1
|
Levy JG, Parida AP, Oh J, Mendoza-Herrera A, Shaw BD, Tamborindeguy C. 'Candidatus liberibacter solanacearum' protein CKC_05770 interacts in vivo with tomato APX6 and APX7. Sci Rep 2025; 15:10826. [PMID: 40155471 PMCID: PMC11953316 DOI: 10.1038/s41598-025-93367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/06/2025] [Indexed: 04/01/2025] Open
Abstract
Pathogens have evolved mechanisms to manipulate their hosts to facilitate effective colonization and infection. One such mechanism involves the secretion of effectors that interfere with the host immune response. Effectors are typically secreted by dedicated secretion machinery that delivers the protein to the host cell. Liberibacters are intracellular bacterial pathogens that do not encode the typical secretion systems employed to secrete effectors; therefore, other mechanisms might be at play to allow Liberibacters to infect their hosts, such as the secretion of effectors via the sec-secretion system or via non-classical secretion systems. In this study, we datamined the genomes of five Liberibacter pathogens and identified from 66 to 102 putative non-classical secreted proteins encoded. Then, we focused on two predicted non-classical secreted proteins encoded by 'Candidatus Liberibacter solanacearum' haplotype B, CKC_05770 and CKC_00930, which showed similarities to non-classical secreted effectors from other Liberibacter species. We evaluated their secretion using alkaline phosphatase assays, if they suppressed programmed cell death or reactive oxygen species accumulation in Nicotiana benthamiana upon transient expression, and whether they could interact with tomato ascorbate peroxidases. We also evaluated if CKC_05770 had a peroxidase activity. Our results suggest that CKC_05770 interacted with tomato ascorbate peroxidases in two in vivo assays but not in vitro. Further, CKC_05770 did not suppress plant immunity nor did it have a peroxidase activity as the 'Candidatus Liberibacter asiaticus' homologs did. Therefore, Liberibacter pathogens encode non-classical secreted proteins that could be effectors, but the roles of these proteins need to be validated in each pathosystem.
Collapse
Affiliation(s)
- Julien Gad Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, 77843, USA.
| | | | - Junepyo Oh
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | | | - Brian D Shaw
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77843, USA
| | | |
Collapse
|
2
|
Lovelace AH, Wang C, Levy A, Ma W. Transcriptomic Profiling of ' Candidatus Liberibacter asiaticus' in Different Citrus Tissues Reveals Novel Insights into Huanglongbing Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:56-71. [PMID: 39499195 DOI: 10.1094/mpmi-08-24-0102-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
'Candidatus Liberibacter asiaticus' (Las) is a gram-negative bacterial pathogen associated with citrus huanglongbing (HLB) or greening disease. Las is transmitted by the Asian citrus psyllid (ACP) where it colonizes the phloem tissue, resulting in substantial economic losses to the citrus industry worldwide. Despite extensive efforts, effective management strategies against HLB remain elusive, necessitating a deeper understanding of the pathogen's biology. Las undergoes cell-to-cell movement through phloem flow and colonizes different tissues in which Las may have varying interactions with the host. Here, we investigate the transcriptomic landscape of Las in citrus seed coat vasculatures, enabling a complete gene expression profiling of Las genome and revealing unique transcriptomic patterns compared with previous studies using midrib tissues. Comparative transcriptomics between seed coat, midrib, and ACP identified specific responses and metabolic states of Las in different host tissue. Two Las virulence factors that exhibit higher expression in seed coat can suppress callose deposition. Therefore, they may contribute to unclogging sieve plate pores during Las colonization in seed coat vasculature. Furthermore, analysis of regulatory elements uncovers a potential role of LuxR-type transcription factors in regulating Liberibacter effector gene expression during plant colonization. Together, this work provides novel insights into the pathogenesis of the devastating citrus HLB. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Amelia H Lovelace
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| | - Chunxia Wang
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Amit Levy
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, U.S.A
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, United Kingdom
| |
Collapse
|
3
|
Romero B, Mithöfer A, Olivier C, Wist T, Prager SM. The Role of Plant Defense Signaling Pathways in Phytoplasma-Infected and Uninfected Aster Leafhoppers' Oviposition, Development, and Settling Behavior. J Chem Ecol 2024; 50:276-289. [PMID: 38532167 DOI: 10.1007/s10886-024-01488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 03/08/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
In plant-microbe-insect systems, plant-mediated responses involve the regulation and interactions of plant defense signaling pathways of phytohormones jasmonic acid (JA), ethylene (ET), and salicylic acid (SA). Phytoplasma subgroup 16SrI is the causal agent of Aster Yellows (AY) disease and is primarily transmitted by populations of aster leafhoppers (Macrosteles quadrilineatus Forbes). Aster Yellows infection in plants is associated with the downregulation of the JA pathway and increased leafhopper oviposition. The extent to which the presence of intact phytohormone-mediated defensive pathways regulates aster leafhopper behavioral responses, such as oviposition or settling preferences, remains unknown. We conducted no-choice and two-choice bioassays using a selection of Arabidopsis thaliana lines that vary in their defense pathways and repeated the experiments using AY-infected aster leafhoppers to evaluate possible differences associated with phytoplasma infection. While nymphal development was similar among the different lines and groups of AY-uninfected and AY-infected insects, the number of offspring and individual female egg load of AY-uninfected and AY-infected insects differed in lines with mutated components of the JA and SA signaling pathways. In most cases, AY-uninfected insects preferred to settle on wild-type (WT) plants over mutant lines; no clear pattern was observed in the settling preference of AY-infected insects. These findings support previous observations in other plant pathosystems and suggest that plant signaling pathways and infection with a plant pathogen can affect insect behavioral responses in more than one manner. Potential differences with previous work on AY could be related to the specific subgroup of phytoplasma involved in each case.
Collapse
Affiliation(s)
- Berenice Romero
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Chrystel Olivier
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Tyler Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, Saskatchewan, S7N 0X2, Canada
| | - Sean M Prager
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| |
Collapse
|
4
|
Ohtsu M, Jennings J, Johnston M, Breakspear A, Liu X, Stark K, Morris RJ, de Keijzer J, Faulkner C. Assaying Effector Cell-to-Cell Mobility in Plant Tissues Identifies Hypermobility and Indirect Manipulation of Plasmodesmata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:84-92. [PMID: 37942798 DOI: 10.1094/mpmi-05-23-0052-ta] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
In plants, plasmodesmata establish cytoplasmic continuity between cells to allow for communication and resource exchange across the cell wall. While plant pathogens use plasmodesmata as a pathway for both molecular and physical invasion, the benefits of molecular invasion (cell-to-cell movement of pathogen effectors) are poorly understood. To establish a methodology for identification and characterization of the cell-to-cell mobility of effectors, we performed a quantitative live imaging-based screen of candidate effectors of the fungal pathogen Colletotrichum higginsianum. We predicted C. higginsianum effectors by their expression profiles, the presence of a secretion signal, and their predicted and in planta localization when fused to green fluorescent protein. We assayed for cell-to-cell mobility of nucleocytosolic effectors and identified 14 that are cell-to-cell mobile. We identified that three of these effectors are "hypermobile," showing cell-to-cell mobility greater than expected for a protein of that size. To explore the mechanism of hypermobility, we chose two hypermobile effectors and measured their impact on plasmodesmata function and found that even though they show no direct association with plasmodesmata, each increases the transport capacity of plasmodesmata. Thus, our methods for quantitative analysis of cell-to-cell mobility of candidate microbe-derived effectors, or any suite of host proteins, can identify cell-to-cell hypermobility and offer greater understanding of how proteins affect plasmodesmal function and intercellular connectivity. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Mina Ohtsu
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Joanna Jennings
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Matthew Johnston
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Andrew Breakspear
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Xiaokun Liu
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Kara Stark
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Richard J Morris
- Computational and Systems Biology, John Innes Centre, Norwich Research Park, U.K
| | - Jeroen de Keijzer
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| | - Christine Faulkner
- Cell and Developmental Biology, John Innes Centre, Norwich Research Park, U.K
| |
Collapse
|
5
|
Mauck KE, Gebiola M, Percy DM. The Hidden Secrets of Psylloidea: Biology, Behavior, Symbionts, and Ecology. ANNUAL REVIEW OF ENTOMOLOGY 2024; 69:277-302. [PMID: 37738463 DOI: 10.1146/annurev-ento-120120-114738] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Psyllids constitute a diverse group of sap-feeding Sternorrhyncha that were relatively obscure until it was discovered that a handful of species transmit bacterial plant pathogens. Yet the superfamily Psylloidea is much richer than the sum of its crop-associated vectors, with over 4,000 described species exhibiting diverse life histories and host exploitation strategies. A growing body of research is uncovering fascinating insights into psyllid evolution, biology, behavior, and species interactions. This work has revealed commonalities and differences with better-studied Sternorrhyncha, as well as unique evolutionary patterns of lineage divergence and host use. We are also learning how psyllid evolution and foraging ecology underlie life history traits and the roles of psyllids in communities. At finer scales, we are untangling the web of symbionts across the psyllid family tree, linking symbiont and psyllid lineages, and revealing mechanisms underlying reciprocal exchange between symbiont and host. In this review, we synthesize and summarize key advances within these areas with a focus on free-living (nongalling) Psylloidea.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Marco Gebiola
- Department of Entomology, University of California, Riverside, California, USA; ,
| | - Diana M Percy
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada;
| |
Collapse
|
6
|
Levy JG, Oh J, Mendoza Herrera A, Parida A, Lao L, Starkey J, Yuan P, Kan CC, Tamborindeguy C. A ' Candidatus Liberibacter solanacearum' Haplotype B-Specific Family of Candidate Bacterial Effectors. PHYTOPATHOLOGY 2023; 113:1708-1715. [PMID: 37665323 DOI: 10.1094/phyto-11-22-0438-v] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
'Candidatus Liberibacter solanacearum' (Lso) is a phloem-limited pathogen associated with devastating diseases in members of the Solanaceae and Apiaceae and vectored by several psyllid species. Different Lso haplotypes have been identified, and LsoA and LsoB are responsible for diseases in Solanaceae crops. Our efforts are aimed at identifying pathogenicity factors used by this bacterium to thrive in different hosts. Bacterial secreted proteins can play a role in host colonization or the manipulation of the host immune responses; these proteins are called effectors. In this study, we identified six LsoB-specific proteins with a conserved secretion motif as well as a conserved N-terminal domain in the mature protein. These proteins had different expression and secretion patterns but a similar subcellular localization in Nicotiana benthamiana leaves, suggesting that they play different roles regardless of their conserved secretion motif. One of these proteins, CKC_04425, was expressed at high levels in the insect vector and the host plant, indicating that it could play a role in both the plant and insect hosts, whereas the others were mainly expressed in the plant. One protein, CKC_05701, was able to efficiently suppress programmed cell death and reactive oxygen species production, suggesting that it may have a virulence role in LsoB-specific pathogenesis.
Collapse
Affiliation(s)
- Julien G Levy
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843
| | - Junepyo Oh
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | | - Adwaita Parida
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Loi Lao
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Jesse Starkey
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | - Peiguo Yuan
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843
| | - Chia-Cheng Kan
- Department of Entomology, Texas A&M University, College Station, TX 77843
| | | |
Collapse
|