common genes, including most genes that encode virulence factors and regulators characterised in the D. dadantii 3937 model strain. Only 38 genes are present in D. fangzhongdai and absent in all other Dickeyas. One of them encodes a pectate lyase of the PL10 family of polysaccharide lyases that is found only in a few bacteria from the plant environment, soil or human gut. Other D. fangzhongdai-specific genes with a known or predicted function are involved in regulation or metabolism. The intra-species diversity analysis revealed that seven of the studied D. fangzhongdai strains were grouped into two distinct clades. Each clade possesses a pool of 100-150 genes that are shared by the clade members, but absent from the other D. fangzhongdai strains and several of these genes are clustered into genomic regions. At the strain level, diversity resides mainly in the arsenal of T5SS- and T6SS-related toxin-antitoxin systems and in secondary metabolite biogenesis pathways. CONCLUSION This study identified the genome-specific traits of the new D. fangzhongdai species and highlighted the intra-species diversity of this species. This diversity encompasses secondary metabolites biosynthetic pathways and toxins or the repertoire of genes of extrachromosomal origin. We however didn't find any relationship between gene content and phenotypic differences or sharing of environmental habitats.
Collapse
Affiliation(s)
- Špela Alič
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia.,Jozef Stefan International Postgraduate School, Jamova 39, SI-1000, Ljubljana, Slovenia
| | - Jacques Pédron
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, Diderot Univ Paris 07, UPEC Univ Paris 12, CNRS, INRA, IRD, 4 Place Jussieu, 75005, Paris, France
| | - Tanja Dreo
- National Institute of Biology, Vecna pot 111, SI-1000, Ljubljana, Slovenia
| | - Frédérique Van Gijsegem
- Institute of Ecology and Environmental Sciences of Paris, Sorbonne Universités, UPMC Univ Paris 06, Diderot Univ Paris 07, UPEC Univ Paris 12, CNRS, INRA, IRD, 4 Place Jussieu, 75005, Paris, France.
| |
Collapse
|
41
|
Li W, Jia Y, Liu F, Wang F, Fan F, Wang J, Zhu J, Xu Y, Zhong W, Yang J. Integration Analysis of Small RNA and Degradome Sequencing Reveals MicroRNAs Responsive to Dickeya zeae in Resistant Rice. Int J Mol Sci 2019; 20:E222. [PMID: 30626113 PMCID: PMC6337123 DOI: 10.3390/ijms20010222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/26/2018] [Accepted: 12/31/2018] [Indexed: 12/20/2022] Open
Abstract
Rice foot rot disease caused by the pathogen Dickeya zeae (formerly known as Erwinia chrysanthemi pv. zeae), is a newly emerging damaging bacterial disease in China and the southeast of Asia, resulting in the loss of yield and grain quality. However, the genetic resistance mechanisms mediated by miRNAs to D. zeae are unclear in rice. In the present study, 652 miRNAs including osa-miR396f predicted to be involved in multiple defense responses to D. zeae were identified with RNA sequencing. A total of 79 differentially expressed miRNAs were detected under the criterion of normalized reads ≥10, including 51 known and 28 novel miRNAs. Degradome sequencing identified 799 targets predicted to be cleaved by 168 identified miRNAs. Among them, 29 differentially expressed miRNA and target pairs including miRNA396f-OsGRFs were identified by co-expression analysis. Overexpression of the osa-miR396f precursor in a susceptible rice variety showed enhanced resistance to D. zeae, coupled with significant accumulation of transcripts of osa-miR396f and reduction of its target the Growth-Regulating Factors (OsGRFs). Taken together, these findings suggest that miRNA and targets including miR396f-OsGRFs have a role in resisting the infections by bacteria D. zeae.
Collapse
Affiliation(s)
- Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Yulin Jia
- United States Department of Agriculture-Agriculture Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA.
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinyan Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Weigong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing 210014, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
42
|
Baldeweg F, Hoffmeister D, Nett M. A genomics perspective on natural product biosynthesis in plant pathogenic bacteria. Nat Prod Rep 2019; 36:307-325. [DOI: 10.1039/c8np00025e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
This review summarizes findings from genomics-inspired natural product research in plant pathogenic bacteria and discusses emerging trends in this field.
Collapse
Affiliation(s)
- Florian Baldeweg
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Dirk Hoffmeister
- Department of Pharmaceutical Microbiology at the Hans Knöll Institute
- Friedrich-Schiller-University Jena
- 07745 Jena
- Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering
- TU Dortmund University
- 44227 Dortmund
- Germany
| |
Collapse
|
43
|
Zhang J, Hu J, Shen H, Zhang Y, Sun D, Pu X, Yang Q, Fan Q, Lin B. Genomic analysis of the Phalaenopsis pathogen Dickeya sp. PA1, representing the emerging species Dickeya fangzhongdai. BMC Genomics 2018; 19:782. [PMID: 30373513 PMCID: PMC6206727 DOI: 10.1186/s12864-018-5154-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 10/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Dickeya sp. strain PA1 is the causal agent of bacterial soft rot in Phalaenopsis, an important indoor orchid in China. PA1 and a few other strains were grouped into a novel species, Dickeya fangzhongdai, and only the orchid-associated strains have been shown to cause soft rot symptoms. METHODS We constructed the complete PA1 genome sequence and used comparative genomics to explore the differences in genomic features between D. fangzhongdai and other Dickeya species. RESULTS PA1 has a 4,979,223-bp circular genome with 4269 predicted protein-coding genes. D. fangzhongdai was phylogenetically similar to Dickeya solani and Dickeya dadantii. The type I to type VI secretion systems (T1SS-T6SS), except for the stt-type T2SS, were identified in D. fangzhongdai. The three phylogenetically similar species varied significantly in terms of their T5SSs and T6SSs, as did the different D. fangzhongdai strains. Genomic island (GI) prediction and synteny analysis (compared to D. fangzhongdai strains) of PA1 also indicated the presence of T5SSs and T6SSs in strain-specific regions. Two typical CRISPR arrays were identified in D. fangzhongdai and in most other Dickeya species, except for D. solani. CRISPR-1 was present in all of these Dickeya species, while the presence of CRISPR-2 varied due to species differentiation. A large polyketide/nonribosomal peptide (PK/NRP) cluster, similar to the zeamine biosynthetic gene cluster in Dickeya zeae rice strains, was discovered in D. fangzhongdai and D. solani. The D. fangzhongdai and D. solani strains might recently have acquired this gene cluster by horizontal gene transfer (HGT). CONCLUSIONS Orchid-associated strains are the typical members of D. fangzhongdai. Genomic analysis of PA1 suggested that this strain presents the genomic characteristics of this novel species. Considering the absence of the stt-type T2SS, the presence of CRISPR loci and the zeamine biosynthetic gene cluster, D. fangzhongdai is likely a transitional form between D. dadantii and D. solani. This is supported by the later acquisition of the zeamine cluster and the loss of CRISPR arrays by D. solani. Comparisons of phylogenetic positions and virulence determinants could be helpful for the effective quarantine and control of this emerging species.
Collapse
Affiliation(s)
- Jingxin Zhang
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - John Hu
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu, HI 96822 USA
| | - Huifang Shen
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Yucheng Zhang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611 USA
| | - Dayuan Sun
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Xiaoming Pu
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qiyun Yang
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| | - Qiurong Fan
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611 USA
| | - Birun Lin
- Key Laboratory of New Techniques for Plant Protection in Guangdong, Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 China
| |
Collapse
|
44
|
Hu M, Li J, Chen R, Li W, Feng L, Shi L, Xue Y, Feng X, Zhang L, Zhou J. Dickeya zeae strains isolated from rice, banana and clivia rot plants show great virulence differentials. BMC Microbiol 2018; 18:136. [PMID: 30336787 PMCID: PMC6194671 DOI: 10.1186/s12866-018-1300-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/01/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Dickeya zeae is the causal agent of maize and rice foot rot diseases, but recently it was also found to infect banana and cause severe losses in China. Strains from different sources showed significant diversity in nature, implying complicated evolution history and pathogenic mechanisms. RESULTS D. zeae strains were isolated from soft rot banana plants and ornamental monocotyledonous Clivia miniata. Compared with D. zeae strain EC1 isolated from rice, clivia isolates did not show any antimicrobial activity, produced less extracellular enzymes, had a much narrow host ranges, but released higher amount of extracellular polysaccharides (EPS). In contrast, the banana isolates in general produced more extracellular enzymes and EPS than strain EC1. Furthermore, we provided evidence that the banana D. zeae isolate MS2 produces a new antibiotic/phytotoxin(s), which differs from the zeamine toxins produced by rice pathogen D. zeae strain EC1 genetically and in its antimicrobial potency. CONCLUSIONS The findings from this study expanded the natural host range of D. zeae and highlighted the genetic and phenotypic divergence of D. zeae strains. Conclusions can be drawn from a series of tests that at least two types of D. zeae strains could cause the soft rot disease of banana, with one producing antimicrobial compound while the other producing none, and the D. zeae clivia strains could only infect monocot hosts. D. zeae strains isolated from different sources have diverse virulence characteristics.
Collapse
Affiliation(s)
- Ming Hu
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Jieling Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Ruiting Chen
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Wenjun Li
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Luwen Feng
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Lei Shi
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Yang Xue
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoyin Feng
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Lianhui Zhang
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642 China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
45
|
Li WQ, Jia YL, Liu FQ, Wang FQ, Fan FJ, Wang J, Zhu JY, Xu Y, Zhong WG, Yang J. Genome-wide identification and characterization of long non-coding RNAs responsive to Dickeya zeae in rice. RSC Adv 2018; 8:34408-34417. [PMID: 35548658 PMCID: PMC9087051 DOI: 10.1039/c8ra04993a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 09/09/2018] [Indexed: 11/26/2022] Open
Abstract
Plant long non-coding RNA (lncRNA) is a type of newly emerging epigenetic regulator playing a critical role in plant growth, development, and biotic stress responses. However, it is unknown whether lncRNAs are involved in resistance responses between rice and Dickeya zeae, a bacterial agent causing rice foot rot disease. In this study, RNA-seq was performed to uncover the co-expression regulating networks mediated by D. zeae responsive lncRNAs and their candidate target genes. Of the 4709 lncRNAs identified, 2518 and 2191 were up- and down-regulated in response to D. zeae infection, respectively. Expression changes of 17 selected lncRNAs and their predicted targets with a potential role in defense response were investigated by qPCR. The expression levels of five lncRNAs were up-regulated while their cognate candidate target genes were down-regulated upon D. zeae infection. In addition, several lncRNAs were predicted to be target mimics of osa-miR396 and osa-miR156. These results suggest that lncRNAs might play a role in response to D. zeae infection by regulating the transcript levels of their targets and miRNAs in rice.
Collapse
Affiliation(s)
- Wen Qi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
- Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences Nanjing 210014 China
| | - Yu Lin Jia
- United States Department of Agriculture-Agriculture Research Service, Dale Bumpers National Rice Research Center Stuttgart 72160 USA
| | - Feng Quan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences Nanjing 210014 China
| | - Fang Quan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Fang Jun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Jin Yan Zhu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Wei Gong Zhong
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| | - Jie Yang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing Branch of Chinese National Center for Rice Improvement, Jiangsu High Quality Rice R&D Center Nanjing 210014 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University Yangzhou 225009 China
| |
Collapse
|
46
|
Mullowney MW, McClure RA, Robey MT, Kelleher NL, Thomson RJ. Natural products from thioester reductase containing biosynthetic pathways. Nat Prod Rep 2018; 35:847-878. [PMID: 29916519 PMCID: PMC6146020 DOI: 10.1039/c8np00013a] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Covering: up to 2018 Thioester reductase domains catalyze two- and four-electron reductions to release natural products following assembly on nonribosomal peptide synthetases, polyketide synthases, and their hybrid biosynthetic complexes. This reductive off-loading of a natural product yields an aldehyde or alcohol, can initiate the formation of a macrocyclic imine, and contributes to important intermediates in a variety of biosyntheses, including those for polyketide alkaloids and pyrrolobenzodiazepines. Compounds that arise from reductase-terminated biosynthetic gene clusters are often reactive and exhibit biological activity. Biomedically important examples include the cancer therapeutic Yondelis (ecteinascidin 743), peptide aldehydes that inspired the first therapeutic proteasome inhibitor bortezomib, and numerous synthetic derivatives and antibody drug conjugates of the pyrrolobenzodiazepines. Recent advances in microbial genomics, metabolomics, bioinformatics, and reactivity-based labeling have facilitated the detection of these compounds for targeted isolation. Herein, we summarize known natural products arising from this important category, highlighting their occurrence in Nature, biosyntheses, biological activities, and the technologies used for their detection and identification. Additionally, we review publicly available genomic data to highlight the remaining potential for novel reductively tailored compounds and drug leads from microorganisms. This thorough retrospective highlights various molecular families with especially privileged bioactivity while illuminating challenges and prospects toward accelerating the discovery of new, high value natural products.
Collapse
Affiliation(s)
- Michael W Mullowney
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Ryan A McClure
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| | - Matthew T Robey
- Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Neil L Kelleher
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA. and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Evanston, IL 60208, USA
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
47
|
Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep 2018; 8:341. [PMID: 29321600 PMCID: PMC5762655 DOI: 10.1038/s41598-017-18578-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 12/11/2017] [Indexed: 12/25/2022] Open
Abstract
Dickeya zeae is the causal agent of rice foot rot disease, which has recently become a great threat to rice planting countries and regions. The pathogen produces a family of phytotoxins named zeamines that is critical for bacterial virulence, but little is known about the signaling pathways and regulatory mechanisms that govern zeamine production. In this study, we showed that a conserved transcriptional regulator Fis is involved in the regulation of zeamine production in D. zeae strain EC1. Deletion mutants were markedly attenuated in the virulence against rice seed germination. Transcriptome and phenotype analyses showed that Fis is a potent global transcriptional regulator modulating various virulence traits, including production of extracellular enzymes and exopolysaccharides, swimming and swarming motility, biofilm formation and cell aggregation. DNA gel retardation analysis showed that Fis directly regulates the transcription of key virulence genes and the genes encoding Vfm quorum sensing system through DNA/protein interaction. Our findings unveil a key regulator associated with the virulence of D. zeae EC1, and present useful clues for further elucidation of the regulatory complex and signaling pathways which govern the virulence of this important pathogen.
Collapse
|
48
|
Masschelein J, Jenner M, Challis GL. Antibiotics from Gram-negative bacteria: a comprehensive overview and selected biosynthetic highlights. Nat Prod Rep 2017. [PMID: 28650032 DOI: 10.1039/c7np00010c] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Covering: up to 2017The overwhelming majority of antibiotics in clinical use originate from Gram-positive Actinobacteria. In recent years, however, Gram-negative bacteria have become increasingly recognised as a rich yet underexplored source of novel antimicrobials, with the potential to combat the looming health threat posed by antibiotic resistance. In this article, we have compiled a comprehensive list of natural products with antimicrobial activity from Gram-negative bacteria, including information on their biosynthetic origin(s) and molecular target(s), where known. We also provide a detailed discussion of several unusual pathways for antibiotic biosynthesis in Gram-negative bacteria, serving to highlight the exceptional biocatalytic repertoire of this group of microorganisms.
Collapse
Affiliation(s)
- J Masschelein
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - M Jenner
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| | - G L Challis
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, UK.
| |
Collapse
|
49
|
Liu S, Lin N, Chen Y, Liang Z, Liao L, Lv M, Chen Y, Tang Y, He F, Chen S, Zhou J, Zhang L. Biocontrol of Sugarcane Smut Disease by Interference of Fungal Sexual Mating and Hyphal Growth Using a Bacterial Isolate. Front Microbiol 2017; 8:778. [PMID: 28536557 PMCID: PMC5422470 DOI: 10.3389/fmicb.2017.00778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/18/2017] [Indexed: 12/03/2022] Open
Abstract
Sugarcane smut is a fungal disease caused by Sporisorium scitamineum, which can cause severe economic losses in sugarcane industry. The infection depends on the mating of bipolar sporida to form a dikaryon and develops into hyphae to penetrate the meristematic tissue of sugarcane. In this study, we set to isolate bacterial strains capable of blocking the fungal mating and evaluate their potential in control of sugarcane smut disease. A bacterial isolate ST4 from rhizosphere displayed potent inhibitory activity against the mating of S. scitamineum bipolar sporida and was selected for further study. Phylogenetic analyses and biochemical characterization showed that the isolate was most similar to Pseudomonas guariconensis. Methanol extracts from minimum and potato dextrose agar (PDA) agar medium, on which strain ST4 has grown, showed strong inhibitory activity on the sexual mating of S. scitamineum sporida, without killing the haploid cells MAT-1 or MAT-2. Further analysis showed that only glucose, but not sucrose, maltose, and fructose, could support strain ST4 to produce antagonistic chemicals. Consistent with the above findings, greenhouse trials showed that addition of 2% glucose to the bacterial inoculum significantly increased the strain ST4 biocontrol efficiency against sugarcane smut disease by 77% than the inoculum without glucose. The results from this study depict a new strategy to screen for biocontrol agents for control and prevention of the sugarcane smut disease.
Collapse
Affiliation(s)
- Shiyin Liu
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Nuoqiao Lin
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Yumei Chen
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Zhibin Liang
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Lisheng Liao
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Mingfa Lv
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Yufan Chen
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Yingxin Tang
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Fei He
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Shaohua Chen
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Jianuan Zhou
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
| | - Lianhui Zhang
- Integrative Microbiology Research Centre, South China Agricultural UniversityGuangzhou, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural UniversityGuangzhou, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangzhou, China
| |
Collapse
|
50
|
Zhou J, Zhang H, Lv M, Chen Y, Liao L, Cheng Y, Liu S, Chen S, He F, Cui Z, Jiang Z, Chang C, Zhang L. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. MOLECULAR PLANT PATHOLOGY 2016; 17:1398-1408. [PMID: 26814706 PMCID: PMC6638372 DOI: 10.1111/mpp.12376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 01/23/2016] [Accepted: 01/24/2016] [Indexed: 06/05/2023]
Abstract
Dickeya zeae is a causal agent of rice root rot disease. The pathogen is known to produce a range of virulence factors, including phytotoxic zeamines and extracellular enzymes, but the mechanisms of virulence regulation remain vague. In this study, we identified a SlyA/MarR family transcription factor SlyA in D. zeae strain EC1. Disruption of slyA significantly decreased zeamine production, enhanced swimming and swarming motility, reduced biofilm formation and significantly decreased pathogenicity on rice. Quantitative polymerase chain reaction (qPCR) analysis confirmed the role of SlyA in transcriptional modulation of a range of genes associated with bacterial virulence. In trans expression of slyA in expI mutants recovered the phenotypes of motility and biofilm formation, suggesting that SlyA is downstream of the acylhomoserine lactone-mediated quorum sensing pathway. Taken together, the findings from this study unveil a key transcriptional regulatory factor involved in the modulation of virulence factor production and overall pathogenicity of D. zeae EC1.
Collapse
Affiliation(s)
- Jia‐Nuan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Hai‐Bao Zhang
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| | - Ming‐Fa Lv
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Yu‐Fan Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Li‐Sheng Liao
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Ying‐Ying Cheng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shi‐Yin Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Shao‐Hua Chen
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Fei He
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐Ning Cui
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Zi‐De Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Chang‐Qing Chang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
| | - Lian‐Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant PathologySouth China Agricultural UniversityGuangzhou510642China
- Institute of Molecular and Cell Biology 61 Biopolis DriveSingapore138673
| |
Collapse
|