1
|
Etesami H, Glick BR. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol Res 2024; 281:127602. [PMID: 38228017 DOI: 10.1016/j.micres.2024.127602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/18/2024]
Abstract
Indole-3-acetic acid (IAA), a fundamental phytohormone categorized under auxins, not only influences plant growth and development but also plays a critical role in plant-microbe interactions. This study reviews the role of IAA in bacteria-plant communication, with a focus on its biosynthesis, regulation, and the subsequent effects on host plants. Bacteria synthesize IAA through multiple pathways, which include the indole-3-acetamide (IAM), indole-3-pyruvic acid (IPyA), and several other routes, whose full mechanisms remain to be fully elucidated. The production of bacterial IAA affects root architecture, nutrient uptake, and resistance to various abiotic stresses such as drought, salinity, and heavy metal toxicity, enhancing plant resilience and thus offering promising routes to sustainable agriculture. Bacterial IAA synthesis is regulated through complex gene networks responsive to environmental cues, impacting plant hormonal balances and symbiotic relationships. Pathogenic bacteria have adapted mechanisms to manipulate the host's IAA dynamics, influencing disease outcomes. On the other hand, beneficial bacteria utilize IAA to promote plant growth and mitigate abiotic stresses, thereby enhancing nutrient use efficiency and reducing dependency on chemical fertilizers. Advancements in analytical methods, such as liquid chromatography-tandem mass spectrometry, have improved the quantification of bacterial IAA, enabling accurate measurement and analysis. Future research focusing on molecular interactions between IAA-producing bacteria and host plants could facilitate the development of biotechnological applications that integrate beneficial bacteria to improve crop performance, which is essential for addressing the challenges posed by climate change and ensuring global food security. This integration of bacterial IAA producers into agricultural practice promises to revolutionize crop management strategies by enhancing growth, fostering resilience, and reducing environmental impact.
Collapse
Affiliation(s)
- Hassan Etesami
- Soil Science Department, University of Tehran, Tehran, Iran.
| | - Bernard R Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
2
|
Burghardt LT, diCenzo GC. The evolutionary ecology of rhizobia: multiple facets of competition before, during, and after symbiosis with legumes. Curr Opin Microbiol 2023; 72:102281. [PMID: 36848712 DOI: 10.1016/j.mib.2023.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/12/2023] [Accepted: 01/20/2023] [Indexed: 02/27/2023]
Abstract
Rhizobial bacteria have complex lifestyles that involve growth and survival in bulk soil, plant rhizospheres and rhizoplanes, legume infection threads, and mature and senescing legume nodules. In nature, rhizobia coexist and compete with many other rhizobial strains and species to form host associations. We review recent work defining competitive interactions across these environments. We highlight the use of sophisticated measurement tools and sequencing technologies to examine competition mechanisms in planta, and highlight environments (e.g. soil and senescing nodules) where we still know exceedingly little. We argue that moving toward an explicitly ecological framework (types of competition, resources, and genetic differentiation) will clarify the evolutionary ecology of these foundational organisms and open doors for engineering sustainable, beneficial associations with hosts.
Collapse
Affiliation(s)
- Liana T Burghardt
- The Pennsylvania State University, Department of Plant Science, University Park, PA 16802, United States; The Pennsylvania State University, Ecology Graduate Program, University Park, PA 16802, United States.
| | - George C diCenzo
- Queen's University, Department of Biology, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
3
|
Li M, Liu R, Li Y, Wang C, Ma W, Zheng L, Zhang K, Fu X, Li X, Su Y, Huang G, Zhong Y, Liao H. Functional Investigation of Plant Growth Promoting Rhizobacterial Communities in Sugarcane. Front Microbiol 2022; 12:783925. [PMID: 35058904 PMCID: PMC8763851 DOI: 10.3389/fmicb.2021.783925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022] Open
Abstract
Plant microbiota are of great importance for host nutrition and health. As a C4 plant species with a high carbon fixation capacity, sugarcane also associates with beneficial microbes, though mechanisms underlying sugarcane root-associated community development remain unclear. Here, we identify microbes that are specifically enriched around sugarcane roots and report results of functional testing of potentially beneficial microbes propagating with sugarcane plants. First, we analyzed recruitment of microbes through analysis of 16S rDNA enrichment in greenhouse cultured sugarcane seedlings growing in field soil. Then, plant-associated microbes were isolated and assayed for beneficial activity, first in greenhouse experiments, followed by field trials for selected microbial strains. The promising beneficial microbe SRB-109, which quickly colonized both roots and shoots of sugarcane plants, significantly promoted sugarcane growth in field trials, nitrogen and potassium acquisition increasing by 35.68 and 28.35%, respectively. Taken together, this report demonstrates successful identification and utilization of beneficial plant-associated microbes in sugarcane production. Further development might facilitate incorporation of such growth-promoting microbial applications in large-scale sugarcane production, which may not only increase yields but also reduce fertilizer costs and runoff.
Collapse
Affiliation(s)
- Mingjia Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ran Liu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanjun Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Cunhu Wang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenjing Ma
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lei Zheng
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kefei Zhang
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xing Fu
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinxin Li
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guoqiang Huang
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongjia Zhong
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong Liao
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Comparative metabolite analysis of Delftia-Bradyrhizobium co-inoculated soybean plants using UHPLC-HRMS-based metabolomic profiling. Symbiosis 2022. [DOI: 10.1007/s13199-021-00818-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Ding X, Liu K, Yan Q, Liu X, Chen N, Wang G, He S. Sugar and organic acid availability modulate soil diazotroph community assembly and species co-occurrence patterns on the Tibetan Plateau. Appl Microbiol Biotechnol 2021; 105:8545-8560. [PMID: 34661705 DOI: 10.1007/s00253-021-11629-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 01/03/2023]
Abstract
Metabolites can mediate species interactions and the assembly of microbial communities. However, how these chemicals relate to the assembly processes and co-occurrence patterns of diazotrophic assemblages in root-associated soils remains largely unknown. Here, we examined the diversity and assembly of diazotrophic communities and further deciphered their links with metabolites on Tibetan Plateau. We found that the distribution of sugars and organic acids in the root-associated soils was significantly correlated with the richness of diazotrophs. The presence of these two soil metabolites explains the variability in diazotrophic community compositions. The differential concentrations of these metabolites were significantly linked with the distinctive abundances of diazotrophic taxa in same land types dominated by different plants or dissimilar soils by same plants. The assembly of diazotrophic communities is subject to deterministic ecological processes, which are widely modulated by the variety and amount of sugars and organic acids. Organic acids, for instance, 3-(4-hydroxyphenyl)propionic acid and citric acid, were effective predictors of the characteristics of diazotrophic assemblages across desert habitats. Diazotrophic co-occurrence networks tended to be more complex and connected within different land types covered by the same plant species. The concentrations of multiple sugars and organic acids were coupled significantly with the distribution of keystone species, such as Azotobacter, Azospirillum, Bradyrhizobium, and Mesorhizobium, in the co-occurrence network. These findings provide new insights into the assembly mechanisms of root-associated diazotrophic communities across the desert ecosystems of the Tibetan Plateau.Key points• Soil metabolites were significantly linked to the diversity of diazotrophic community.• Soil metabolites determined the assembly of diazotrophic community.• Sugars and organic acids were coupled mainly with keystone species in networks.
Collapse
Affiliation(s)
- Xiaowei Ding
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Kaihui Liu
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China.
| | - Qingyun Yan
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Xingyu Liu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ni Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Guoliang Wang
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| | - Shuai He
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, China
| |
Collapse
|
6
|
Riviezzi B, García-Laviña CX, Morel MA, Castro-Sowinski S. Facing the communication between soybean plants and microorganisms (Bradyrhizobium and Delftia) by quantitative shotgun proteomics. Symbiosis 2021. [DOI: 10.1007/s13199-021-00758-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
7
|
Yazaki W, Shimasaki T, Aoki Y, Masuda S, Shibata A, Suda W, Shirasu K, Yazaki K, Sugiyama A. Nitrogen Deficiency-induced Bacterial Community Shifts in Soybean Roots. Microbes Environ 2021; 36:ME21004. [PMID: 34234044 PMCID: PMC8446753 DOI: 10.1264/jsme2.me21004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/24/2021] [Indexed: 11/20/2022] Open
Abstract
Nitrogen deficiency affects soybean growth and physiology, such as symbiosis with rhizobia; however, its effects on the bacterial composition of the soybean root microbiota remain unclear. A bacterial community analysis by 16S rRNA gene amplicon sequencing showed nitrogen deficiency-induced bacterial community shifts in soybean roots with the marked enrichment of Methylobacteriaceae. The abundance of Methylobacteriaceae was low in the roots of field-grown soybean without symptoms of nitrogen deficiency. Although Methylobacteriaceae isolated from soybean roots under nitrogen deficiency did not promote growth or nodulation when inoculated into soybean roots, these results indicate that the enrichment of Methylobacteriaceae in soybean roots is triggered by nitrogen-deficiency stress.
Collapse
Affiliation(s)
- Wataru Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Tomohisa Shimasaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, 1–7–22 Suehiro-cho. Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, 1–7–22 Suehiro-cho. Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Wataru Suda
- Laboratory for Microbiome Sciences, RIKEN Center for Integrative Medical Sciences, Yokohama 230–0045, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, 1–7–22 Suehiro-cho. Tsurumi-ku, Yokohama, Kanagawa 230–0045, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
8
|
Alemneh AA, Zhou Y, Ryder MH, Denton MD. Mechanisms in plant growth-promoting rhizobacteria that enhance legume-rhizobial symbioses. J Appl Microbiol 2020; 129:1133-1156. [PMID: 32592603 DOI: 10.1111/jam.14754] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/07/2020] [Accepted: 06/20/2020] [Indexed: 12/21/2022]
Abstract
Nitrogen fixation is an important biological process in terrestrial ecosystems and for global crop production. Legume nodulation and N2 fixation have been improved using nodule-enhancing rhizobacteria (NER) under both regular and stressed conditions. The positive effect of NER on legume-rhizobia symbiosis can be facilitated by plant growth-promoting (PGP) mechanisms, some of which remain to be identified. NER that produce aminocyclopropane-1-carboxylic acid deaminase and indole acetic acid enhance the legume-rhizobia symbiosis through (i) enhancing the nodule induction, (ii) improving the competitiveness of rhizobia for nodulation, (iii) prolonging functional nodules by suppressing nodule senescence and (iv) upregulating genes associated with legume-rhizobia symbiosis. The means by which these processes enhance the legume-rhizobia symbiosis is the focus of this review. A better understanding of the mechanisms by which PGP rhizobacteria operate, and how they can be altered, will provide opportunities to enhance legume-rhizobial interactions, to provide new advances in plant growth promotion and N2 fixation.
Collapse
Affiliation(s)
- A A Alemneh
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - Y Zhou
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M H Ryder
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| | - M D Denton
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA, Australia.,China-Australia Joint Laboratory for Soil Ecological Health and Remediation, The University of Adelaide, Glen Osmond, SA, Australia
| |
Collapse
|
9
|
Okutani F, Hamamoto S, Aoki Y, Nakayasu M, Nihei N, Nishimura T, Yazaki K, Sugiyama A. Rhizosphere modelling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. PLANT, CELL & ENVIRONMENT 2020; 43:1036-1046. [PMID: 31875335 DOI: 10.1111/pce.13708] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/16/2019] [Indexed: 05/21/2023]
Abstract
Plant roots nurture a wide variety of microbes via exudation of metabolites, shaping the rhizosphere's microbial community. Despite the importance of plant specialized metabolites in the assemblage and function of microbial communities in the rhizosphere, little is known of how far the effects of these metabolites extend through the soil. We employed a fluid model to simulate the spatiotemporal distribution of daidzein, an isoflavone secreted from soybean roots, and validated using soybeans grown in a rhizobox. We then analysed how daidzein affects bacterial communities using soils artificially treated with daidzein. Simulation of daidzein distribution showed that it was only present within a few millimetres of root surfaces. After 14 days in a rhizobox, daidzein was only present within 2 mm of root surfaces. Soils with different concentrations of daidzein showed different community composition, with reduced α-diversity in daidzein-treated soils. Bacterial communities of daidzein-treated soils were closer to those of the soybean rhizosphere than those of bulk soils. This study highlighted the limited distribution of daidzein within a few millimetres of root surfaces and demonstrated a novel role of daidzein in assembling bacterial communities in the rhizosphere by acting as more of a repellant than an attractant.
Collapse
Affiliation(s)
- Fuki Okutani
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Shoichiro Hamamoto
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuichi Aoki
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masaru Nakayasu
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Naoto Nihei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Taku Nishimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
10
|
Ma Y, Qu ZL, Liu B, Tan JJ, Asiegbu FO, Sun H. Bacterial Community Structure of Pinus Thunbergii Naturally Infected by the Nematode Bursaphelenchus Xylophilus. Microorganisms 2020; 8:microorganisms8020307. [PMID: 32102196 PMCID: PMC7074913 DOI: 10.3390/microorganisms8020307] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/03/2020] [Accepted: 02/21/2020] [Indexed: 12/17/2022] Open
Abstract
Pine wilt disease (PWD) caused by the nematode Bursaphelenchusxylophilus is a devastating disease in conifer forests in Eurasia. However, information on the effect of PWD on the host microbial community is limited. In this study, the bacterial community structure and potential function in the needles, roots, and soil of diseased pine were studied under field conditions using Illumina MiSeq coupled with Phylogenetic Investigation of Communities by Reconstruction of Unobserved states (PICRUSt) software. The results showed that the community and functional structure of healthy and diseased trees differed only in the roots and needles, respectively (p < 0.05). The needles, roots, and soil formed unique bacterial community and functional structures. The abundant phyla across all samples were Proteobacteria (41.9% of total sequence), Actinobacteria (29.0%), Acidobacteria (12.2%), Bacteroidetes (4.8%), and Planctomycetes (2.1%). The bacterial community in the healthy roots was dominated by Acidobacteria, Planctomycetes, and Rhizobiales, whereas in the diseased roots, Proteobacteria, Firmicutes, and Burkholderiales were dominant. Functionally, groups involved in the cell process and genetic information processing had a higher abundance in the diseased needles, which contributed to the difference in functional structure. The results indicate that PWD can only affect the host bacteria community structure and function in certain anatomical regions of the host tree.
Collapse
Affiliation(s)
- Yang Ma
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (Z.-L.Q.); (B.L.); (J.-J.T.)
| | - Zhao-Lei Qu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (Z.-L.Q.); (B.L.); (J.-J.T.)
| | - Bing Liu
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (Z.-L.Q.); (B.L.); (J.-J.T.)
| | - Jia-Jin Tan
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (Z.-L.Q.); (B.L.); (J.-J.T.)
| | - Fred O. Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki 00790, Finland;
| | - Hui Sun
- Collaborative Innovation Center of Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.M.); (Z.-L.Q.); (B.L.); (J.-J.T.)
- Correspondence: ; Tel.: +8613851724350
| |
Collapse
|
11
|
Tejman-Yarden N, Robinson A, Davidov Y, Shulman A, Varvak A, Reyes F, Rahav G, Nissan I. Delftibactin-A, a Non-ribosomal Peptide With Broad Antimicrobial Activity. Front Microbiol 2019; 10:2377. [PMID: 31681234 PMCID: PMC6808179 DOI: 10.3389/fmicb.2019.02377] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 09/30/2019] [Indexed: 11/13/2022] Open
Abstract
The rapid emergence of drug resistant bacteria is occurring worldwide, outpacing the development of new antibiotics. It is known that some of the main sources of antibiotics are the bacteria themselves, many of which are secondary metabolites of Gram positive bacteria. Siderophores, which are secondary metabolites, function as natural chelators (e.g., iron). They are produced and secreted by many bacteria and have been experimented on as "carriers" of several types of antibiotics that pass the cell membrane of challenging Gram negative bacteria. Delftibactin A is a non-ribosomal peptide (NRP), which is known to detoxify gold in Delftia spp. and form gold nuggets, and is considered to be a siderophore. In this study we demonstrate that the supernatant from novel environmental isolates of Delftia spp. have antimicrobial activity. We characterized the active fraction and identified delftibactin A as a compound with antimicrobial activity. Delftibactin A exhibits potent antimicrobial activity against Gram positive multi drug resistant (MDR) bacteria like Methicillin-resistant Staphylococcus aureus (MRSA), and Vancomycin resistant Enterococcus (VRE), and also against the Gram negative pathogens Acinetobacter baumannii and Klebsiella pneumoniae. We discovered that the production of delftibactin A is greatly influenced by temperature. Furthermore, we have demonstrated the possibility of utilizing delftibactin A as a siderophore carrier of toxic metals such as gallium into Gram negative bacteria. These findings expose new opportunities of yet unexploited natural products such as delftibactin A, which have been known for other bacterial uses, as potent factors in the battle against MDR bacteria.
Collapse
Affiliation(s)
- Noa Tejman-Yarden
- Public Health Regional Laboratory, Southern District, Ministry of Health (Israel), Beer Sheva, Israel.,Laboratory Department, Ministry of Health, Jerusalem, Israel
| | - Ari Robinson
- Infectious Diseases Unit, Sheba Medical Center, Ramat Gan, Israel
| | - Yaakov Davidov
- Infectious Diseases Unit, Sheba Medical Center, Ramat Gan, Israel
| | | | - Alexander Varvak
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| | | | - Galia Rahav
- Infectious Diseases Unit, Sheba Medical Center, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Nissan
- Infectious Diseases Unit, Sheba Medical Center, Ramat Gan, Israel.,National Public Health Laboratory, Ministry of Health (Israel), Tel-Aviv, Israel
| |
Collapse
|
12
|
Alexander A, Singh VK, Mishra A, Jha B. Plant growth promoting rhizobacterium Stenotrophomonas maltophilia BJ01 augments endurance against N2 starvation by modulating physiology and biochemical activities of Arachis hypogea. PLoS One 2019; 14:e0222405. [PMID: 31513643 PMCID: PMC6742461 DOI: 10.1371/journal.pone.0222405] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022] Open
Abstract
Arachis hypogea (Peanut) is one of the most important crops, and it is harvested and used for food and oil production. Being a legume crop, the fixation of atmospheric nitrogen is achieved through symbiotic association. Nitrogen deficiency is one of the major constrains for loss of crop productivity. The bacterium Stenotrophomonas maltophilia is known for interactions with plants. In this study, characteristics that promote plant growth were explored for their ability to enhance the growth of peanut plants under N2 deficit condition. In the presence of S. maltophilia, it was observed that fatty acid composition of peanut plants was influenced and increased contents of omega-7 monounsaturated fatty acid and omega-6 fatty acid (γ-Linolenic acid) were detected. Plant growth was increased in plants co-cultivated with PGPR (Plant Growth Promoting Rhizobacteria) under normal and stress (nitrogen deficient) condition. Electrolyte leakage, lipid peroxidation, and H2O2 content reduced in plants, co-cultivated with PGPR under normal (grown in a media supplemented with N2 source; C+) or stress (nitrogen deficient N+) conditions compared to the corresponding control plants (i.e. not co-cultivated with PGPR; C-or N-). The growth hormone auxin, osmoprotectants (proline, total soluble sugars and total amino acids), total phenolic-compounds and total flavonoid content were enhanced in plants co-cultivated with PGPR. Additionally, antioxidant and free radical scavenging (DPPH, hydroxyl and H2O2) activities were increased in plants that were treated with PGPR under both normal and N2 deficit condition. Overall, these results indicate that plants co-cultivated with PGPR, S. maltophilia, increase plant growth, antioxidant levels, scavenging, and stress tolerance under N2 deficit condition. The beneficial use of bacterium S. maltophilia could be explored further as an efficient PGPR for growing agricultural crops under N2 deficit conditions. However, a detail agronomic study would be prerequisite to confirm its commercial role.
Collapse
Affiliation(s)
- Ankita Alexander
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Vijay Kumar Singh
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
| | - Avinash Mishra
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| | - Bhavanath Jha
- Biotechnology and Phycology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad, India
| |
Collapse
|
13
|
Pulido H, Mauck KE, De Moraes CM, Mescher MC. Combined effects of mutualistic rhizobacteria counteract virus-induced suppression of indirect plant defences in soya bean. Proc Biol Sci 2019; 286:20190211. [PMID: 31113327 PMCID: PMC6545077 DOI: 10.1098/rspb.2019.0211] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/02/2019] [Indexed: 11/12/2022] Open
Abstract
It is increasingly clear that microbial plant symbionts can influence interactions between their plant hosts and other organisms. However, such effects remain poorly understood, particularly under ecologically realistic conditions where plants simultaneously interact with diverse mutualists and antagonists. Here, we examine how the effects of a plant virus on indirect plant defences against its insect vector are influenced by co-occurrence of other microbial plant symbionts. Using a multi-factorial design, we manipulated colonization of soya bean using three different microbes: a pathogenic plant virus (bean pod mottle virus (BPMV)), a nodule-forming beneficial rhizobacterium ( Bradyrhizobium japonicum) and a plant growth-promoting rhizobacterium ( Delftia acidovorans). We then assessed recruitment of parasitoids ( Pediobious foveolatus (Eulophidae)) and parasitism rates following feeding by the BPMV vector Epilachna varivestis (Coccinellidae). BPMV infection suppressed parasitoid recruitment, prolonged parasitoid foraging time and reduced parasitism rates in semi-natural foraging assays. However, simultaneous colonization of BPMV-infected hosts by both rhizobacteria restored parasitoid recruitment and rates of parasitism to levels similar to uninfected controls. Co-colonization by the two rhizobacteria also enhanced parasitoid recruitment in the absence of BPMV infection. These results illustrate the potential of plant-associated microbes to influence indirect plant defences, with implications for disease transmission and herbivory, but also highlight the potential complexity of such interactions.
Collapse
Affiliation(s)
- Hannier Pulido
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Kerry E. Mauck
- Department of Entomology, University of California, Riverside, CA, USA
| | - Consuelo M. De Moraes
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| | - Mark C. Mescher
- Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH Zürich), 8092 Zürich, Switzerland
| |
Collapse
|