1
|
Khanal A, Han SR, Lee JH, Oh TJ. Comparative Genome Analysis of Polar Mesorhizobium sp. PAMC28654 to Gain Insight into Tolerance to Salinity and Trace Element Stress. Microorganisms 2024; 12:120. [PMID: 38257947 PMCID: PMC10820077 DOI: 10.3390/microorganisms12010120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/04/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
In this study, Mesorhizobium sp. PAMC28654 was isolated from a soil sample collected from the polar region of Uganda. Whole-genome sequencing and comparative genomics were performed to better understand the genomic features necessary for Mesorhizobium sp. PAMC28654 to survive and thrive in extreme conditions and stresses. Additionally, diverse sequence analysis tools were employed for genomic investigation. The results of the analysis were then validated using wet-lab experiments. Genome analysis showed trace elements' resistant proteins (CopC, CopD, CzcD, and Acr3), exopolysaccharide (EPS)-producing proteins (ExoF and ExoQ), and nitrogen metabolic proteins (NarG, NarH, and NarI). The strain was positive for nitrate reduction. It was tolerant to 100 mM NaCl at 15 °C and 25 °C temperatures and resistant to multiple trace elements (up to 1 mM CuSO4·5H2O, 2 mM CoCl2·6H2O, 1 mM ZnSO4·7H2O, 0.05 mM Cd(NO3)2·4H2O, and 100 mM Na2HAsO4·7H2O at 15 °C and 0.25 mM CuSO4·5H2O, 2 mM CoCl2·6H2O, 0.5 mM ZnSO4·7H2O, 0.01 mM Cd(NO3)2·4H2O, and 100 mM Na2HAsO4·7H2O at 25 °C). This research contributes to our understanding of bacteria's ability to survive abiotic stresses. The isolated strain can be a potential candidate for implementation for environmental and agricultural purposes.
Collapse
Affiliation(s)
- Anamika Khanal
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
| | - Jun Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea;
| | - Tae-Jin Oh
- Genome-Based Bio-IT Convergence Institute, Asan 31460, Republic of Korea; (A.K.); (S.-R.H.)
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Department of Life Science and Biochemical Engineering, Graduate School, SunMoon University, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
2
|
Shumilina J, Soboleva A, Abakumov E, Shtark OY, Zhukov VA, Frolov A. Signaling in Legume-Rhizobia Symbiosis. Int J Mol Sci 2023; 24:17397. [PMID: 38139226 PMCID: PMC10743482 DOI: 10.3390/ijms242417397] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/19/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Legumes represent an important source of food protein for human nutrition and animal feed. Therefore, sustainable production of legume crops is an issue of global importance. It is well-known that legume-rhizobia symbiosis allows an increase in the productivity and resilience of legume crops. The efficiency of this mutualistic association strongly depends on precise regulation of the complex interactions between plant and rhizobia. Their molecular dialogue represents a complex multi-staged process, each step of which is critically important for the overall success of the symbiosis. In particular, understanding the details of the molecular mechanisms behind the nodule formation and functioning might give access to new legume cultivars with improved crop productivity. Therefore, here we provide a comprehensive literature overview on the dynamics of the signaling network underlying the development of the legume-rhizobia symbiosis. Thereby, we pay special attention to the new findings in the field, as well as the principal directions of the current and prospective research. For this, here we comprehensively address the principal signaling events involved in the nodule inception, development, functioning, and senescence.
Collapse
Affiliation(s)
- Julia Shumilina
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
| | - Alena Soboleva
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Evgeny Abakumov
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Oksana Y. Shtark
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia; (O.Y.S.); (V.A.Z.)
| | - Andrej Frolov
- Laboratory of Analytical Biochemistry and Biotechnology, Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, 127276 Moscow, Russia; (J.S.); (A.S.)
- Biological Faculty, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| |
Collapse
|
3
|
Safronova V, Sazanova A, Belimov A, Guro P, Kuznetsova I, Karlov D, Chirak E, Yuzikhin O, Verkhozina A, Afonin A, Tikhonovich I. Synergy between Rhizobial Co-Microsymbionts Leads to an Increase in the Efficiency of Plant-Microbe Interactions. Microorganisms 2023; 11:1206. [PMID: 37317180 DOI: 10.3390/microorganisms11051206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Combined inoculation of legumes with rhizobia and plant growth-promoting rhizobacteria or endophytes is a known technique for increasing the efficiency of nitrogen-fixing symbiosis and plant productivity. The aim of this work was to expand knowledge about the synergistic effects between commercial rhizobia of pasture legumes and root nodule bacteria of relict legume species. Pot experiments were performed on common vetch (Vicia sativa L.) and red clover (Trifolium pratense L.) co-inoculated with the participation of the corresponding commercial rhizobial strains (R. leguminosarum bv. viciae RCAM0626 and R. leguminosarum bv. trifolii RCAM1365) and seven strains isolated from nodules of relict legumes inhabiting the Baikal Lake region and the Altai Republic: Oxytropis popoviana, Astragalus chorinensis, O. tragacanthoides and Vicia costata. The inoculation of plants with combinations of strains (commercial strain plus the isolate from relict legume) had a different effect on symbiosis depending on the plant species: the increase in the number of nodules was mainly observed on vetch, whereas increased acetylene reduction activity was evident on clover. It was shown that the relict isolates differ significantly in the set of genes related to different genetic systems that affect plant-microbe interactions. At the same time, they had additional genes that are involved in the formation of symbiosis and determine its effectiveness, but are absent in the used commercial strains: symbiotic genes fix, nif, nod, noe and nol, as well as genes associated with the hormonal status of the plant and the processes of symbiogenesis (acdRS, genes for gibberellins and auxins biosynthesis, genes of T3SS, T4SS and T6SS secretion systems). It can be expected that the accumulation of knowledge about microbial synergy on the example of the joint use of commercial and relict rhizobia will allow in the future the development of methods for the targeted selection of co-microsymbionts to increase the efficiency of agricultural legume-rhizobia systems.
Collapse
Affiliation(s)
- Vera Safronova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Anna Sazanova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Andrey Belimov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Polina Guro
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Irina Kuznetsova
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Denis Karlov
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Elizaveta Chirak
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Oleg Yuzikhin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Alla Verkhozina
- Siberian Institute of Plant Physiology and Biochemistry (SIPPB), P.O. Box 1243, 664033 Irkutsk, Russia
| | - Alexey Afonin
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
| | - Igor Tikhonovich
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Sh. Podbelskogo 3, 196608 St. Petersburg, Russia
- Department of Genetics and Biotechnology, Saint Petersburg State University, Universitetskaya Emb. 7/9, 199034 St. Petersburg, Russia
| |
Collapse
|
4
|
Guo Z, Zhu B, Guo J, Wang G, Li M, Yang Q, Wang L, Fei Y, Wang S, Yu T, Sun Y. Impact of selenium on rhizosphere microbiome of a hyperaccumulation plant Cardamine violifolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:40241-40251. [PMID: 35122198 DOI: 10.1007/s11356-022-18974-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
Cardamine violifolia is the only selenium hyperaccumulation plant found in China. It has been developed as a source of medicinal and edible products that we can consume as selenium supplements. Many planting approaches have been developed to increase the selenium content of C. violifolia for nutrient biofortification. However, the contribution of rhizosphere microbes of C. violifolia to selenium enrichment has not been investigated. In this study, four types of selenium, i.e., selenate, selenite, nanoparticles selenium from Bacillus subtilis (B. subtilis-Se), and organic selenium from yeast (yeast-Se), were added to the soil that C. violifolia was grown in, respectively. Selenate led to the greatest accumulation of selenium in C. violifolia, followed by selenite, B. subtilis-Se, and yeast-Se. Except for yeast-Se, the concentration of selenium in C. violifolia positively correlated with the amount of selenium added to the soil. Furthermore, the different types of exogenous selenium exhibited distinct effects on the rhizosphere microbiome of C. violifolia. Alpha and beta diversity analyses demonstrated that rhizosphere microbiome was more obviously affected by selenium from B. subtilis and yeast than from selenate and selenite. Different microbial species were enriched in the rhizosphere of C. violifolia under various exogenous selenium treatments. B. subtilis-Se application enhanced the abundance of Leucobacter, Sporosarcina, Patulibacter, and Denitrobacter, and yeast-Se application enriched the abundance of Singulishaera, Lactobacillus, Bdellovibrio, and Bosea. Bosea and the taxon belonging to the order Solirubrobacterales were enriched in the samples with selenate and selenite addition, respectively, and the abundances of these were linearly related to the concentrations of selenate and selenite applied in the rhizosphere of C. violifolia. In summary, this study revealed the response of the rhizosphere microbiome of C. violifolia to exogenous selenium. Our findings are useful for developing suitable selenium fertilizers to increase the selenium hyperaccumulation level of this plant.
Collapse
Affiliation(s)
- Zisheng Guo
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Jia Guo
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, 213164, China
| | - Gongting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng Li
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yue Fei
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Tian Yu
- Enshi Se-Run Health Tech Development Co., Ltd., Enshi, 445000, China.
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, 710069, China.
- Beijing Key Lab of Plant Resource Research and Development, Beijing Technology and Business University, Fucheng Road, Beijing, 100048, China.
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|