1
|
Thanthrige N, Bhowmik SD, Williams B. 'Friend versus foe'-does autophagy help regulate symbiotic plant-microbe interactions and can it be manipulated to improve legume cultivation? FEBS Lett 2025; 599:645-655. [PMID: 39582243 DOI: 10.1002/1873-3468.15062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 11/26/2024]
Abstract
Autophagy is a genetically regulated, eukaryotic catabolic pathway that responds to internal and external cellular signals. In plants, it plays crucial roles in development, and responses to abiotic and biotic stresses. Due to its role in limiting the hypersensitive response, research on the molecular mechanisms of autophagic signalling pathways in plant-microbe interactions has primarily focused on plant-pathogen responses. Although there is substantially less information on the role of autophagy signalling in symbiotic plant-microbe interactions, there is accumulating evidence that it is also a key regulator of mutualistic plant-microbe interactions. Here, we review recent progress on the roles of autophagy in symbiotic plant interactions and discuss potential future research directions. Once understood, the central role that autophagy plays within pathogenic and symbiotic plant-microbe interactions has significant potential application for crop improvement. Manipulating autophagy in legume crops could help support crop growth with reduced levels of fertiliser application while maintaining yields with increased protein content in the harvest.
Collapse
Affiliation(s)
- Nipuni Thanthrige
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Sudipta Das Bhowmik
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Australia
| | - Brett Williams
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
2
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Enhancing Pisum sativum growth and symbiosis under heat stress: the synergistic impact of co-inoculated bacterial consortia and ACC deaminase-lacking Rhizobium. Arch Microbiol 2024; 206:203. [PMID: 38573536 PMCID: PMC10995081 DOI: 10.1007/s00203-024-03943-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/05/2024]
Abstract
The 1-aminocyclopropane-1-carboxylate (ACC) deaminase is a crucial bacterial trait, yet it is not widely distributed among rhizobia. Hence, employing a co-inoculation approach that combines selected plant growth-promoting bacteria with compatible rhizobial strains, especially those lacking ACC deaminase, presents a practical solution to alleviate the negative effects of diverse abiotic stresses on legume nodulation. Our objective was to explore the efficacy of three non-rhizobial endophytes, Phyllobacterium salinisoli (PH), Starkeya sp. (ST) and Pseudomonas turukhanskensis (PS), isolated from native legumes grown in Tunisian arid regions, in improving the growth of cool-season legume and fostering symbiosis with an ACC deaminase-lacking rhizobial strain under heat stress. Various combinations of these endophytes (ST + PS, ST + PH, PS + PH, and ST + PS + PH) were co-inoculated with Rhizobium leguminosarum 128C53 or its ΔacdS mutant derivative on Pisum sativum plants exposed to a two-week heat stress period.Our findings revealed that the absence of ACC deaminase activity negatively impacted both pea growth and symbiosis under heat stress. Nevertheless, these detrimental effects were successfully mitigated in plants co-inoculated with ΔacdS mutant strain and specific non-rhizobial endophytes consortia. Our results indicated that heat stress significantly altered the phenolic content of pea root exudates. Despite this, there was no impact on IAA production. Interestingly, these changes positively influenced biofilm formation in consortia containing the mutant strain, indicating synergistic bacteria-bacteria interactions. Additionally, no positive effects were observed when these endophytic consortia were combined with the wild-type strain. This study highlights the potential of non-rhizobial endophytes to improve symbiotic performance of rhizobial strains lacking genetic mechanisms to mitigate stress effects on their legume host, holding promising potential to enhance the growth and yield of targeted legumes by boosting symbiosis.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED - Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, Évora, 7006-554, Portugal.
| |
Collapse
|
3
|
Ben Gaied R, Sbissi I, Tarhouni M, Brígido C. Bacterial Endophytes from Legumes Native to Arid Environments Are Promising Tools to Improve Mesorhizobium-Chickpea Symbiosis under Salinity. BIOLOGY 2024; 13:96. [PMID: 38392314 PMCID: PMC10886315 DOI: 10.3390/biology13020096] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024]
Abstract
Symbiotic nitrogen fixation is a major contributor of N in agricultural ecosystems, but the establishment of legume-rhizobium symbiosis is highly affected by soil salinity. Our interest is focused on the use of non-rhizobial endophytes to assist the symbiosis between chickpea and its microsymbiont under salinity to avoid loss of production and fertility. Our aims were (1) to investigate the impact of salinity on both symbiotic partners; including on early events of the Mesorhizobium-chickpea symbiosis, and (2) to evaluate the potential of four non-rhizobial endophytes isolated from legumes native to arid regions (Phyllobacterium salinisoli, P. ifriqiyense, Xanthomonas translucens, and Cupriavidus respiraculi) to promote chickpea growth and nodulation under salinity. Our results show a significant reduction in chickpea seed germination rate and in the microsymbiont Mesorhizobium ciceri LMS-1 growth under different levels of salinity. The composition of phenolic compounds in chickpea root exudates significantly changed when the plants were subjected to salinity, which in turn affected the nod genes expression in LMS-1. Furthermore, the LMS-1 response to root exudate stimuli was suppressed by the presence of salinity (250 mM NaCl). On the contrary, a significant upregulation of exoY and otsA genes, which are involved in exopolysaccharide and trehalose biosynthesis, respectively, was registered in salt-stressed LMS-1 cells. In addition, chickpea co-inoculation with LMS-1 along with the consortium containing two non-rhizobial bacterial endophytes, P. salinisoli and X. translucens, resulted in significant improvement of the chickpea growth and the symbiotic performance of LMS-1 under salinity. These results indicate that this non-rhizobial endophytic consortium may be an appropriate ecological and safe tool to improve chickpea growth and its adaptation to salt-degraded soils.
Collapse
Affiliation(s)
- Roukaya Ben Gaied
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
- MED-Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Imed Sbissi
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Mohamed Tarhouni
- Laboratory of Pastoral Ecosystems and Promotion of Spontaneous Plants and Associated Micro-Organisms, Institute of Arid Lands, University of Gabes, Medenine 4119, Tunisia
| | - Clarisse Brígido
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Jeffrey C, Trethowan R, Kaiser B. Chickpea tolerance to temperature stress: Status and opportunity for improvement. JOURNAL OF PLANT PHYSIOLOGY 2021; 267:153555. [PMID: 34739858 DOI: 10.1016/j.jplph.2021.153555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/19/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Chickpea is a globally important commercial crop and a key source of protein for vegetarian populations. Though chickpea was domesticated at least 3000 years ago, research into abiotic stress tolerance has been limited compared to cereal crops such as wheat. This review investigates the impacts of heat stress on chickpea, focusing on reproductive development. The fertilisation process is particularly sensitive to environmental stress, such as drought and heat that can reduce yields by up to 70%. Current research has largely focused on breeding cultivars that reach maturity faster to avoid stress rather than true thermotolerance and little is known of the impact of heat on cellular processes. This review suggests that there is ample variation within the chickpea gene pool for selective breeding to achieve improved abiotic stress tolerance. Rates of genetic progress will improve once key QTL are identified and the link between thermotolerance and pollen viability confirmed. Other benefits may arise from better understanding of heat shock proteins and molecular chaperones and their role in the protection of reproductive processes.
Collapse
Affiliation(s)
- Cara Jeffrey
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| | - Richard Trethowan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Plant Breeding Institute, The University of Sydney, Sydney, NSW, Australia.
| | - Brent Kaiser
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia; The Sydney Institute of Agriculture, The University of Sydney, 380 Werombi Rd Brownlow Hill, 2570, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Abstract
Rhizobia are a phylogenetically diverse group of soil bacteria that engage in mutualistic interactions with legume plants. Although specifics of the symbioses differ between strains and plants, all symbioses ultimately result in the formation of specialized root nodule organs which host the nitrogen-fixing microsymbionts called bacteroids. Inside nodules, bacteroids encounter unique conditions that necessitate global reprogramming of physiological processes and rerouting of their metabolism. Decades of research have addressed these questions using genetics, omics approaches, and more recently computational modelling. Here we discuss the common adaptations of rhizobia to the nodule environment that define the core principles of bacteroid functioning. All bacteroids are growth-arrested and perform energy-intensive nitrogen fixation fueled by plant-provided C4-dicarboxylates at nanomolar oxygen levels. At the same time, bacteroids are subject to host control and sanctioning that ultimately determine their fitness and have fundamental importance for the evolution of a stable mutualistic relationship.
Collapse
|
6
|
Paço A, da-Silva JR, Torres DP, Glick BR, Brígido C. Exogenous ACC Deaminase Is Key to Improving the Performance of Pasture Legume-Rhizobial Symbioses in the Presence of a High Manganese Concentration. PLANTS 2020; 9:plants9121630. [PMID: 33255180 PMCID: PMC7760732 DOI: 10.3390/plants9121630] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023]
Abstract
Manganese (Mn) toxicity is a very common soil stress around the world, which is responsible for low soil fertility. This manuscript evaluates the effect of the endophytic bacterium Pseudomonas sp. Q1 on different rhizobial-legume symbioses in the absence and presence of Mn toxicity. Three legume species, Cicer arietinum (chickpea), Trifolium subterraneum (subterranean clover), and Medicago polymorpha (burr medic) were used. To evaluate the role of 1-aminocyclopropane-1-carboxylate (ACC) deaminase produced by strain Q1 in these interactions, an ACC deaminase knockout mutant of this strain was constructed and used in those trials. The Q1 strain only promoted the symbiotic performance of Rhizobium leguminosarum bv. trifolii ATCC 14480T and Ensifer meliloti ATCC 9930T, leading to an increase of the growth of their hosts in both conditions. Notably, the acdS gene disruption of strain Q1 abolished the beneficial effect of this bacterium as well as causing this mutant strain to act deleteriously in those specific symbioses. This study suggests that the addition of non-rhizobia with functional ACC deaminase may be a strategy to improve the pasture legume–rhizobial symbioses, particularly when the use of rhizobial strains alone does not yield the expected results due to their difficulty in competing with native strains or in adapting to inhibitory soil conditions.
Collapse
Affiliation(s)
- Ana Paço
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - José Rodrigo da-Silva
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Denise Pereira Torres
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| | - Clarisse Brígido
- MED—Mediterranean Institute for Agriculture, Environment and Development, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal; (A.P.); (J.R.d.-S.); (D.P.T.)
- Correspondence: ; Tel.: +351-266-760-878
| |
Collapse
|
7
|
Mediterranean Native Leguminous Plants: A Reservoir of Endophytic Bacteria with Potential to Enhance Chickpea Growth under Stress Conditions. Microorganisms 2019; 7:microorganisms7100392. [PMID: 31557944 PMCID: PMC6843138 DOI: 10.3390/microorganisms7100392] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 01/22/2023] Open
Abstract
Bacterial endophytes, a subset of a plant’s microbiota, can facilitate plant growth by a number of different mechanisms. The aims of this study were to assess the diversity and functionality of endophytic bacterial strains from internal root tissues of native legume species grown in two distinct sites in South of Portugal and to evaluate their ability to promote plant growth. Here, 122 endophytic bacterial isolates were obtained from 12 different native legume species. Most of these bacteria possess at least one of the plant growth-promoting features tested in vitro, with indole acetic acid production being the most common feature among the isolates followed by the production of siderophores and inorganic phosphate solubilization. The results of in planta experiments revealed that co-inoculation of chickpea plants with specific endophytic bacteria along with N2-fixing symbionts significantly improved the total biomass of chickpea plants, in particular when these plants were grown under saline conditions. Altogether, this study revealed that Mediterranean native legume species are a reservoir of plant growth-promoting bacteria, that are also tolerant to salinity and to toxic levels of Mn. Thus, these bacterial endophytes are well adapted to common constraints present in soils of this region which constitutes important factors to consider in the development of bacterial inoculants for stressful conditions in the Mediterranean region.
Collapse
|
8
|
Diversity and Functionality of Culturable Endophytic Bacterial Communities in Chickpea Plants. PLANTS 2019; 8:plants8020042. [PMID: 30769814 PMCID: PMC6409739 DOI: 10.3390/plants8020042] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/01/2019] [Accepted: 02/12/2019] [Indexed: 11/16/2022]
Abstract
The aims of this study were to isolate, identify and characterize culturable endophytic bacteria from chickpea (Cicer arietinum L.) roots grown in different soils. In addition, the effects of rhizobial inoculation, soil and stress on the functionality of those culturable endophytic bacterial communities were also investigated. Phylogenetic analysis based on partial 16S rRNA gene sequences revealed that the endophytic bacteria isolated in this work belong to the phyla Proteobacteria, Firmicutes and Actinobacteria, with Enterobacter and Pseudomonas being the most frequently observed genera. Production of indoleacetic acid and ammonia were the most widespread plant growth-promoting features, while antifungal activity was relatively rare among the isolates. Despite the fact that the majority of bacterial endophytes were salt- and Mn-tolerant, the isolates obtained from soil with Mn toxicity were generally more Mn-tolerant than those obtained from the same soil amended with dolomitic limestone. Several associations between an isolate's genus and specific plant growth-promoting mechanisms were observed. The data suggest that soil strongly impacts the Mn tolerance of endophytic bacterial communities present in chickpea roots while rhizobial inoculation induces significant changes in terms of isolates' plant growth-promoting abilities. In addition, this study also revealed chickpea-associated endophytic bacteria that could be exploited as sources with potential application in agriculture.
Collapse
|
9
|
traG Gene Is Conserved across Mesorhizobium spp. Able to Nodulate the Same Host Plant and Expressed in Response to Root Exudates. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3715271. [PMID: 30834262 PMCID: PMC6374801 DOI: 10.1155/2019/3715271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/09/2019] [Indexed: 11/22/2022]
Abstract
Evidences for an involvement of the bacterial type IV secretion system (T4SS) in the symbiotic relationship between rhizobia and legumes have been pointed out by several recent studies. However, information regarding this secretion system in Mesorhizobium is still very scarce. The aim of the present study was to investigate the phylogeny and expression of the traG gene, which encodes a substrate receptor of the T4SS. In addition, the occurrence and genomic context of this and other T4SS genes, namely, genes from tra/trb and virB/virD4 complexes, were also analyzed in order to unveil the structural and functional organization of T4SS in mesorhizobia. The location of the T4SS genes in the symbiotic region of the analyzed rhizobial genomes, along with the traG phylogeny, suggests that T4SS genes could be horizontally transferred together with the symbiosis genes. Regarding the T4SS structural organization in Mesorhizobium, the virB/virD4 genes were absent in all chickpea (Cicer arietinum L.) microsymbionts and in the Lotus symbiont Mesorhizobium japonicum MAFF303099T. Interestingly, the presence of genes belonging to another secretion system (T3SS) was restricted to these strains lacking the virB/virD4 genes. The traG gene expression was detected in M. mediterraneum Ca36T and M. ciceri LMS-1 strains when exposed to chickpea root exudates and also in the early nodules formed by M. mediterraneum Ca36T, but not in older nodules. This study contributes to a better understanding of the importance of T4SS in mutualistic symbiotic bacteria.
Collapse
|
10
|
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2018. [DOI: 10.1007/s13199-018-0585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
11
|
Aqueous peat extract exposes rhizobia to sub-lethal stress which may prime cells for improved desiccation tolerance. Appl Microbiol Biotechnol 2018; 102:7521-7539. [DOI: 10.1007/s00253-018-9086-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 01/25/2023]
|
12
|
da-Silva JR, Alexandre A, Brígido C, Oliveira S. Can stress response genes be used to improve the symbiotic performance of rhizobia? AIMS Microbiol 2017; 3:365-382. [PMID: 31294167 PMCID: PMC6604987 DOI: 10.3934/microbiol.2017.3.365] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/16/2017] [Indexed: 12/31/2022] Open
Abstract
Rhizobia are soil bacteria able to form symbioses with legumes and fix atmospheric nitrogen, converting it into a form that can be assimilated by the plant. The biological nitrogen fixation is a possible strategy to reduce the environmental pollution caused by the use of chemical N-fertilizers in agricultural fields. Successful colonization of the host root by free-living rhizobia requires that these bacteria are able to deal with adverse conditions in the soil, in addition to stresses that may occur in their endosymbiotic life inside the root nodules. Stress response genes, such as otsAB, groEL, clpB, rpoH play an important role in tolerance of free-living rhizobia to different environmental conditions and some of these genes have been shown to be involved in the symbiosis. This review will focus on stress response genes that have been reported to improve the symbiotic performance of rhizobia with their host plants. For example, chickpea plants inoculated with a Mesorhizobium strain modified with extra copies of the groEL gene showed a symbiotic effectiveness approximately 1.5 fold higher than plants inoculated with the wild-type strain. Despite these promising results, more studies are required to obtain highly efficient and tolerant rhizobia strains, suitable for different edaphoclimatic conditions, to be used as field inoculants.
Collapse
Affiliation(s)
- José Rodrigo da-Silva
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Ana Alexandre
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Clarisse Brígido
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| | - Solange Oliveira
- Laboratório de Microbiologia do Solo, Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Instituto de Investigação e Formação Avançada (IIFA), Universidade de Évora, Apartado 94, 7002-554 Évora, Portugal
| |
Collapse
|
13
|
Paço A, Brígido C, Alexandre A, Mateos PF, Oliveira S. The Symbiotic Performance of Chickpea Rhizobia Can Be Improved by Additional Copies of the clpB Chaperone Gene. PLoS One 2016; 11:e0148221. [PMID: 26845770 PMCID: PMC4741418 DOI: 10.1371/journal.pone.0148221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 01/14/2016] [Indexed: 12/03/2022] Open
Abstract
The ClpB chaperone is known to be involved in bacterial stress response. Moreover, recent studies suggest that this protein has also a role in the chickpea-rhizobia symbiosis. In order to improve both stress tolerance and symbiotic performance of a chickpea microsymbiont, the Mesorhizobium mediterraneum UPM-Ca36T strain was genetically transformed with pPHU231 containing an extra-copy of the clpB gene. To investigate if the clpB-transformed strain displays an improved stress tolerance, bacterial growth was evaluated under heat and acid stress conditions. In addition, the effect of the extra-copies of the clpB gene in the symbiotic performance was evaluated using plant growth assays (hydroponic and pot trials). The clpB-transformed strain is more tolerant to heat shock than the strain transformed with pPHU231, supporting the involvement of ClpB in rhizobia heat shock tolerance. Both plant growth assays showed that ClpB has an important role in chickpea-rhizobia symbiosis. The nodulation kinetics analysis showed a higher rate of nodule appearance with the clpB-transformed strain. This strain also induced a greater number of nodules and, more notably, its symbiotic effectiveness increased ~60% at pH5 and 83% at pH7, compared to the wild-type strain. Furthermore, a higher frequency of root hair curling was also observed in plants inoculated with the clpB-transformed strain, compared to the wild-type strain. The superior root hair curling induction, nodulation ability and symbiotic effectiveness of the clpB-transformed strain may be explained by an increased expression of symbiosis genes. Indeed, higher transcript levels of the nodulation genes nodA and nodC (~3 folds) were detected in the clpB-transformed strain. The improvement of rhizobia by addition of extra-copies of the clpB gene may be a promising strategy to obtain strains with enhanced stress tolerance and symbiotic effectiveness, thus contributing to their success as crop inoculants, particularly under environmental stresses. This is the first report on the successful improvement of a rhizobium with a chaperone gene.
Collapse
Affiliation(s)
- Ana Paço
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| | - Clarisse Brígido
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Ana Alexandre
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
- IIFA–Instituto de Investigação e Formação Avançada, Universidade de Évora, Ap. 94, 7002–554, Évora, Portugal
| | - Pedro F. Mateos
- Departamento de Microbiología y Genética, Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, 37007, Salamanca, Spain
| | - Solange Oliveira
- ICAAM–Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002–554, Évora, Portugal
| |
Collapse
|
14
|
Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Syst Appl Microbiol 2015; 38:346-50. [DOI: 10.1016/j.syapm.2015.03.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/16/2015] [Accepted: 03/19/2015] [Indexed: 11/21/2022]
|
15
|
Genes commonly involved in acid tolerance are not overexpressed in the plant microsymbiont Mesorhizobium loti MAFF303099 upon acidic shock. Appl Microbiol Biotechnol 2014; 98:7137-47. [DOI: 10.1007/s00253-014-5875-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 01/11/2023]
|
16
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
17
|
Alexandre A, Laranjo M, Oliveira S. Global transcriptional response to heat shock of the legume symbiont Mesorhizobium loti MAFF303099 comprises extensive gene downregulation. DNA Res 2013; 21:195-206. [PMID: 24277738 PMCID: PMC3989490 DOI: 10.1093/dnares/dst050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Rhizobia, the bacterial legume symbionts able to fix atmospheric nitrogen inside root nodules, have to survive in varied environmental conditions. The aim of this study was to analyse the transcriptional response to heat shock of Mesorhizobium loti MAFF303099, a rhizobium with a large multipartite genome of 7.6 Mb that nodulates the model legume Lotus japonicus. Using microarray analysis, extensive transcriptomic changes were detected in response to heat shock: 30% of the protein-coding genes were differentially expressed (2067 genes in the chromosome, 62 in pMLa and 57 in pMLb). The highest-induced genes are in the same operon and code for two sHSP. Only one of the five groEL genes in MAFF303099 genome was induced by heat shock. Unlike other prokaryotes, the transcriptional response of this Mesorhizobium included the underexpression of an unusually large number of genes (72% of the differentially expressed genes). This extensive downregulation of gene expression may be an important part of the heat shock response, as a way of reducing energetic costs under stress. To our knowledge, this study reports the heat shock response of the largest prokaryote genome analysed so far, representing an important contribution to understand the response of plant-interacting bacteria to challenging environmental conditions.
Collapse
Affiliation(s)
- Ana Alexandre
- 1ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas (Laboratório de Microbiologia do Solo), Universidade de Évora, Núcleo da Mitra, Ap. 94, 7002-554 Évora, Portugal
| | | | | |
Collapse
|