1
|
Mei J, Yang S, Linghu Y, Gao Y, Hu Y, Nie W, Zhang Y, Peng L, Wu Y, Ding Y, Luo R, Liao J, Qian W. Unveiling the role of microRNAs in nonhost resistance to Sclerotinia sclerotiorum: Rice-specific microRNAs attack the pathogen via cross-kingdom RNAi. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1179-1195. [PMID: 39817484 DOI: 10.1111/jipb.13840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/14/2024] [Indexed: 01/18/2025]
Abstract
The development of rapeseed with high resistance against the pathogen Sclerotinia sclerotiorum is impeded by the lack of effective resistance resources within host species. Unraveling the molecular basis of nonhost resistance (NHR) holds substantial value for resistance improvement in crops. In the present study, small RNA sequencing and transcriptome sequencing were carried out between rice (a nonhost species of S. sclerotiorum) and rapeseed during infection, revealing the involvement of rice miRNAs on translation-related processes in both rice and the pathogen. Specifically, rice-specific miRNAs with potential capability for cross-kingdom RNAi against S. sclerotiorum were explored, of which Os-miR169y was selected as a representative case to elucidate its role in resistance to S. sclerotiorum. The silence of Os-miR169y decreased the resistance level of rice to S. sclerotiorum, and heterologous expression of Os-miR169y in Arabidopsis and rapeseed significantly enhanced the host resistance. The dual-luciferase reporter assay indicates that Os-miR169y targets S. sclerotiorum 60S ribosomal protein L19 (SsRPL19). Overexpressing Os-miR169y (OEss-miR169y) and RNAi of SsRPL19 (RNAiss-RPL19) in S. sclerotiorum significantly impaired the growth and pathogenicity of the pathogen, while overexpressing SsRPL19 exhibited a contrast effect. Yeast-two-hybridization revealed an interlinking role of SsRPL19 with multiple large and small ribosomal subunits, indicating its important role in translation. Proteome sequencing detected a decreased amount of proteins in transformants OEss-miR169y and RNAiss-RPL19 and significant suppression on key metabolic pathways such as carbon and nitrogen metabolisms. Collectively, this study suggests that rice can secrete specific miRNAs to suppress genes essential for S. sclerotiorum, such as Os-miR169y, which targets and suppresses SsRPL19 and thus impairs protein synthesis in the pathogen. This study sheds light on the intrinsic mechanisms of rice NHR against S. sclerotiorum, and further demonstrates the potential of using nonhost-specific "pathogen-attacking" miRNAs in improving resistance in host species.
Collapse
Affiliation(s)
- Jiaqin Mei
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Shuxian Yang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yanxia Linghu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yang Gao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
- Shilou Bureau of Agriculture and Rural Affairs, Lvliang, 033000, China
| | - Yuxin Hu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Wenjing Nie
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yujie Zhang
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Lixuan Peng
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yongzhi Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Yijuan Ding
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Ruirui Luo
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Jingyan Liao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| | - Wei Qian
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715, China
| |
Collapse
|
2
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
3
|
Bilstein-Schloemer M, Müller MC, Saur IML. Technical Advances Drive the Molecular Understanding of Effectors from Wheat and Barley Powdery Mildew Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:213-225. [PMID: 39799551 DOI: 10.1094/mpmi-12-24-0155-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2025]
Abstract
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts. In addition to the inhibition of the plant's immune components, these pathogens are under particular pressure to extract nutrients efficiently from the host. Understanding the molecular basis of infections mediated by obligate biotrophic pathogens is significant because of their impact in modern agriculture. In addition, powdery mildews serve as excellent models for obligate biotrophic cereal pathogens. Here, we summarize the current knowledge on the effectorome of the barley and wheat powdery mildews and putative molecular virulence functions of effectors. We emphasize the availability of comprehensive genomic, transcriptomic, and proteomic resources and discuss the methodological approaches used for identifying candidate effectors, assessing effector virulence traits, and identifying effector targets in the host. We highlight established and more recently employed methodologies, discuss limitations, and suggest additional strategies. We identify open questions and discuss how addressing them with currently available resources will enhance our understanding of Blumeria candidates for secretor effector proteins. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
| | - Marion C Müller
- School of Life Sciences, Technical University of Munich, 85354 Freising-Weihenstephan, Germany
| | - Isabel M L Saur
- Institute for Plant Sciences, University of Cologne, 50674 Cologne, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, Germany
| |
Collapse
|
4
|
Tao Y, Wu L, Volodymyr V, Hu P, Hu H, Li C. Identification of the ribosomal protein L18 (RPL18) gene family reveals that TaRPL18-1 positively regulates powdery mildew resistance in wheat. Int J Biol Macromol 2024; 280:135730. [PMID: 39322125 DOI: 10.1016/j.ijbiomac.2024.135730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
The Ribosomal protein L18 (RPL18) protein gene family plays an important role in plant growth, development and stress response. Although the RPL18 genes have been identified in several plant species, the RPL18 gene family in wheat (Triticum aestivum) is still unexplored. This study found 8 TaRPL18 genes, each of which has a significantly different gene sequence length and is evenly distributed on the chromosome; Additionally, these proteins have similar physicochemical characteristics as well as secondary and tertiary structures. 17 RPL18 genes in 4 species (wheat, Arabidopsis, rice, and maize) were classified into 5 groups, and the TaRPL18 genes within the same group showed similar structures and conserved motifs. Analysis of the cis-acting elements in the TaRPL18 genes promoter regions revealed the presence of developmental and stress-responsive elements in the majority of the genes. Through yeast two-hybrid (Y2H) experiments, it was confirmed that the powdery mildew resistance protein TaPm46 physically interacts with the Class IV TaRPL18-1. Functional analysis indicated that TaRPL18-1-silenced wheat plants show reduced resistance to powdery mildew compared to the wild type (WT), with decreased expression levels of PAL and PPO genes, and increased expression levels of the PR gene. The findings of this study provide a basis for clarifying the function of the TaRPL18 genes and will be useful for the selection of disease-resistant varieties of wheat.
Collapse
Affiliation(s)
- Ye Tao
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine
| | - Liuliu Wu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Sumy National Agrarian University, Sumy 40021, Ukraine
| | | | - Ping Hu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Haiyan Hu
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Chengwei Li
- School of Agriculture/Henan Engineering Research Center of Crop Genome Editing/Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation/Collaborative Innovation Center of Modern Biological Breeding of Henan Province, Henan Institute of Science and Technology, Xinxiang 453003, China; Henan Agricultural University, Zhengzhou 450000, China.
| |
Collapse
|
5
|
Kusch S, Frantzeskakis L, Lassen BD, Kümmel F, Pesch L, Barsoum M, Walden KD, Panstruga R. A fungal plant pathogen overcomes mlo-mediated broad-spectrum disease resistance by rapid gene loss. THE NEW PHYTOLOGIST 2024; 244:962-979. [PMID: 39155769 DOI: 10.1111/nph.20063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
Hosts and pathogens typically engage in a coevolutionary arms race. This also applies to phytopathogenic powdery mildew fungi, which can rapidly overcome plant resistance and perform host jumps. Using experimental evolution, we show that the powdery mildew pathogen Blumeria hordei is capable of breaking the agriculturally important broad-spectrum resistance conditioned by barley loss-of-function mlo mutants. Partial mlo virulence of evolved B. hordei isolates is correlated with a distinctive pattern of adaptive mutations, including small-sized (c. 8-40 kb) deletions, of which one is linked to the de novo insertion of a transposable element. Occurrence of the mutations is associated with a transcriptional induction of effector protein-encoding genes that is absent in mlo-avirulent isolates on mlo mutant plants. The detected mutational spectrum comprises the same loci in at least two independently isolated mlo-virulent isolates, indicating convergent multigenic evolution. The mutational events emerged in part early (within the first five asexual generations) during experimental evolution, likely generating a founder population in which incipient mlo virulence was later stabilized by additional events. This work highlights the rapid dynamic genome evolution of an obligate biotrophic plant pathogen with a transposon-enriched genome.
Collapse
Affiliation(s)
- Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lamprinos Frantzeskakis
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Birthe D Lassen
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Florian Kümmel
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Lina Pesch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Mirna Barsoum
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Kim D Walden
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, D-52056, Aachen, Germany
| |
Collapse
|
6
|
Han G, Liu H, Zhu S, Gu T, Cao L, Yan H, Jin Y, Wang J, Liu S, Zhou Y, Shi Z, He H, An D. Two functional CC-NBS-LRR proteins from rye chromosome 6RS confer differential age-related powdery mildew resistance to wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:66-81. [PMID: 38153293 PMCID: PMC10754004 DOI: 10.1111/pbi.14165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/02/2023] [Accepted: 08/08/2023] [Indexed: 12/29/2023]
Abstract
Rye (Secale cereale), a valuable relative of wheat, contains abundant powdery mildew resistance (Pm) genes. Using physical mapping, transcriptome sequencing, barley stripe mosaic virus-induced gene silencing, ethyl methane sulfonate mutagenesis, and stable transformation, we isolated and validated two coiled-coil, nucleotide-binding site and leucine-rich repeat (CC-NBS-LRR) alleles, PmTR1 and PmTR3, located on rye chromosome 6RS from different triticale lines. PmTR1 confers age-related resistance starting from the three-leaf stage, whereas its allele, PmTR3, confers typical all-stage resistance, which may be associated with their differential gene expression patterns. Overexpression in Nicotiana benthamiana showed that the CC, CC-NBS, and CC-LRR fragments of PMTR1 induce cell death, whereas in PMTR3 the CC and full-length fragments perform this function. Luciferase complementation imaging and pull-down assays revealed distinct interaction activities between the CC and NBS fragments. Our study elucidates two novel rye-derived Pm genes and their derivative germplasm resources and provides novel insights into the mechanism of age-related resistance, which can aid the improvement of resistance against wheat powdery mildew.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hong Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shanying Zhu
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Jing Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Shiyu Liu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Zhipeng Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
| | - Huagang He
- School of Life SciencesJiangsu UniversityZhenjiangChina
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental BiologyChinese Academy of SciencesShijiazhuangChina
- Innovation Academy for Seed DesignChinese Academy of SciencesBeijingChina
| |
Collapse
|
7
|
Dreiseitl A. Rare Virulences and Great Pathotype Diversity of a Central European Blumeria hordei Population. J Fungi (Basel) 2023; 9:1045. [PMID: 37998851 PMCID: PMC10672294 DOI: 10.3390/jof9111045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Barley is an important crop grown on almost 49 Mha worldwide in 2021 and is particularly significant in Europe where powdery mildew is the most frequent disease on susceptible varieties. The most suitable way to protect crops is by exploiting genetic resistance. However, the causal agent Blumeria hordei is an extremely adaptable pathogen. The aims of this research were to increase our knowledge of the rapidly changing pathogen population and detect rare virulences. Random samples of the pathogen were obtained from the air by means of a mobile spore sampler. Spores were collected by driving across the Czech Republic in 2019, 2021 and 2023, and 299 isolates were analyzed on 121 host varieties. No infection occurred on 35 differentials, rare virulence was recorded on 31 varieties and a higher virulence frequency was found on 55 differentials. A core set of differentials along with four additional varieties distinguishes 295 pathotypes (Simple Index = 0.987) and the virulence complexity of isolates varied from 4 to 19 with an average of 10.39. The detection of new virulences, the increasing frequency of previously rare virulences and high pathotype diversity as well as high virulence complexity confirm that using nonspecific durable resistance is crucial for successfully breeding commercial varieties.
Collapse
Affiliation(s)
- Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., 767 01 Kroměříž, Czech Republic
| |
Collapse
|
8
|
Zou S, Xu Y, Li Q, Wei Y, Zhang Y, Tang D. Wheat powdery mildew resistance: from gene identification to immunity deployment. FRONTIERS IN PLANT SCIENCE 2023; 14:1269498. [PMID: 37790783 PMCID: PMC10544919 DOI: 10.3389/fpls.2023.1269498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023]
Abstract
Powdery mildew is one of the most devastating diseases on wheat and is caused by the obligate biotrophic phytopathogen Blumeria graminis f. sp. tritici (Bgt). Due to the complexity of the large genome of wheat and its close relatives, the identification of powdery mildew resistance genes had been hampered for a long time until recent progress in large-scale sequencing, genomics, and rapid gene isolation techniques. Here, we describe and summarize the current advances in wheat powdery mildew resistance, emphasizing the most recent discoveries about the identification of genes conferring powdery mildew resistance and the similarity, diversity and molecular function of those genes. Multilayered resistance to powdery mildew in wheat could be used for counteracting Bgt, including durable, broad spectrum but partial resistance, as well as race-specific and mostly complete resistance mediated by nucleotide-binding and leucine rich repeat domain (NLR) proteins. In addition to the above mentioned layers, manipulation of susceptibility (S) and negative regulator genes may represent another layer that can be used for durable and broad-spectrum resistance in wheat. We propose that it is promising to develop effective and durable strategies to combat powdery mildew in wheat by simultaneous deployment of multilayered immunity.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
9
|
Zaccaron AZ, Neill T, Corcoran J, Mahaffee WF, Stergiopoulos I. A chromosome-scale genome assembly of the grape powdery mildew pathogen Erysiphe necator reveals its genomic architecture and previously unknown features of its biology. mBio 2023; 14:e0064523. [PMID: 37341476 PMCID: PMC10470754 DOI: 10.1128/mbio.00645-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/13/2023] [Indexed: 06/22/2023] Open
Abstract
Erysiphe necator is an obligate fungal pathogen that causes grape powdery mildew, globally the most important disease on grapevines. Previous attempts to obtain a quality genome assembly for this pathogen were hindered by its high repetitive DNA content. Here, chromatin conformation capture (Hi-C) with long-read PacBio sequencing was combined to obtain a chromosome-scale assembly and a high-quality annotation for E. necator isolate EnFRAME01. The resulting 81.1 Mb genome assembly is 98% complete and consists of 34 scaffolds, 11 of which represent complete chromosomes. All chromosomes contain large centromeric-like regions and lack synteny to the 11 chromosomes of the cereal PM pathogen Blumeria graminis. Further analysis of their composition showed that repeats and transposable elements (TEs) occupy 62.7% of their content. TEs were almost evenly interspersed outside centromeric and telomeric regions and massively overlapped with regions of annotated genes, suggesting that they could have a significant functional impact. Abundant gene duplicates were observed as well, particularly in genes encoding candidate secreted effector proteins. Moreover, younger in age gene duplicates exhibited more relaxed selection pressure and were more likely to be located physically close in the genome than older duplicates. A total of 122 genes with copy number variations among six isolates of E. necator were also identified and were enriched in genes that were duplicated in EnFRAME01, indicating they may reflect an adaptive variation. Taken together, our study illuminates higher-order genomic architectural features of E. necator and provides a valuable resource for studying genomic structural variations in this pathogen. IMPORTANCE Grape powdery mildew caused by the ascomycete fungus Erysiphe necator is economically the most important and recurrent disease in vineyards across the world. The obligate biotrophic nature of E. necator hinders the use of typical genetic methods to elucidate its pathogenicity and adaptation to adverse conditions, and thus comparative genomics has been a major method to study its genome biology. However, the current reference genome of E. necator isolate C-strain is highly fragmented with many non-coding regions left unassembled. This incompleteness prohibits in-depth comparative genomic analyses and the study of genomic structural variations (SVs) that are known to affect several aspects of microbial life, including fitness, virulence, and host adaptation. By obtaining a chromosome-scale genome assembly and a high-quality gene annotation for E. necator, we reveal the organization of its chromosomal content, unearth previously unknown features of its biology, and provide a reference for studying genomic SVs in this pathogen.
Collapse
Affiliation(s)
- Alex Z. Zaccaron
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| | - Tara Neill
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Jacob Corcoran
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Walter F. Mahaffee
- USDA-ARS, Horticultural Crops Disease and Pest Management Research Unit, Corvallis, Oregon, USA
| | - Ioannis Stergiopoulos
- Department of Plant Pathology, University of California Davis, Davis, California, USA
| |
Collapse
|
10
|
Kloppe T, Whetten RB, Kim SB, Powell OR, Lück S, Douchkov D, Whetten RW, Hulse-Kemp AM, Balint-Kurti P, Cowger C. Two pathogen loci determine Blumeria graminis f. sp. tritici virulence to wheat resistance gene Pm1a. THE NEW PHYTOLOGIST 2023; 238:1546-1561. [PMID: 36772855 DOI: 10.1111/nph.18809] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Blumeria graminis f. sp. tritici (Bgt) is a globally important fungal pathogen of wheat that can rapidly evolve to defeat wheat powdery mildew (Pm) resistance genes. Despite periodic regional deployment of the Pm1a resistance gene in US wheat production, Bgt strains that overcome Pm1a have been notably nonpersistent in the United States, while on other continents, they are more widely established. A genome-wide association study (GWAS) was conducted to map sequence variants associated with Pm1a virulence in 216 Bgt isolates from six countries, including the United States. A virulence variant apparently unique to Bgt isolates from the United States was detected in the previously mapped gene AvrPm1a (BgtE-5612) on Bgt chromosome 6; an in vitro growth assay suggested no fitness reduction associated with this variant. A gene on Bgt chromosome 8, Bgt-51526, was shown to function as a second determinant of Pm1a virulence, and despite < 30% amino acid identity, BGT-51526 and BGTE-5612 were predicted to share > 85% of their secondary structure. A co-expression study in Nicotiana benthamiana showed that BGTE-5612 and BGT-51526 each produce a PM1A-dependent hypersensitive response. More than one member of a B. graminis effector family can be recognized by a single wheat immune receptor, and a two-gene model is necessary to explain virulence to Pm1a.
Collapse
Affiliation(s)
- Tim Kloppe
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Rebecca B Whetten
- Plant Science Research Unit, USDA Agricultural Research Service, Raleigh, NC, 27695, USA
| | - Saet-Byul Kim
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Stefanie Lück
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, OT Gatersleben, Seeland, Germany
| | - Dimitar Douchkov
- Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466, OT Gatersleben, Seeland, Germany
| | - Ross W Whetten
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, 27695, USA
| | - Amanda M Hulse-Kemp
- Genomics and Bioinformatics Research Unit, USDA Agricultural Research Service, Raleigh, NC, 27695, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA Agricultural Research Service, Raleigh, NC, 27695, USA
| | - Christina Cowger
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA Agricultural Research Service, Raleigh, NC, 27695, USA
| |
Collapse
|
11
|
Golebiowska-Paluch G, Dyda M. The Genome Regions Associated with Abiotic and Biotic Stress Tolerance, as Well as Other Important Breeding Traits in Triticale. PLANTS (BASEL, SWITZERLAND) 2023; 12:619. [PMID: 36771703 PMCID: PMC9919094 DOI: 10.3390/plants12030619] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
This review article presents the greatest challenges in modern triticale breeding. Genetic maps that were developed and described thus far, together with the quantitative trait loci and candidate genes linked to important traits are also described. The most important part of this review is dedicated to a winter triticale mapping population based on doubled haploid lines obtained from a cross of the cultivars 'Hewo' and 'Magnat'. Many research studies on this population have focused on the analysis of quantitative trait loci regions associated with abiotic (drought and freezing) and biotic (pink snow mold and powdery mildew) stress tolerance as well as related to other important breeding traits such as stem length, plant height, spike length, number of the productive spikelets per spike, number of grains per spike, and thousand kernel weight. In addition, candidate genes located among these regions are described in detail. A comparison analysis of all of these results revealed the location of common quantitative trait loci regions on the rye chromosomes 4R, 5R, and 6R, with a particular emphasis on chromosome 5R. Described here are the candidate genes identified in the above genome regions that may potentially play an important role in the analysis of trait expression. Nevertheless, these results should guide further research using molecular methods of gene identification and it is worth extending the research to other mapping populations. The article is also a review of research led by other authors on the triticale tolerance to the most current stress factors appearing in the breeding.
Collapse
|
12
|
Moullet O, Díaz Bermúdez G, Fossati D, Brabant C, Mascher F, Schori A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:60. [PMID: 37309488 PMCID: PMC10248708 DOI: 10.1007/s11032-022-01327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/07/2022] [Indexed: 06/14/2023]
Abstract
Pre -harvest sprouting (PHS) is an important problem in cereal production reducing yield and grain quality. After decades of improvement, triticale remains particularly susceptible to PHS but no resistance genes or QTLs were identified so far in this species. As wheat shares the A and B genomes with triticale, wheat PHS resistance genes can be introgressed into triticale genome by recombination after interspecific crosses. In this project, three PHS resistance genes have been transferred from wheat to triticale by marker-assisted interspecific crosses, followed by four backcrosses. The gene TaPHS1 from the 3AS chromosome of cultivar Zenkoujikomugi (Zen) and the TaMKK3 and TaQsd1, respectively located on the 4AL and 5BL chromosomes derived both from cultivar Aus1408, were pyramided in the triticale cultivar Cosinus. Only the TaPHS1 gene increases consistently the PHS resistance in triticale. The lack of efficacy of the other two genes, especially TaQsd1, could be the result of an imperfect linkage between the marker and the gene of interest. The introduction of PHS resistance genes did not alter agronomic nor disease resistance performances of triticale. This approach leads to two new, agronomically performant and PHS-resistant triticale cultivars. Today, two breeding triticale lines are ready to enter the official registration process.
Collapse
Affiliation(s)
- Odile Moullet
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Gemma Díaz Bermúdez
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Dario Fossati
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Cécile Brabant
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | - Fabio Mascher
- Plant Breeding and Genetic Resources, Agroscope Changins, CH-1260 Nyon, Switzerland
| | | |
Collapse
|
13
|
Shimizu KK. Robustness and the generalist niche of polyploid species: Genome shock or gradual evolution? CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102292. [PMID: 36063635 DOI: 10.1016/j.pbi.2022.102292] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/01/2022] [Accepted: 07/27/2022] [Indexed: 05/26/2023]
Abstract
The prevalence of polyploidy in wild and crop species has stimulated debate over its evolutionary advantages and disadvantages. Previous studies have focused on changes occurring at the polyploidization events, including genome-wide changes termed "genome shock," as well as ancient polyploidy. Recent bioinformatics advances and empirical studies of Arabidopsis and wheat relatives are filling a research gap: the functional evolutionary study of polyploid species using RNA-seq, DNA polymorphism, and epigenomics. Polyploid species can become generalists in natura through environmental robustness by inheriting and merging parental stress responses. Their evolvability is enhanced by mutational robustness working on inherited standing variation. The identification of key genes responsible for gradual adaptive evolution will encourage synthetic biological approaches to transfer polyploid advantages to other species.
Collapse
Affiliation(s)
- Kentaro K Shimizu
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zürich, Switzerland; Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka, 244-0813 Totsuka-ward, Yokohama, Japan.
| |
Collapse
|
14
|
Ancient variation of the AvrPm17 gene in powdery mildew limits the effectiveness of the introgressed rye Pm17 resistance gene in wheat. Proc Natl Acad Sci U S A 2022; 119:e2108808119. [PMID: 35857869 PMCID: PMC9335242 DOI: 10.1073/pnas.2108808119] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Domesticated and wild wheat relatives provide an important source of new immune receptors for wheat resistance breeding against fungal pathogens. The durability of these resistance genes is variable and difficult to predict, yet it is crucial for effective resistance breeding. We identified a fungal effector protein recognized by an immune receptor introgressed from rye to wheat. We found that variants of the effector allowing the fungus to overcome the resistance are ancient. They were already present in the wheat powdery mildew gene pool before the introgression of the immune receptor and are therefore responsible for the rapid resistance breakdown. Our study demonstrates that the effort to identify durable resistance genes cannot be dissociated from studies of pathogen avirulence genes. Introgressions of chromosomal segments from related species into wheat are important sources of resistance against fungal diseases. The durability and effectiveness of introgressed resistance genes upon agricultural deployment is highly variable—a phenomenon that remains poorly understood, as the corresponding fungal avirulence genes are largely unknown. Until its breakdown, the Pm17 resistance gene introgressed from rye to wheat provided broad resistance against powdery mildew (Blumeria graminis). Here, we used quantitative trait locus (QTL) mapping to identify the corresponding wheat mildew avirulence effector AvrPm17. It is encoded by two paralogous genes that exhibit signatures of reoccurring gene conversion events and are members of a mildew sublineage specific effector cluster. Extensive haplovariant mining in wheat mildew and related sublineages identified several ancient virulent AvrPm17 variants that were present as standing genetic variation in wheat powdery mildew prior to the Pm17 introgression, thereby paving the way for the rapid breakdown of the Pm17 resistance. QTL mapping in mildew identified a second genetic component likely corresponding to an additional resistance gene present on the 1AL.1RS translocation carrying Pm17. This gene remained previously undetected due to suppressed recombination within the introgressed rye chromosomal segment. We conclude that the initial effectiveness of 1AL.1RS was based on simultaneous introgression of two genetically linked resistance genes. Our results demonstrate the relevance of pathogen-based genetic approaches to disentangling complex resistance loci in wheat. We propose that identification and monitoring of avirulence gene diversity in pathogen populations become an integral part of introgression breeding to ensure effective and durable resistance in wheat.
Collapse
|
15
|
Vaghefi N, Kusch S, Németh MZ, Seress D, Braun U, Takamatsu S, Panstruga R, Kiss L. Beyond Nuclear Ribosomal DNA Sequences: Evolution, Taxonomy, and Closest Known Saprobic Relatives of Powdery Mildew Fungi ( Erysiphaceae) Inferred From Their First Comprehensive Genome-Scale Phylogenetic Analyses. Front Microbiol 2022; 13:903024. [PMID: 35756050 PMCID: PMC9218914 DOI: 10.3389/fmicb.2022.903024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Powdery mildew fungi (Erysiphaceae), common obligate biotrophic pathogens of many plants, including important agricultural and horticultural crops, represent a monophyletic lineage within the Ascomycota. Within the Erysiphaceae, molecular phylogenetic relationships and DNA-based species and genera delimitations were up to now mostly based on nuclear ribosomal DNA (nrDNA) phylogenies. This is the first comprehensive genome-scale phylogenetic analysis of this group using 751 single-copy orthologous sequences extracted from 24 selected powdery mildew genomes and 14 additional genomes from Helotiales, the fungal order that includes the Erysiphaceae. Representative genomes of all powdery mildew species with publicly available whole-genome sequencing (WGS) data that were of sufficient quality were included in the analyses. The 24 powdery mildew genomes included in the analysis represented 17 species belonging to eight out of 19 genera recognized within the Erysiphaceae. The epiphytic genera, all but one represented by multiple genomes, belonged each to distinct, well-supported lineages. Three hemiendophytic genera, each represented by a single genome, together formed the hemiendophytic lineage. Out of the 14 other taxa from the Helotiales, Arachnopeziza araneosa, a saprobic species, was the only taxon that grouped together with the 24 genome-sequenced powdery mildew fungi in a monophyletic clade. The close phylogenetic relationship between the Erysiphaceae and Arachnopeziza was revealed earlier by a phylogenomic study of the Leotiomycetes. Further analyses of powdery mildew and Arachnopeziza genomes may discover signatures of the evolutionary processes that have led to obligate biotrophy from a saprobic way of life. A separate phylogeny was produced using the 18S, 5.8S, and 28S nrDNA sequences of the same set of powdery mildew specimens and compared to the genome-scale phylogeny. The nrDNA phylogeny was largely congruent to the phylogeny produced using 751 orthologs. This part of the study has revealed multiple contamination and other quality issues in some powdery mildew genomes. We recommend that the presence of 28S, internal transcribed spacer (ITS), and 18S nrDNA sequences in powdery mildew WGS datasets that are identical to those determined by Sanger sequencing should be used to assess the quality of assemblies, in addition to the commonly used Benchmarking Universal Single-Copy Orthologs (BUSCO) values.
Collapse
Affiliation(s)
- Niloofar Vaghefi
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Stefan Kusch
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Márk Z. Németh
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Diána Seress
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
| | - Uwe Braun
- Department of Geobotany and Botanical Garden, Herbarium, Institute for Biology, Martin Luther University of Halle-Wittenberg, Halle (Saale), Germany
| | - Susumu Takamatsu
- Laboratory of Plant Pathology, Faculty of Bioresources, Mie University, Tsu, Japan
| | - Ralph Panstruga
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Aachen, Germany
| | - Levente Kiss
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, QLD, Australia
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Loránd Research Network, Budapest, Hungary
- Centre for Research and Development, Eszterházy Károly Catholic University, Eger, Hungary
| |
Collapse
|