1
|
Yang Z, Li G, Zhang Y, Li F, Zhou T, Ye J, Wang X, Zhang X, Sun Z, Tao X, Wu M, Wu J, Li Y. Crop antiviral defense: Past and future perspective. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2617-2634. [PMID: 39190125 DOI: 10.1007/s11427-024-2680-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/09/2024] [Indexed: 08/28/2024]
Abstract
Viral pathogens not only threaten the health and life of humans and animals but also cause enormous crop yield losses and contribute to global food insecurity. To defend against viral pathogens, plants have evolved an intricate immune system to perceive and cope with such attacks. Although most of the fundamental studies were carried out in model plants, more recent research in crops has provided new insights into the antiviral strategies employed by crop plants. We summarize recent advances in understanding the biological roles of cellular receptors, RNA silencing, RNA decay, hormone signaling, autophagy, and ubiquitination in manipulating crop host-mediated antiviral responses. The potential functions of circular RNAs, the rhizosphere microbiome, and the foliar microbiome of crops in plant-virus interactions will be fascinating research directions in the future. These findings will be beneficial for the development of modern crop improvement strategies.
Collapse
Affiliation(s)
- Zhirui Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Guangyao Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Fangfang Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Zhou
- State Key Laboratory for Agro-Biotechnology and Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Jian Ye
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xianbing Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongtao Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, 315211, China
| | - Xiaorong Tao
- Department of Plant Pathology, The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Li
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-borne Virus Research Center, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
2
|
Normantovich M, Amitzur A, Offri S, Pashkovsky E, Shnaider Y, Nizan S, Yogev O, Jacob A, Taylor CG, Desbiez C, Whitham SA, Bar-Ziv A, Perl-Treves R. The melon Fom-1-Prv resistance gene pair: Correlated spatial expression and interaction with a viral protein. PLANT DIRECT 2024; 8:e565. [PMID: 38389929 PMCID: PMC10883720 DOI: 10.1002/pld3.565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 02/24/2024]
Abstract
The head-to-head oriented pair of melon resistance genes, Fom-1 and Prv, control resistance to Fusarium oxysporum races 0 and 2 and papaya ringspot virus (PRSV), respectively. They encode, via several RNA splice variants, TIR-NBS-LRR proteins, and Prv has a C-terminal extra domain with a second NBS homologous sequence. In other systems, paired R-proteins were shown to operate by "labor division," with one protein having an extra integrated domain that directly binds the pathogen's Avr factor, and the second protein executing the defense response. We report that the expression of the two genes in two pairs of near-isogenic lines was higher in the resistant isoline and inducible by F. oxysporum race 2 but not by PRSV. The intergenic DNA region separating the coding sequences of the two genes acted as a bi-directional promoter and drove GUS expression in transgenic melon roots and transgenic tobacco plants. Expression of both genes was strong in melon root tips, around the root vascular cylinder, and the phloem and xylem parenchyma of tobacco stems and petioles. The pattern of GUS expression suggests coordinated expression of the two genes. In agreement with the above model, Prv's extra domain was shown to interact with the cylindrical inclusion protein of PRSV both in yeast cells and in planta.
Collapse
Affiliation(s)
- Michael Normantovich
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Arie Amitzur
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Sharon Offri
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ekaterina Pashkovsky
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Yula Shnaider
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Shahar Nizan
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Ohad Yogev
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Avi Jacob
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | | | | | - Steven A Whitham
- Department of Plant Pathology and Microbiology Iowa State University Ames Iowa USA
| | - Amalia Bar-Ziv
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences Bar Ilan University Ramat Gan Israel
| |
Collapse
|
3
|
Li H, Liu J, Yuan X, Chen X, Cui X. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front Microbiol 2023; 14:1241076. [PMID: 38033585 PMCID: PMC10687721 DOI: 10.3389/fmicb.2023.1241076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
As a high-value oilseed crop, soybean [Glycine max (L.) Merr.] is limited by various biotic stresses during its growth and development. Soybean mosaic virus (SMV) is a devastating viral infection of soybean that primarily affects young leaves and causes significant production and economic losses; however, the synergistic molecular mechanisms underlying the soybean response to SMV are largely unknown. Therefore, we performed RNA sequencing on SMV-infected resistant and susceptible soybean lines to determine the molecular mechanism of resistance to SMV. When the clean reads were aligned to the G. max reference genome, a total of 36,260 genes were identified as expressed genes and used for further research. Most of the differentially expressed genes (DEGs) associated with resistance were found to be enriched in plant hormone signal transduction and circadian rhythm according to Kyoto Encyclopedia of Genes and Genomes analysis. In addition to salicylic acid and jasmonic acid, which are well known in plant disease resistance, abscisic acid, indole-3-acetic acid, and cytokinin are also involved in the immune response to SMV in soybean. Most of the Ca2+ signaling related DEGs enriched in plant-pathogen interaction negatively influence SMV resistance. Furthermore, the MAPK cascade was involved in either resistant or susceptible responses to SMV, depending on different downstream proteins. The phytochrome interacting factor-cryptochrome-R protein module and the MEKK3/MKK9/MPK7-WRKY33-CML/CDPK module were found to play essential roles in soybean response to SMV based on protein-protein interaction prediction. Our findings provide general insights into the molecular regulatory networks associated with soybean response to SMV and have the potential to improve legume resistance to viral infection.
Collapse
Affiliation(s)
- Han Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Mäkinen K, Aspelin W, Pollari M, Wang L. How do they do it? The infection biology of potyviruses. Adv Virus Res 2023; 117:1-79. [PMID: 37832990 DOI: 10.1016/bs.aivir.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Affiliation(s)
- Kristiina Mäkinen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland.
| | - William Aspelin
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Maija Pollari
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Linping Wang
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Jha UC, Nayyar H, Chattopadhyay A, Beena R, Lone AA, Naik YD, Thudi M, Prasad PVV, Gupta S, Dixit GP, Siddique KHM. Major viral diseases in grain legumes: designing disease resistant legumes from plant breeding and OMICS integration. FRONTIERS IN PLANT SCIENCE 2023; 14:1183505. [PMID: 37229109 PMCID: PMC10204772 DOI: 10.3389/fpls.2023.1183505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Grain legumes play a crucial role in human nutrition and as a staple crop for low-income farmers in developing and underdeveloped nations, contributing to overall food security and agroecosystem services. Viral diseases are major biotic stresses that severely challenge global grain legume production. In this review, we discuss how exploring naturally resistant grain legume genotypes within germplasm, landraces, and crop wild relatives could be used as promising, economically viable, and eco-environmentally friendly solution to reduce yield losses. Studies based on Mendelian and classical genetics have enhanced our understanding of key genetic determinants that govern resistance to various viral diseases in grain legumes. Recent advances in molecular marker technology and genomic resources have enabled us to identify genomic regions controlling viral disease resistance in various grain legumes using techniques such as QTL mapping, genome-wide association studies, whole-genome resequencing, pangenome and 'omics' approaches. These comprehensive genomic resources have expedited the adoption of genomics-assisted breeding for developing virus-resistant grain legumes. Concurrently, progress in functional genomics, especially transcriptomics, has helped unravel underlying candidate gene(s) and their roles in viral disease resistance in legumes. This review also examines the progress in genetic engineering-based strategies, including RNA interference, and the potential of synthetic biology techniques, such as synthetic promoters and synthetic transcription factors, for creating viral-resistant grain legumes. It also elaborates on the prospects and limitations of cutting-edge breeding technologies and emerging biotechnological tools (e.g., genomic selection, rapid generation advances, and CRISPR/Cas9-based genome editing tool) in developing virus-disease-resistant grain legumes to ensure global food security.
Collapse
Affiliation(s)
- Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Harsh Nayyar
- Department of Botany, Panjab University, Chandigarh, India
| | - Anirudha Chattopadhyay
- Department of Plant Pathology, Pulse Research Station, S.D. Agricultural University SK Nagar, SK Nagar, Gujarat, India
| | - Radha Beena
- Department of Plant Physiology, College of Agriculture, Vellayani, Kerala Agricultural University (KAU), Thiruvananthapuram, Kerala, India
| | - Ajaz A. Lone
- Dryland Agriculture Research Station, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKUAST)-Kashmir, Srinagar, India
| | - Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
| | - Mahendar Thudi
- Department of Agricultural Biotechnology and Molecular Biology, Dr. Rajendra Prasad Central Agricultural University, Samatipur, Bihar, India
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Center for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | | | - Sanjeev Gupta
- Indian Council of Agricultural Research, New Delhi, India
| | - Girish Prasad Dixit
- Indian Institute of Pulses Research (IIPR), Indian Council of Agricultural Research (ICAR), Kanpur, Uttar Pradesh, India
| | - Kadambot H. M. Siddique
- The University of Western Australia (UWA) Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
6
|
Alazem M, Bwalya J, Pai H, Yu J, Cam HC, Burch-Smith T, Kim KH. Viral synergism suppresses R gene-mediated resistance by impairing downstream defense mechanisms in soybean. PLANT PHYSIOLOGY 2023:kiad255. [PMID: 37099452 PMCID: PMC10400036 DOI: 10.1093/plphys/kiad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Viral synergism occurs when mixed infection of a susceptible plant by two or more viruses leads to increased susceptibility to at least one of the viruses. However, the ability of one virus to suppress R gene-controlled resistance against another virus has never been reported. In soybean (Glycine max) extreme resistance (ER) against soybean mosaic virus (SMV), governed by the Rsv3 R-protein, manifests a swift asymptomatic resistance against the avirulent strain SMV-G5H. Still, the mechanism by which Rsv3 confers ER is not fully understood. Here, we show that viral synergism broke this resistance by impairing downstream defense mechanisms triggered by Rsv3 activation. We found that activation of the antiviral RNA silencing pathway and the proimmune mitogen-activated protein kinase 3 (MAPK3), along with the suppression of the proviral MAPK6, are hallmarks of Rsv3-mediated ER against SMV-G5H. Surprisingly, infection with bean pod mottle virus (BPMV) disrupted this ER, allowing SMV-G5H to accumulate in Rsv3-containing plants. BPMV subverted downstream defenses by impairing the RNA silencing pathway and activating MAPK6. Further, BPMV reduced the accumulation of virus-related siRNAs and increased the virus-activated siRNA that targeted several defense-related nucleotide-binding leucine-rich-repeat receptors (NLRs) genes through the action of the suppression of RNA-silencing activities encoded in its large and small coat protein subunits. These results illustrate that viral synergism can result from abolishing highly specific R gene resistance by impairing active mechanisms downstream of the R gene.
Collapse
Affiliation(s)
- Mazen Alazem
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - John Bwalya
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hsuan Pai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Jisuk Yu
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| | - Huong Chu Cam
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Kook-Hyung Kim
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Jin T, Yin J, Wang T, Xue S, Li B, Zong T, Yang Y, Liu H, Liu M, Xu K, Wang L, Xing G, Zhi H, Li K. R SC3 K of soybean cv. Kefeng No.1 confers resistance to soybean mosaic virus by interacting with the viral protein P3. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:838-853. [PMID: 36330964 DOI: 10.1111/jipb.13401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Soybean mosaic virus (SMV) is one of the most devastating viral pathogens of soybean (Glycine max (L.) Merr). In total, 22 Chinese SMV strains (SC1-SC22) have been classified based on the responses of 10 soybean cultivars to these pathogens. However, although several SMV-resistance loci in soybean have been identified, no gene conferring SMV resistance in the resistant soybean cultivar (cv.) Kefeng No.1 has been cloned and verified. Here, using F2 -derived F3 (F2:3 ) and recombinant inbred line (RIL) populations from a cross between Kefeng No.1 and susceptible soybean cv. Nannong 1138-2, we localized the gene in Kefeng No.1 that mediated resistance to SMV-SC3 strain to a 90-kb interval on chromosome 2. To study the functions of candidate genes in this interval, we performed Bean pod mottle virus (BPMV)-induced gene silencing (VIGS). We identified a recombinant gene (which we named RSC3 K) harboring an internal deletion of a genomic DNA fragment partially flanking the LOC100526921 and LOC100812666 reference genes as the SMV-SC3 resistance gene. By shuffling genes between infectious SMV DNA clones based on the avirulent isolate SC3 and virulent isolate 1129, we determined that the viral protein P3 is the avirulence determinant mediating SMV-SC3 resistance on Kefeng No.1. P3 interacts with RNase proteins encoded by RSC3 K, LOC100526921, and LOC100812666. The recombinant RSC3 K conveys much higher anti-SMV activity than LOC100526921 and LOC100812666, although those two genes also encode proteins that inhibit SMV accumulation, as revealed by gene silencing in a susceptible cultivar and by overexpression in Nicotiana benthamiana. These findings demonstrate that RSC3 K mediates the resistance of Kefeng No.1 to SMV-SC3 and that SMV resistance of soybean is determined by the antiviral activity of RNase proteins.
Collapse
Affiliation(s)
- Tongtong Jin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinlong Yin
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Tao Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Song Xue
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bowen Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tingxuan Zong
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunhua Yang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengzhuo Liu
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Liqun Wang
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangnan Xing
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haijian Zhi
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kai Li
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetic Improvement of Soybean-Ministry of Agriculture, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
8
|
Fine Mapping the Soybean Mosaic Virus Resistance Gene in Soybean Cultivar Heinong 84 and Development of CAPS Markers for Rapid Identification. Viruses 2022; 14:v14112533. [PMID: 36423142 PMCID: PMC9697120 DOI: 10.3390/v14112533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Heinong 84 is one of the major soybean varieties growing in Northeast China, and is resistant to the infection of all strains of soybean mosaic virus (SMV) in the region including the most prevalent strain, N3. However, the resistance gene(s) in Heinong 84 and the resistant mechanism are still elusive. In this study, genetic and next-generation sequencing (NGS)-based bulk segregation analysis (BSA) were performed to map the resistance gene using a segregation population from the cross of Heinong 84 and a susceptible cultivar to strain N3, Zhonghuang 13. Results show that the resistance of Heinong 84 is controlled by a dominant gene on chromosome 13. Further analyses suggest that the resistance gene in Heinong 84 is probably an allele of Rsv1. Finally, two pairs of single-nucleotide-polymorphism (SNP)-based primers that are tightly cosegregated with the resistance gene were designed for rapidly identifying resistant progenies in breeding via the cleaved amplified polymorphic sequence (CAPS) assay.
Collapse
|
9
|
Usovsky M, Chen P, Li D, Wang A, Shi A, Zheng C, Shakiba E, Lee D, Canella Vieira C, Lee YC, Wu C, Cervantez I, Dong D. Decades of Genetic Research on Soybean mosaic virus Resistance in Soybean. Viruses 2022; 14:1122. [PMID: 35746594 PMCID: PMC9230979 DOI: 10.3390/v14061122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
This review summarizes the history and current state of the known genetic basis for soybean resistance to Soybean mosaic virus (SMV), and examines how the integration of molecular markers has been utilized in breeding for crop improvement. SVM causes yield loss and seed quality reduction in soybean based on the SMV strain and the host genotype. Understanding the molecular underpinnings of SMV-soybean interactions and the genes conferring resistance to SMV has been a focus of intense research interest for decades. Soybean reactions are classified into three main responses: resistant, necrotic, or susceptible. Significant progress has been achieved that has greatly increased the understanding of soybean germplasm diversity, differential reactions to SMV strains, genotype-strain interactions, genes/alleles conferring specific reactions, and interactions among resistance genes and alleles. Many studies that aimed to uncover the physical position of resistance genes have been published in recent decades, collectively proposing different candidate genes. The studies on SMV resistance loci revealed that the resistance genes are mainly distributed on three chromosomes. Resistance has been pyramided in various combinations for durable resistance to SMV strains. The causative genes are still elusive despite early successes in identifying resistance alleles in soybean; however, a gene at the Rsv4 locus has been well validated.
Collapse
Affiliation(s)
- Mariola Usovsky
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65201, USA;
| | - Pengyin Chen
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Dexiao Li
- College of Agronomy, Northwest University of Agriculture, Jiangling, Xianyang 712100, China;
| | - Aiming Wang
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA;
| | | | - Ehsan Shakiba
- Rice Research and Extension Center, Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Stuttgart, AR 72160, USA;
| | - Dongho Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Caio Canella Vieira
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Yi Chen Lee
- Delta Center, Division of Plant Science and Technology, University of Missouri, Portageville, MO 63873, USA; (D.L.); (C.C.V.); (Y.C.L.)
| | - Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72701, USA;
| | - Innan Cervantez
- Bayer CropScience, Global Soybean Breeding, 1781 Gavin Road, Marion, AR 72364, USA;
| | - Dekun Dong
- Soybean Research Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| |
Collapse
|
10
|
Ngou BPM, Ding P, Jones JDG. Thirty years of resistance: Zig-zag through the plant immune system. THE PLANT CELL 2022; 34:1447-1478. [PMID: 35167697 PMCID: PMC9048904 DOI: 10.1093/plcell/koac041] [Citation(s) in RCA: 407] [Impact Index Per Article: 135.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2022] [Indexed: 05/05/2023]
Abstract
Understanding the plant immune system is crucial for using genetics to protect crops from diseases. Plants resist pathogens via a two-tiered innate immune detection-and-response system. The first plant Resistance (R) gene was cloned in 1992 . Since then, many cell-surface pattern recognition receptors (PRRs) have been identified, and R genes that encode intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) have been cloned. Here, we provide a list of characterized PRRs and NLRs. In addition to immune receptors, many components of immune signaling networks were discovered over the last 30 years. We review the signaling pathways, physiological responses, and molecular regulation of both PRR- and NLR-mediated immunity. Recent studies have reinforced the importance of interactions between the two immune systems. We provide an overview of interactions between PRR- and NLR-mediated immunity, highlighting challenges and perspectives for future research.
Collapse
Affiliation(s)
- Bruno Pok Man Ngou
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Pingtao Ding
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
- Institute of Biology Leiden, Leiden University, Leiden 2333 BE, The Netherlands
| | - Jonathan D G Jones
- The Sainsbury Laboratory, University of East Anglia, Norwich NR4 7UH, UK
| |
Collapse
|
11
|
Yan T, Zhou Z, Wang R, Bao D, Li S, Li A, Yu R, Wuriyanghan H. A cluster of atypical resistance genes in soybean confers broad-spectrum antiviral activity. PLANT PHYSIOLOGY 2022; 188:1277-1293. [PMID: 34730802 PMCID: PMC8825445 DOI: 10.1093/plphys/kiab507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/02/2021] [Indexed: 06/12/2023]
Abstract
Soybean mosaic virus (SMV) is a severe soybean (Glycine max) pathogen. Here we characterize a soybean SMV resistance cluster (SRC) that comprises five resistance (R) genes. SRC1 encodes a Toll/interleukin-1 receptor and nucleotide-binding site (TIR-NBS [TN]) protein, SRC4 and SRC6 encode TIR proteins with a short EF-hand domain, while SRC7 and SRC8 encode TNX proteins with a noncanonical basic secretory protein (BSP) domain at their C-termini. We mainly studied SRC7, which contains a noncanonical BSP domain and gave full resistance to SMV. SRC7 possessed broad-spectrum antiviral activity toward several plant viruses including SMV, plum pox virus, potato virus Y, and tobacco mosaic virus. The TIR domain alone was both necessary and sufficient for SRC7 immune signaling, while the NBS domain enhanced its activity. Nuclear oligomerization via the interactions of both TIR and NBS domains was essential for SRC7 function. SRC7 expression was transcriptionally inducible by SMV infection and salicylic acid (SA) treatment, and SA was required for SRC7 triggered virus resistance. SRC7 expression was posttranscriptionally regulated by miR1510a and miR2109, and the SRC7-miR1510a/miR2109 regulatory network appeared to contribute to SMV-soybean interactions in both resistant and susceptible soybean cultivars. In summary, we report a soybean R gene cluster centered by SRC7 that is regulated at both transcriptional and posttranscriptional levels, possesses a yet uncharacterized BSP domain, and has broad-spectrum antiviral activities. The SRC cluster is special as it harbors several functional R genes encoding atypical TIR-NBS-LRR (TNL) type R proteins, highlighting its importance in SMV-soybean interaction and plant immunity.
Collapse
Affiliation(s)
- Ting Yan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Zikai Zhou
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ru Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Duran Bao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Shanshan Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Aoga Li
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Ruonan Yu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Hada Wuriyanghan
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| |
Collapse
|
12
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
13
|
Ross BT, Zidack NK, Flenniken ML. Extreme Resistance to Viruses in Potato and Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:658981. [PMID: 33889169 PMCID: PMC8056081 DOI: 10.3389/fpls.2021.658981] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/12/2021] [Indexed: 05/31/2023]
Abstract
Plant pathogens, including viruses, negatively impact global crop production. Plants have evolved complex immune responses to pathogens. These responses are often controlled by nucleotide-binding leucine-rich repeat proteins (NLRs), which recognize intracellular, pathogen-derived proteins. Genetic resistance to plant viruses is often phenotypically characterized by programmed cell death at or near the infection site; a reaction termed the hypersensitive response. Although visualization of the hypersensitive response is often used as a hallmark of resistance, the molecular mechanisms leading to the hypersensitive response and associated cell death vary. Plants with extreme resistance to viruses rarely exhibit symptoms and have little to no detectable virus replication or spread beyond the infection site. Both extreme resistance and the hypersensitive response can be activated by the same NLR genes. In many cases, genes that normally provide an extreme resistance phenotype can be stimulated to cause a hypersensitive response by experimentally increasing cellular levels of pathogen-derived elicitor protein(s). The molecular mechanisms of extreme resistance and its relationship to the hypersensitive response are largely uncharacterized. Studies on potato and soybean cultivars that are resistant to strains of Potato virus Y (PVY), Potato virus X (PVX), and Soybean mosaic virus (SMV) indicate that abscisic acid (ABA)-mediated signaling and NLR nuclear translocation are important for the extreme resistance response. Recent research also indicates that some of the same proteins are involved in both extreme resistance and the hypersensitive response. Herein, we review and synthesize published studies on extreme resistance in potato and soybean, and describe studies in additional species, including model plant species, to highlight future research avenues that may bridge the gaps in our knowledge of plant antiviral defense mechanisms.
Collapse
Affiliation(s)
- Brian T. Ross
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Nina K. Zidack
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
- Montana State Seed Potato Certification Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, United States
| |
Collapse
|
14
|
Shi F, Wang Y, Zhang F, Yuan X, Chen H, Chen X, Chen X, Cui X. Soybean Endo-1,3-Beta-Glucanase ( GmGLU) Interaction With Soybean mosaic virus-Encoded P3 Protein May Contribute to the Intercelluar Movement. Front Genet 2020; 11:536771. [PMID: 33101374 PMCID: PMC7522550 DOI: 10.3389/fgene.2020.536771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 08/26/2020] [Indexed: 11/26/2022] Open
Abstract
Soybean mosaic virus (SMV), a member of the genus Potyvirus, is a prevalent and devastating viral pathogen in soybean-growing regions worldwide. Potyvirus-encoded P3 protein is reported to participate in virus replication, movements, and pathogenesis. This study provides evidence that the soybean (Glycine max) endo-1,3-beta-glucanase protein (designated as GmGLU) interacts with SMV-P3 by using a yeast two-hybrid system to screen a soybean cDNA library. A bimolecular fluorescence complementation assay further confirmed the interaction, which occurred on the cytomembrane in Nicotiana benthamiana cells. Subcellular localization experiment indicated that GmGLU localized in cytomembrane and could co-localized at PD with PD marker. The transient expression of GmGLU promoted the coupling of Turnip mosaic virus replication and cell-to-cell movement in N. benthamiana. Meanwhile, qRT-PCR experiment demonstrated that the expression of GmGLU which involved in callose regulation increased under SMV infection. Under SMV infection, callose deposition at PD was observed obviously by staining with aniline blue, which raise a physical barrier restricting cell-to-cell movement of SMV. When overexpression the GmGLU into the leaves under SMV infection, the callose induced by SMV was degraded. Coexpression the GmGLU and SMV in soybean leaves, callose was not found, whereas a large amount of callose deposition on soybean leaves which were only under SMV infection. The results show that GmGLU can degrade the callose induced by SMV infection and indicate that GmGLU may be an essential host factor involvement in potyvirus infection.
Collapse
Affiliation(s)
- Feifei Shi
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Department of Horticulture, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Fang Zhang
- Central Laboratory, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China
| | - Xuehao Chen
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Institute of Life Science, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, China.,Institute of Life Science, Jiangsu University, Zhenjiang, China
| |
Collapse
|
15
|
Soybean Resistance to Soybean Mosaic Virus. PLANTS 2020; 9:plants9020219. [PMID: 32046350 PMCID: PMC7076706 DOI: 10.3390/plants9020219] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/18/2020] [Accepted: 02/06/2020] [Indexed: 11/26/2022]
Abstract
Soybean mosaic virus (SMV) occurs in all soybean-growing areas in the world and causes huge losses in soybean yields and seed quality. During early viral infection, molecular interactions between SMV effector proteins and the soybean resistance (R) protein, if present, determine the development of resistance/disease in soybean plants. Depending on the interacting strain and cultivar, R-protein in resistant soybean perceives a specific SMV effector, which triggers either the extreme silent resistance or the typical resistance manifested by hypersensitive responses and induction of salicylic acid and reactive oxygen species. In this review, we consider the major advances that have been made in understanding the soybean–SMV arms race. We also focus on dissecting mechanisms SMV employs to establish infection and how soybean perceives and then responds to SMV attack. In addition, progress on soybean R-genes studies, as well as those addressing independent resistance genes, are also addressed.
Collapse
|
16
|
Wang Y, Xu W, Abe J, Nakahara KS, Hajimorad MR. Precise Exchange of the Helper-Component Proteinase Cistron Between Soybean mosaic virus and Clover yellow vein virus: Impact on Virus Viability and Host Range Specificity. PHYTOPATHOLOGY 2020; 110:206-214. [PMID: 31509476 DOI: 10.1094/phyto-06-19-0193-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soybean mosaic virus and Clover yellow vein virus are two definite species of the genus Potyvirus within the family Potyviridae. Soybean mosaic virus-N (SMV-N) is well adapted to cultivated soybean (Glycine max) genotypes and wild soybean (G. soja), whereas it remains undetectable in inoculated broad bean (Vicia faba). In contrast, clover yellow vein virus No. 30 (ClYVV-No. 30) is capable of systemic infection in broad bean and wild soybean; however, it infects cultivated soybean genotypes only locally. In this study, SMV-N was shown to also infect broad bean locally; hence, broad bean is a host for SMV-N. Based on these observations, it was hypothesized that lack of systemic infection by SMV-N in broad bean and by ClYVV-No. 30 in cultivated soybean is attributable to the incompatibility of multifunctional helper-component proteinase (HC-Pro) in these hosts. The logic of selecting the HC-Pro cistron as a target is based on its established function in systemic movement and being a relevant factor in host range specificity of potyviruses. To test this hypothesis, chimeras were constructed with precise exchanges of HC-Pro cistrons between SMV-N and ClYVV-No. 30. Upon inoculation, both chimeras were viable in infection, but host range specificity of the recombinant viruses did not differ from those of the parental viruses. These observations suggest that (i) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are functionally compatible in infection despite 55.6 and 48.9% nucleotide and amino acid sequence identity, respectively, and (ii) HC-Pro cistrons from SMV-N and ClYVV-No. 30 are not the determinants of host specificity on cultivated soybean or broad beans, respectively.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- Jilin Academy of Agricultural Sciences, Changchun 130033, Jilin, China
| | - W Xu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - J Abe
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - K S Nakahara
- Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
17
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
18
|
Abe J, Wang Y, Yamada T, Sato M, Ono T, Atsumi G, Abe J, Hajimorad MR, Nakahara KS. Recessive Resistance Governed by a Major Quantitative Trait Locus Restricts Clover Yellow Vein Virus in Mechanically but Not Graft-Inoculated Cultivated Soybeans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1026-1037. [PMID: 30830836 DOI: 10.1094/mpmi-12-18-0331-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Clover yellow vein virus (ClYVV) infects and causes disease in legume plants. However, here, we found that ClYVV isolate No. 30 (ClYVV-No.30) inefficiently multiplied or spread via cell-to-cell movement in mechanically inoculated leaves of a dozen soybean (Glycine max) cultivars and resulted in failure to spread systemically. Soybean plants also had a similar resistance phenotype against additional ClYVV isolates. In contrast, all but one of 24 tested accessions of wild soybeans (G. soja) were susceptible to ClYVV-No.30. Graft inoculation of cultivated soybean TK780 with ClYVV-No.30-infected wild soybean B01167 scion resulted in systemic infection of the cultivated soybean rootstock. This suggests that, upon mechanical inoculation, the cultivated soybean inhibits ClYVV-No.30, at infection steps prior to the systemic spread of the virus, via vascular systems. Systemic infection of all F1 plants from crossing between TK780 and B01167 and of 68 of 76 F2 plants with ClYVV-No.30 indicated recessive inheritance of the resistance. Further genetic analysis using 64 recombinant inbred lines between TK780 and B01167 detected one major quantitative trait locus, designated d-cv, for the resistance that was positioned in the linkage group D1b (chromosome 2). The mapped region on soybean genome suggests that d-cv is not an allele of the known resistance genes against soybean mosaic virus.
Collapse
Affiliation(s)
- Junya Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Yongzhi Wang
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
- 3Jilin Academy of Agricultural Sciences, 1363 Caiyu Street, Changchun 130033, Jilin, China
| | - Tetsuya Yamada
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Masako Sato
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Takuya Ono
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - Go Atsumi
- 4National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Jun Abe
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | - M R Hajimorad
- 2Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Kenji S Nakahara
- 1Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| |
Collapse
|
19
|
Luan H, Liao W, Niu H, Cui X, Chen X, Zhi H. Comprehensive Analysis of Soybean Mosaic Virus P3 Protein Interactors and Hypersensitive Response-Like Lesion-Inducing Protein Function. Int J Mol Sci 2019; 20:ijms20143388. [PMID: 31295900 PMCID: PMC6678280 DOI: 10.3390/ijms20143388] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/27/2019] [Accepted: 07/07/2019] [Indexed: 11/16/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most prevalent and important pathogens of soybean, which produces 11 proteins, and the third protein, P3, was suggested to be involved in virus movement and replication, as well as host infection. During the virus infection, host proteins are essential in the virus cycle. However, there is no comprehensive report on the network of host proteins that interact with P3. Fifty-one interactors were identified by using the P3 protein as the bait against the SMV SC15 strain-challenged soybean cDNA library. These proteins were classified into five groups, including transport and protein transport-related proteins, defense and disease-related proteins, photosynthesis proteins, cellular metabolic proteins, and unknown proteins. Among these proteins, the protein defined as hypersensitive response-like lesion-inducing (HRLI) appeared multiple times and showed strong affinity with P3, which indicated its important role in SMV infection. Thus, it was chosen for further investigation. Phylogenetic classification showed that paralog proteins GmHRLI-1 and GmHRLI-2 clustered together and shared 90% homologous identity. Bimolecular fluorescence complementation (BiFC) assay was carried out to confirm the interaction, and fluorescence was detected at the cell periplasmic as well as at the nucleus. Subcellular localization showed that GmHRLI was localized to the cell periplasmic, while the co-localization of GmHRLI and P3 signals was also observed in the nucleus, suggesting that GmHRLI could interact with P3 and promoted the translation of P3 to the nucleus. Moreover, the gene expression of GmHRLI was abundant in the roots, leaves, and flowers, and could be induced by SMV infection, suggesting its involvement in SMV infection. Our results together lay the foundation to explore the mechanisms of P3 in the HR process and the HRLI protein function in SMV response.
Collapse
Affiliation(s)
- Hexiang Luan
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenlin Liao
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haopeng Niu
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoyan Cui
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xin Chen
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Haijian Zhi
- National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Role of the Genetic Background in Resistance to Plant Viruses. Int J Mol Sci 2018; 19:ijms19102856. [PMID: 30241370 PMCID: PMC6213453 DOI: 10.3390/ijms19102856] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 01/03/2023] Open
Abstract
In view of major economic problems caused by viruses, the development of genetically resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives results in a dramatic change of the genetic background that can alter the resistance efficiency or durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large part of the resistance phenotype, conferred by a given QTL, depends on the genetic background. We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic background could impact resistance or durability. We propose that the genetic background may impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by loss-of-susceptibility-such as eIF4E-based resistances-are more likely to rely on gene redundancy among the multigene family of host susceptibility factors. Finally, we show how the genetic background is likely to shape the evolution of resistance-breaking isolates and propose how to take this into account in order to breed plants with increased resistance durability to viruses.
Collapse
|
21
|
Hajimorad MR, Domier LL, Tolin SA, Whitham SA, Saghai Maroof MA. Soybean mosaic virus: a successful potyvirus with a wide distribution but restricted natural host range. MOLECULAR PLANT PATHOLOGY 2018; 19:1563-1579. [PMID: 29134790 PMCID: PMC6638002 DOI: 10.1111/mpp.12644] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/18/2017] [Accepted: 11/07/2017] [Indexed: 05/12/2023]
Abstract
TAXONOMY Soybean mosaic virus (SMV) is a species within the genus Potyvirus, family Potyviridae, which includes almost one-quarter of all known plant RNA viruses affecting agriculturally important plants. The Potyvirus genus is the largest of all genera of plant RNA viruses with 160 species. PARTICLE The filamentous particles of SMV, typical of potyviruses, are about 7500 Å long and 120 Å in diameter with a central hole of about 15 Å in diameter. Coat protein residues are arranged in helices of about 34 Å pitch having slightly less than nine subunits per turn. GENOME The SMV genome consists of a single-stranded, positive-sense, polyadenylated RNA of approximately 9.6 kb with a virus-encoded protein (VPg) linked at the 5' terminus. The genomic RNA contains a single large open reading frame (ORF). The polypeptide produced from the large ORF is processed proteolytically by three viral-encoded proteinases to yield about 10 functional proteins. A small ORF, partially overlapping the P3 cistron, pipo, is encoded as a fusion protein in the N-terminus of P3 (P3N + PIPO). BIOLOGICAL PROPERTIES SMV's host range is restricted mostly to two plant species of a single genus: Glycine max (cultivated soybean) and G. soja (wild soybean). SMV is transmitted by aphids non-persistently and by seeds. The variability of SMV is recognized by reactions on cultivars with dominant resistance (R) genes. Recessive resistance genes are not known. GEOGRAPHICAL DISTRIBUTION AND ECONOMIC IMPORTANCE As a consequence of its seed transmissibility, SMV is present in all soybean-growing areas of the world. SMV infections can reduce significantly seed quantity and quality (e.g. mottled seed coats, reduced seed size and viability, and altered chemical composition). CONTROL The most effective means of managing losses from SMV are the planting of virus-free seeds and cultivars containing single or multiple R genes. KEY ATTRACTIONS The interactions of SMV with soybean genotypes containing different dominant R genes and an understanding of the functional role(s) of SMV-encoded proteins in virulence, transmission and pathogenicity have been investigated intensively. The SMV-soybean pathosystem has become an excellent model for the examination of the genetics and genomics of a uniquely complex gene-for-gene resistance model in a crop of worldwide importance.
Collapse
Affiliation(s)
- M. R. Hajimorad
- Department of Entomology and Plant PathologyThe University of TennesseeKnoxvilleTN 37996USA
| | - L. L. Domier
- United States Department of Agriculture‐Agricultural Research Service and Department of Crop SciencesUniversity of IllinoisUrbanaIL 61801USA
| | - S. A. Tolin
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - S. A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - M. A. Saghai Maroof
- Department of Crop and Soil Environmental SciencesVirginia TechBlacksburgVA 24061USA
| |
Collapse
|
22
|
Valli AA, Gallo A, Rodamilans B, López‐Moya JJ, García JA. The HCPro from the Potyviridae family: an enviable multitasking Helper Component that every virus would like to have. MOLECULAR PLANT PATHOLOGY 2018; 19:744-763. [PMID: 28371183 PMCID: PMC6638112 DOI: 10.1111/mpp.12553] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 05/18/2023]
Abstract
RNA viruses have very compact genomes and so provide a unique opportunity to study how evolution works to optimize the use of very limited genomic information. A widespread viral strategy to solve this issue concerning the coding space relies on the expression of proteins with multiple functions. Members of the family Potyviridae, the most abundant group of RNA viruses in plants, offer several attractive examples of viral factors which play roles in diverse infection-related pathways. The Helper Component Proteinase (HCPro) is an essential and well-characterized multitasking protein for which at least three independent functions have been described: (i) viral plant-to-plant transmission; (ii) polyprotein maturation; and (iii) RNA silencing suppression. Moreover, multitudes of host factors have been found to interact with HCPro. Intriguingly, most of these partners have not been ascribed to any of the HCPro roles during the infectious cycle, supporting the idea that this protein might play even more roles than those already established. In this comprehensive review, we attempt to summarize our current knowledge about HCPro and its already attributed and putative novel roles, and to discuss the similarities and differences regarding this factor in members of this important viral family.
Collapse
Affiliation(s)
| | - Araiz Gallo
- Centro Nacional de Biotecnología (CNB‐CSIC)Madrid28049Spain
| | | | - Juan José López‐Moya
- Center for Research in Agricultural Genomics (CRAG‐CSIC‐IRTA‐UAB‐UB), Campus UABBellaterraBarcelona08193Spain
| | | |
Collapse
|
23
|
Zhao Q, Li H, Sun H, Li A, Liu S, Yu R, Cui X, Zhang D, Wuriyanghan H. Salicylic acid and broad spectrum of NBS-LRR family genes are involved in SMV-soybean interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:132-140. [PMID: 29232653 DOI: 10.1016/j.plaphy.2017.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 11/11/2017] [Accepted: 12/06/2017] [Indexed: 05/07/2023]
Abstract
Soybean mosaic virus (SMV) is a severe pathogen reducing crop yield and seed quality of soybean. Although several resistance gene loci including Rsv1, Rsv3 and Rsv4 are identified in some soybean varieties, most of the soybean genes related to SMV infection are still not characterized. In order to reveal genome-wide gene expression profiles in response to SMV infection, we used transcriptome analysis to determine SMV-responsive genes in susceptible variety Hefeng25. Time course RNA-seq analysis at 1, 5 and 10 dpi identified many deregulated pathways and gene families. "Plant-pathogen interaction" pathway with KEGG No. of KO04626 was highly enriched and dozens of NBS-LRR family genes were significantly down-regulated at 5 dpi. qRT-PCR analyses were performed to verify expression patterns of these genes and most were in accordance with the RNA-seq data. As NBS-LRR family proteins are broadly involved in plant immunity responses, our results indicated the importance of this time point (5 dpi) for SMV-soybean interaction. Consistent with it, SMV titer was increased from 1 dpi to 10 dpi and peaked at 5 dpi. Expression of SA (salicylic acid) marker gene PR-1 was induced by SMV infection. Application of exogenous MeSA, an active form of SA, primed the plant resistant to virus infection and reduced SMV accumulation in soybean. Interestingly, MeSA treatment also significantly upregulated expressions of SMV-responsive NBS-LRR genes. Compared with susceptible line Hefeng25, endogenous SA level was higher and was consistently induced by SMV infection in resistant variety RV8143. Moreover, expressions of NBS-LRR family genes were up-regulated by SMV infection in RV8143, while they were down-regulated by SMV infection in Hefeng25. Our results implied that SA and NBS-LRR family genes were involved in SMV-soybean interaction. SMV could compromise soybean defense responses by repression of NBS-LRR family genes in Hefeng25, and SA was implicated in this interaction process.
Collapse
Affiliation(s)
- Qiqi Zhao
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Haina Li
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Hongyu Sun
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Aoga Li
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Shuxin Liu
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Ruonan Yu
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Xiuqi Cui
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China
| | - Dejian Zhang
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China.
| | - Hada Wuriyanghan
- School of Life Sciences, Inner Mongolia University, No. 235 West College Road, Hohhot, Inner Mongolia 010021, China.
| |
Collapse
|
24
|
Cui X, Lu L, Wang Y, Yuan X, Chen X. The interaction of soybean reticulon homology domain protein (GmRHP) with Soybean mosaic virus encoded P3 contributes to the viral infection. Biochem Biophys Res Commun 2018; 495:2105-2110. [PMID: 29229386 DOI: 10.1016/j.bbrc.2017.12.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Soybean mosaic virus (SMV), a member of the Potyvirus genus, is a prevalent and devastating viral pathogen in soybean-growing regions worldwide. Potyvirus replication occurs in the 6K2-induced viral replication complex at endoplasmic reticulum exit sites. Potyvirus-encoded P3 is also associated with the endoplasmic reticulum and is as an essential component of the viral replication complex, playing a key role in viral replication. This study provides evidence that the soybean (Glycine max) reticulon homology domain protein (designated as GmRHP) interacts with SMV-P3 by using a two-hybrid yeast system to screen a soybean cDNA library. A bimolecular fluorescence complementation assay further confirmed the interaction, which occurred on the cytomembrane, endoplasmic reticulum and cytoskeleton in Nicotiana benthamiana cells. The transient expression of GmRHP can promote the coupling of Turnip mosaic virus replication and cell-to-cell movement in N. benthamiana. The interaction between the membrane protein SMV-P3 and GmRHP may contribute to the potyvirus infection, and GmRHP may be an essential host factor for P3's involvement in potyvirus replication.
Collapse
Affiliation(s)
- Xiaoyan Cui
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, PR China
| | - Lu Lu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, PR China
| | - Ying Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, PR China; Department of Horticulture, School of Horticulture and Plant Protection, Yangzhou University, 48 East Wenhui Road, Yangzhou, Jiangsu, 225009, PR China
| | - Xingxing Yuan
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, PR China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu, 210014, PR China.
| |
Collapse
|
25
|
Yang X, Niu L, Zhang W, Yang J, Xing G, He H, Guo D, Du Q, Qian X, Yao Y, Li Q, Dong Y. RNAi-mediated SMV P3 cistron silencing confers significantly enhanced resistance to multiple Potyvirus strains and isolates in transgenic soybean. PLANT CELL REPORTS 2018; 37:103-114. [PMID: 28756582 DOI: 10.1007/s00299-017-2186-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/18/2017] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE Robust RNAi-mediated resistance to multiple Potyvirus strains and isolates, but not to Secovirus BPMV, was conferred by expressing a short SMV P3 hairpin in soybean plants. Engineering resistance to multiple Potyvirus strains is of great interest because of a wide variability of the virus strains, and mixed infections of multiple viruses or strains commonly associated with field grown soybean. In this study, RNAi-mediated silencing of the soybean mosaic virus (SMV) P3 cistron, which is reported to participate in virus movements and pathogenesis and to be the putative determinant of SMV virulence, was used to induce resistance to multiple Potyvirus strains and isolates in soybean. A 302 bp inverted repeat (IR) of the P3 cistron, isolated from the SMV strain SC3, was introduced into soybean. The transgenic lines exhibited stable and enhanced resistance to SMV SC3 under field conditions over 3 consecutive years. The transgenic lines also showed significantly enhanced resistance to four other SMV strains (SC7, SC15, SC18, and SMV-R, a novel recombinant found in China), the soybean-infecting bean common mosaic virus (BCMV) and watermelon mosaic virus (WMV). Nevertheless, no significant differences were found between transgenic plants and their non-transformed (NT) counterparts in terms of resistance to bean pod mottle virus (BPMV, Secoviridae). Consistent with the results of resistance evaluations, the expression of the respective viral CP cistrons and virus accumulation were significantly lower in seven Potyvirus strains and isolates than in the NT plants, but not in BCMV-inoculated transgenic lines. The results demonstrate the effectiveness of engineering resistance to multiple Potyvirus strains and isolates via RNAi-mediated SMV P3 cistron silencing, and thus provide an effective control strategy against Potyvirus infections in soybean and other crops.
Collapse
Affiliation(s)
- Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Wei Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongquan Guo
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qian Du
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xueyan Qian
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Yao
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
26
|
Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EPB. Immune Receptors and Co-receptors in Antiviral Innate Immunity in Plants. Front Microbiol 2017; 7:2139. [PMID: 28105028 PMCID: PMC5214455 DOI: 10.3389/fmicb.2016.02139] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/19/2016] [Indexed: 01/19/2023] Open
Abstract
Plants respond to pathogens using an innate immune system that is broadly divided into PTI (pathogen-associated molecular pattern- or PAMP-triggered immunity) and ETI (effector-triggered immunity). PTI is activated upon perception of PAMPs, conserved motifs derived from pathogens, by surface membrane-anchored pattern recognition receptors (PRRs). To overcome this first line of defense, pathogens release into plant cells effectors that inhibit PTI and activate effector-triggered susceptibility (ETS). Counteracting this virulence strategy, plant cells synthesize intracellular resistance (R) proteins, which specifically recognize pathogen effectors or avirulence (Avr) factors and activate ETI. These coevolving pathogen virulence strategies and plant resistance mechanisms illustrate evolutionary arms race between pathogen and host, which is integrated into the zigzag model of plant innate immunity. Although antiviral immune concepts have been initially excluded from the zigzag model, recent studies have provided several lines of evidence substantiating the notion that plants deploy the innate immune system to fight viruses in a manner similar to that used for non-viral pathogens. First, most R proteins against viruses so far characterized share structural similarity with antibacterial and antifungal R gene products and elicit typical ETI-based immune responses. Second, virus-derived PAMPs may activate PTI-like responses through immune co-receptors of plant PTI. Finally, and even more compelling, a viral Avr factor that triggers ETI in resistant genotypes has recently been shown to act as a suppressor of PTI, integrating plant viruses into the co-evolutionary model of host-pathogen interactions, the zigzag model. In this review, we summarize these important progresses, focusing on the potential significance of antiviral immune receptors and co-receptors in plant antiviral innate immunity. In light of the innate immune system, we also discuss a newly uncovered layer of antiviral defense that is specific to plant DNA viruses and relies on transmembrane receptor-mediated translational suppression for defense.
Collapse
Affiliation(s)
- Bianca C. Gouveia
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Iara P. Calil
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - João Paulo B. Machado
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Anésia A. Santos
- Department of General Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| | - Elizabeth P. B. Fontes
- Department of Biochemistry and Molecular Biology, BIOAGRO, National Institute of Science and Technology in Plant-Pest Interactions, Universidade Federal de ViçosaViçosa, Brazil
| |
Collapse
|
27
|
Moon JY, Park JM. Cross-Talk in Viral Defense Signaling in Plants. Front Microbiol 2016; 7:2068. [PMID: 28066385 PMCID: PMC5174109 DOI: 10.3389/fmicb.2016.02068] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023] Open
Abstract
Viruses are obligate intracellular parasites that have small genomes with limited coding capacity; therefore, they extensively use host intracellular machinery for their replication and infection in host cells. In recent years, it was elucidated that plants have evolved intricate defense mechanisms to prevent or limit damage from such pathogens. Plants employ two major strategies to counteract virus infections: resistance (R) gene-mediated and RNA silencing-based defenses. In this review, plant defenses and viral counter defenses are described, as are recent studies examining the cross-talk between different plant defense mechanisms.
Collapse
Affiliation(s)
- Ju Y. Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| | - Jeong M. Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and BiotechnologyDaejeon, South Korea
- Department of Biosystems and Bioengineering, University of Science and TechnologyDaejeon, South Korea
| |
Collapse
|
28
|
De Oliveira AS, Koolhaas I, Boiteux LS, Caldararu OF, Petrescu A, Oliveira Resende R, Kormelink R. Cell death triggering and effector recognition by Sw-5 SD-CNL proteins from resistant and susceptible tomato isolines to Tomato spotted wilt virus. MOLECULAR PLANT PATHOLOGY 2016; 17:1442-1454. [PMID: 27271212 PMCID: PMC6638320 DOI: 10.1111/mpp.12439] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/30/2016] [Accepted: 06/02/2016] [Indexed: 05/16/2023]
Abstract
Only a limited number of dominant resistance genes acting against plant viruses have been cloned, and further functional studies of these have been almost entirely limited to the resistance genes Rx against Potato virus X (PVX) and N against Tobacco mosaic virus (TMV). Recently, the cell-to-cell movement protein (NSM ) of Tomato spotted wilt virus (TSWV) has been identified as the avirulence determinant (Avr) of Sw-5b-mediated resistance, a dominant resistance gene which belongs to the class of SD-CC-NB-LRR (Solanaceae domain-coiled coil-nucleotide-binding-leucine-rich repeat, SD-CNL) resistance genes. On transient expression of the NSM protein in tomato and transgenic Nicotiana benthamiana harbouring the Sw-5b gene, a hypersensitive cell death response (HR) is triggered. Here, it is shown that high accumulation of the Sw-5b protein in N. benthamiana leaves, achieved by co-expression of the Sw-5b protein with RNA silencing suppressors (RSSs), leads to auto-activity in the absence of NSM . In a similar approach, Sw-5a, the highest conserved paralogue of Sw-5b from Solanum peruvianum, also triggered HR by auto-activation, whereas the highest conserved orthologue from susceptible S. lycopersicum, named Sw-5aS , did not. However, neither of the last two homologues was able to trigger an NSM -dependent HR. Truncated and mutated versions of these Sw-5 proteins revealed that the NB-ARC [nucleotide-binding adaptor shared by Apaf-1 (from humans), R proteins and CED-4 (from nematodes)] domain is sufficient for the triggering of HR and seems to be suppressed by the SD-CC domain. Furthermore, a single mutation was sufficient to restore auto-activity within the NB-ARC domain of Sw-5aS . When the latter domain was fused to the Sw-5b LRR domain, NSM -dependent HR triggering was regained, but not in the presence of its own Sw-5aS LRR domain. Expression analysis in planta revealed a nucleocytoplasmic localization pattern of Sw-5b, in which the SD-CC domain seems to be required for nuclear translocation. Although the Sw-5 N-terminal CC domain, in contrast with Rx, contains an additional SD, most findings from this study support a conserved role of domains within NB-LRR (NLR) proteins against plant viruses.
Collapse
Affiliation(s)
- Athos Silva De Oliveira
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Ivo Koolhaas
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| | | | - Octav F. Caldararu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Andrei‐Jose Petrescu
- Department of Bioinformatics and Structural BiochemistryInstitute of Biochemistry of the Romanian AcademySplaiul Independentei 296Bucharest060036Romania
| | - Renato Oliveira Resende
- Department of Cell Biology, Institute of Biological SciencesUniversity of Brasília (UnB)Asa Norte 70910‐900BrasíliaDFBrazil
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant SciencesWageningen UniversityDroevendaalsesteeg 1WageningenPB6708the Netherlands
| |
Collapse
|
29
|
Liu JZ, Fang Y, Pang H. The Current Status of the Soybean- Soybean Mosaic Virus (SMV) Pathosystem. Front Microbiol 2016; 7:1906. [PMID: 27965641 PMCID: PMC5127794 DOI: 10.3389/fmicb.2016.01906] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/15/2016] [Indexed: 12/19/2022] Open
Abstract
Soybean mosaic virus (SMV) is one of the most devastating pathogens that cost huge economic losses in soybean production worldwide. Due to the duplicated genome, clustered and highly homologous nature of R genes, as well as recalcitrant to transformation, soybean disease resistance studies is largely lagging compared with other diploid crops. In this review, we focus on the major advances that have been made in identifying both the virulence/avirulence factors of SMV and mapping of SMV resistant genes in soybean. In addition, we review the progress in dissecting the SMV resistant signaling pathways in soybean, with a special focus on the studies using virus-induced gene silencing. The soybean genome has been fully sequenced, and the increasingly saturated SNP markers have been identified. With these resources available together with the newly developed genome editing tools, and more efficient soybean transformation system, cloning SMV resistant genes, and ultimately generating cultivars with a broader spectrum resistance to SMV are becoming more realistic than ever.
Collapse
Affiliation(s)
- Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Yuan Fang
- College of Chemistry and Life Sciences, Zhejiang Normal UniversityJinhua, China
| | - Hongxi Pang
- College of Agronomy, Northwest A&F UniversityYangling, China
| |
Collapse
|
30
|
Wang Y, Hajimorad MR. Gain of virulence by Soybean mosaic virus on Rsv4-genotype soybeans is associated with a relative fitness loss in a susceptible host. MOLECULAR PLANT PATHOLOGY 2016; 17:1154-9. [PMID: 26662495 PMCID: PMC6638382 DOI: 10.1111/mpp.12354] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
'Gene-for-gene' theory predicts that gain of virulence by an avirulent pathogen on plants expressing resistance (R) genes is associated with fitness loss in susceptible hosts. However, the validity of this prediction has been studied in only a few plant viral pathosystems. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to test this prediction. In Rsv4-genotype soybeans, P3 of avirulent SMV strains provokes an as yet uncharacterized resistance mechanism that restricts the invading virus to the inoculated leaves. A single amino acid substitution in P3 functionally converts an avirulent to a virulent strain, suggesting that the genetic composition of P3 plays a crucial role in virulence on Rsv4-genotype soybeans. In this study, we examined the impact of gain of virulence mutation(s) on the fitness of virulent variants derived from three avirulent SMV strains in a soybean genotype lacking the Rsv4 gene. Our data demonstrate that gain of virulence mutation(s) by all avirulent viruses on Rsv4-genotype soybean is associated with a relative fitness loss in a susceptible host. The implications of this finding on the durable deployment of the Rsv4 gene in soybean are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| | - M R Hajimorad
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
31
|
Atsumi G, Suzuki H, Miyashita Y, Choi SH, Hisa Y, Rihei S, Shimada R, Jeon EJ, Abe J, Nakahara KS, Uyeda I. P3N-PIPO, a Frameshift Product from the P3 Gene, Pleiotropically Determines the Virulence of Clover Yellow Vein Virus in both Resistant and Susceptible Peas. J Virol 2016; 90:7388-7404. [PMID: 27279605 PMCID: PMC4984661 DOI: 10.1128/jvi.00190-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 05/25/2016] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Peas carrying the cyv1 recessive resistance gene are resistant to clover yellow vein virus (ClYVV) isolates No.30 (Cl-No.30) and 90-1 (Cl-90-1) but can be infected by a derivative of Cl-90-1 (Cl-90-1 Br2). The main determinant for the breaking of cyv1 resistance by Cl-90-1 Br2 is P3N-PIPO produced from the P3 gene via transcriptional slippage, and the higher level of P3N-PIPO produced by Cl-90-1 Br2 than by Cl-No.30 contributes to the breaking of resistance. Here we show that P3N-PIPO is also a major virulence determinant in susceptible peas that possess another resistance gene, Cyn1, which does not inhibit systemic infection with ClYVV but causes hypersensitive reaction-like lethal systemic cell death. We previously assumed that the susceptible pea cultivar PI 226564 has a weak allele of Cyn1 Cl-No.30 did not induce cell death, but Cl-90-1 Br2 killed the plants. Our results suggest that P3N-PIPO is recognized by Cyn1 and induces cell death. Unexpectedly, heterologously strongly expressed P3N-PIPO of Cl-No.30 appears to be recognized by Cyn1 in PI 226564. The level of P3N-PIPO accumulation from the P3 gene of Cl-No.30 was significantly lower than that of Cl-90-1 Br2 in a Nicotiana benthamiana transient assay. Therefore, Cyn1-mediated cell death also appears to be determined by the level of P3N-PIPO. The more efficiently a ClYVV isolate broke cyv1 resistance, the more it induced cell death systemically (resulting in a loss of the environment for virus accumulation) in susceptible peas carrying Cyn1, suggesting that antagonistic pleiotropy of P3N-PIPO controls the resistance breaking of ClYVV. IMPORTANCE Control of plant viral disease has relied on the use of resistant cultivars; however, emerging mutant viruses have broken many types of resistance. Recently, we revealed that Cl-90-1 Br2 breaks the recessive resistance conferred by cyv1, mainly by accumulating a higher level of P3N-PIPO than that of the nonbreaking isolate Cl-No.30. Here we show that a susceptible pea line recognized the increased amount of P3N-PIPO produced by Cl-90-1 Br2 and activated the salicylic acid-mediated defense pathway, inducing lethal systemic cell death. We found a gradation of virulence among ClYVV isolates in a cyv1-carrying pea line and two susceptible pea lines. This study suggests a trade-off between breaking of recessive resistance (cyv1) and host viability; the latter is presumably regulated by the dominant Cyn1 gene, which may impose evolutionary constraints upon P3N-PIPO for overcoming resistance. We propose a working model of the host strategy to sustain the durability of resistance and control fast-evolving viruses.
Collapse
Affiliation(s)
- Go Atsumi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Iwate Biotechnology Research Center, Kitakami, Iwate, Japan
- National Institute of Advanced Industrial Science and Technology, Sapporo, Hokkaido, Japan
| | - Haruka Suzuki
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuri Miyashita
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Sun Hee Choi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yusuke Hisa
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shunsuke Rihei
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Ryoko Shimada
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eun Jin Jeon
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Junya Abe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Kenji S Nakahara
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Ichiro Uyeda
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
32
|
Whitham SA, Qi M, Innes RW, Ma W, Lopes-Caitar V, Hewezi T. Molecular Soybean-Pathogen Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:443-68. [PMID: 27359370 DOI: 10.1146/annurev-phyto-080615-100156] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Soybean hosts a wide variety of pathogens that cause significant yield losses. The importance of soybean as a major oilseed crop has led to research focused on its interactions with pathogens, such as Soybean mosaic virus, Pseudomonas syringae, Phytophthora sojae, Phakopsora pachyrhizi, and Heterodera glycines. Pioneering work on soybean's interactions with these organisms, which represent the five major pathogen groups (viruses, bacteria, oomycetes, fungi, and nematodes), has contributed to our understanding of the molecular mechanisms underlying virulence and immunity. These mechanisms involve conserved and unique features that validate the need for research in both soybean and homologous model systems. In this review, we discuss identification of effectors and their functions as well as resistance gene-mediated recognition and signaling. We also point out areas in which model systems and recent advances in resources and tools have provided opportunities to gain deeper insights into soybean-pathogen interactions.
Collapse
Affiliation(s)
- Steven A Whitham
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011; ,
| | - Roger W Innes
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| | - Wenbo Ma
- Department of Plant Pathology and Microbiology, University of California, Riverside, California 92521;
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996; ,
| |
Collapse
|
33
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
34
|
Hedil M, Kormelink R. Viral RNA Silencing Suppression: The Enigma of Bunyavirus NSs Proteins. Viruses 2016; 8:v8070208. [PMID: 27455310 PMCID: PMC4974542 DOI: 10.3390/v8070208] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/21/2022] Open
Abstract
The Bunyaviridae is a family of arboviruses including both plant- and vertebrate-infecting representatives. The Tospovirus genus accommodates plant-infecting bunyaviruses, which not only replicate in their plant host, but also in their insect thrips vector during persistent propagative transmission. For this reason, they are generally assumed to encounter antiviral RNA silencing in plants and insects. Here we present an overview on how tospovirus nonstructural NSs protein counteracts antiviral RNA silencing in plants and what is known so far in insects. Like tospoviruses, members of the related vertebrate-infecting bunyaviruses classified in the genera Orthobunyavirus, Hantavirus and Phlebovirus also code for a NSs protein. However, for none of them RNA silencing suppressor activity has been unambiguously demonstrated in neither vertebrate host nor arthropod vector. The second part of this review will briefly describe the role of these NSs proteins in modulation of innate immune responses in mammals and elaborate on a hypothetical scenario to explain if and how NSs proteins from vertebrate-infecting bunyaviruses affect RNA silencing. If so, why this discovery has been hampered so far.
Collapse
Affiliation(s)
- Marcio Hedil
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Wageningen, 6708PB, The Netherlands.
| |
Collapse
|
35
|
Ilut DC, Lipka AE, Jeong N, Bae DN, Kim DH, Kim JH, Redekar N, Yang K, Park W, Kang ST, Kim N, Moon JK, Saghai Maroof MA, Gore MA, Jeong SC. Identification of haplotypes at the Rsv4 genomic region in soybean associated with durable resistance to soybean mosaic virus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:453-68. [PMID: 26649868 DOI: 10.1007/s00122-015-2640-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/16/2015] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE Discovery of new germplasm sources and identification of haplotypes for the durable Soybean mosaic virus resistance gene, Rsv 4, provide novel resources for map-based cloning and genetic improvement efforts in soybean. The Soybean mosaic virus (SMV) resistance locus Rsv4 is of interest because it provides a durable type of resistance in soybean [Glycine max (L.) Merr.]. To better understand its molecular basis, we used a population of 309 BC3F2 individuals to fine-map Rsv4 to a ~120 kb interval and leveraged this genetic information in a second study to identify accessions 'Haman' and 'Ilpumgeomjeong' as new sources of Rsv4. These two accessions along with three other Rsv4 and 14 rsv4 accessions were used to examine the patterns of nucleotide diversity at the Rsv4 region based on high-depth resequencing data. Through a targeted association analysis of these 19 accessions within the ~120 kb interval, a cluster of four intergenic single-nucleotide polymorphisms (SNPs) was found to perfectly associate with SMV resistance. Interestingly, this ~120 kb interval did not contain any genes similar to previously characterized dominant disease resistance genes. Therefore, a haplotype analysis was used to further resolve the association signal to a ~94 kb region, which also resulted in the identification of at least two Rsv4 haplotypes. A haplotype phylogenetic analysis of this region suggests that the Rsv4 locus in G. max is recently introgressed from G. soja. This integrated study provides a strong foundation for efforts focused on the cloning of this durable virus resistance gene and marker-assisted selection of Rsv4-mediated SMV resistance in soybean breeding programs.
Collapse
Affiliation(s)
- Daniel C Ilut
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander E Lipka
- Department of Crop Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Namhee Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea
| | - Dong Nyuk Bae
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea
| | - Dong Hyun Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea
| | - Ji Hong Kim
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea
| | - Neelam Redekar
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, 24061, USA
| | - Kiwoung Yang
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea
| | - Won Park
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Taejon, 34141, Korea
- Department of Functional Genomics, Korea University of Science and Technology, Taejon, 34141, Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, Chungnam, 31116, Korea
| | - Namshin Kim
- Epigenomics Research Center, Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Taejon, 34141, Korea
- Department of Functional Genomics, Korea University of Science and Technology, Taejon, 34141, Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Wanju, Jeonbuk, 55365, Korea
| | - M A Saghai Maroof
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg, 24061, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| | - Soon-Chun Jeong
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Ch'ongju, Chungbuk, 28116, Korea.
| |
Collapse
|
36
|
The battle for survival between viruses and their host plants. Curr Opin Virol 2016; 17:32-38. [PMID: 26800310 DOI: 10.1016/j.coviro.2015.12.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
Evolution has equipped plants with defense mechanisms to counterattack virus infections. However, some viruses have acquired the capacity to escape these defense barriers. In their combats, plants use mechanisms such as antiviral RNA silencing that viruses fight against using silencing-repressors. Plants could also resist by mutating a host factor required by the virus to complete a particular step of its infectious cycle. Another successful mechanism of resistance is the hypersensitive response, where plants engineer R genes that recognize specifically their assailants. The recognition is followed by the triggering of a broad spectrum resistance. New understanding of such resistance mechanisms will probably helps to propose new means to enhance plant resistance against viruses.
Collapse
|
37
|
Bentur JS, Rawat N, Divya D, Sinha DK, Agarrwal R, Atray I, Nair S. Rice-gall midge interactions: Battle for survival. JOURNAL OF INSECT PHYSIOLOGY 2016; 84:40-49. [PMID: 26455891 DOI: 10.1016/j.jinsphys.2015.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/31/2015] [Accepted: 09/14/2015] [Indexed: 05/28/2023]
Abstract
Gall midges are insects specialized in maneuvering plant growth, metabolic and defense pathways for their benefit. The Asian rice gall midge and rice share such an intimate relationship that there is a constant battle for survival by either partner. Diverse responses by the rice host against the midge include necrotic hypersensitive resistance reaction, non-hypersensitive resistance reaction and gall-forming compatible interaction. Genetic studies have revealed that major R (resistance) genes confer resistance to gall midge in rice. Eleven gall midge R genes have been characterized so far in different rice varieties in India. In addition, no single R gene confers resistance against all the seven biotypes of the Asian rice gall midge, and none of the biotypes is virulent against all the resistance genes. Further, the interaction of the plant resistance gene with the insect avirulence gene is on a gene-for-gene basis. Our recent investigations involving suppressive subtraction hybridization cDNA libraries, microarray analyses, gene expression assays and metabolic profiling have revealed several molecular mechanisms, metabolite markers and pathways that are induced, down-regulated or altered in the rice host during incompatible or compatible interactions with the pest. This is also true for some of the pathways studied in the gall midge. Next generation sequencing technology, gene expression studies and conventional screening of gall midge cDNA libraries highlighted molecular approaches adopted by the insect to feed, survive and reproduce. This constant struggle by the midge to overcome the host defenses and the host to resist the pest has provided us with an opportunity to observe this battle for survival at the molecular level.
Collapse
Affiliation(s)
- Jagadish S Bentur
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - Nidhi Rawat
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - D Divya
- Directorate of Rice Research, Rajendranagar, Hyderabad 500 030, India
| | - Deepak K Sinha
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Ruchi Agarrwal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Isha Atray
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Suresh Nair
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
38
|
Zhou GC, Shao ZQ, Ma FF, Wu P, Wu XY, Xie ZY, Yu DY, Cheng H, Liu ZH, Jiang ZF, Chen QS, Wang B, Chen JQ. The evolution of soybean mosaic virus: An updated analysis by obtaining 18 new genomic sequences of Chinese strains/isolates. Virus Res 2015; 208:189-98. [PMID: 26103098 DOI: 10.1016/j.virusres.2015.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/12/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
Abstract
Soybean mosaic virus (SMV) is widely recognized as a highly damaging pathogen of soybean, and various strains/isolates have been reported to date. However, the pathogenic differences and phylogenetic relationships of these SMV strains/isolates have not been extensively studied. In the present work, by first obtaining 18 new genomic sequences of Chinese SMV strains/isolates and further compiling these with available data, we have explored the evolution of SMV from multiple aspects. First, as in other potyviruses, recombination has occurred frequently during SMV evolution, and a total of 32 independent events were detected. Second, using a maximum-likelihood method and removing recombinant fragments, a phylogeny covering 83 SMV sequences sampled from all over the world was reconstructed and the results showed four separate SMV clades, with clade I and II recovered for the first time. Third, the population structure analysis of SMV revealed significant genetic differentiations between China and two other countries (Korea and U.S.A.). Fourth, certain SMV-encoded genes, such as P1, HC-Pro and P3, exhibited higher non-synonymous substitution rate (dN) than synonymous substitution rate (dS), indicating that positive selection has influenced these genes. Finally, four Chinese SMV strains/isolates were selected for inoculation of both USA and Chinese differential soybean cultivars, and their pathogenic phenotypes were significantly different from that of the American strains. Overall, these findings have further broadened our understanding on SMV evolution, which would assist researchers to better deal with this harmful virus.
Collapse
Affiliation(s)
- Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhu-Qing Shao
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fang-Fang Ma
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhong-Yun Xie
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - De-Yue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agriculture University, Nanjing 210095, China
| | - Zhi-Hua Liu
- College of Resources and Environment, Northeast Agriculture University, Harbin 150030, China
| | - Zhen-Feng Jiang
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Qing-Shan Chen
- College of Agriculture, Northeast Agriculture University, Harbin 150030, China
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
39
|
Wang Y, Khatabi B, Hajimorad MR. Amino acid substitution in P3 of Soybean mosaic virus to convert avirulence to virulence on Rsv4-genotype soybean is influenced by the genetic composition of P3. MOLECULAR PLANT PATHOLOGY 2015; 16:301-7. [PMID: 25040594 PMCID: PMC6638367 DOI: 10.1111/mpp.12175] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The modification of avirulence factors of plant viruses by one or more amino acid substitutions converts avirulence to virulence on hosts containing resistance genes. Limited experimental studies have been conducted on avirulence/virulence factors of plant viruses, in particular those of potyviruses, to determine whether avirulence/virulence sites are conserved among strains. In this study, the Soybean mosaic virus (SMV)-Rsv4 pathosystem was exploited to determine whether: (i) avirulence/virulence determinants of SMV reside exclusively on P3 regardless of virus strain; and (ii) the sites residing on P3 and crucial for avirulence/virulence of isolates belonging to strain G2 are also involved in virulence of avirulent isolates belonging to strain G7. The results confirm that avirulence/virulence determinants of SMV on Rsv4-genotype soybean reside exclusively on P3. Furthermore, the data show that sites involved in the virulence of SMV on Rsv4-genotype soybean vary among strains, with the genetic composition of P3 playing a crucial role.
Collapse
Affiliation(s)
- Y Wang
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
40
|
Abstract
Potyvirus is the largest genus of plant viruses causing significant losses in a wide range of crops. Potyviruses are aphid transmitted in a nonpersistent manner and some of them are also seed transmitted. As important pathogens, potyviruses are much more studied than other plant viruses belonging to other genera and their study covers many aspects of plant virology, such as functional characterization of viral proteins, molecular interaction with hosts and vectors, structure, taxonomy, evolution, epidemiology, and diagnosis. Biotechnological applications of potyviruses are also being explored. During this last decade, substantial advances have been made in the understanding of the molecular biology of these viruses and the functions of their various proteins. After a general presentation on the family Potyviridae and the potyviral proteins, we present an update of the knowledge on potyvirus multiplication, movement, and transmission and on potyvirus/plant compatible interactions including pathogenicity and symptom determinants. We end the review providing information on biotechnological applications of potyviruses.
Collapse
|
41
|
Zhou GC, Wu XY, Zhang YM, Wu P, Wu XZ, Liu LW, Wang Q, Hang YY, Yang JY, Shao ZQ, Wang B, Chen JQ. A genomic survey of thirty soybean-infecting bean common mosaic virus (BCMV) isolates from China pointed BCMV as a potential threat to soybean production. Virus Res 2014; 191:125-33. [PMID: 25107622 DOI: 10.1016/j.virusres.2014.07.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 07/23/2014] [Accepted: 07/26/2014] [Indexed: 10/24/2022]
Abstract
Widely known as a severe pathogen of bean plants, the bean common mosaic virus (BCMV) has been reported to infect soybeans only sporadically and the involved strains were all found in China regions. To explore variations among soybean-infecting BCMV strains, hundreds of soybean mosaic leave samples were collected throughout China, with a total of 30 BCMV isolates detected and their genomes sequenced. These newly obtained genomes, together with 16 other BCMV genomes available in GenBank were examined from multiple aspects to characterize BCMV evolutionary processes. Phylogenetic analysis showed that both soybean-infecting BCMVs (group I) and peanut-infecting BCMVs (group II) are distantly related to other BCMVs, suggesting ancestral differentiation and host adaptation. Genetic variation analysis showed that P1, P3 and 6K2 genes and the beginning portion of CP gene showed higher levels of variation relative to other genes. Moreover, selection analyses further confirmed that a number of sites within the P1 and P3 genes have suffered positive selection. These obtained BCMV sequences also exhibit high recombination frequencies, indicating a more dynamic evolutionary history. Finally, 12 different soybean cultivars were challenged with two BCMV isolates (DXH015 and HZZB011), with most of the cultivars successfully infected. These findings suggest that BCMV is indeed a potential threat to soybean production.
Collapse
Affiliation(s)
- Guang-Can Zhou
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xiao-Yi Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yan-Mei Zhang
- Jiangsu Province & Chinese Academy of Science, Institute of Botany, Nanjing 210014, China
| | - Ping Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Xun-Zong Wu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Li-Wei Liu
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Qiang Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China
| | - Yue-Yu Hang
- Jiangsu Province & Chinese Academy of Science, Institute of Botany, Nanjing 210014, China
| | - Jia-Yin Yang
- Crop Research & Development Center, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an 223001, China
| | - Zhu-Qing Shao
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Bin Wang
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| | - Jian-Qun Chen
- Laboratory of Plant Genetics and Molecular Evolution, School of Life Sciences, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
42
|
Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ. De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 2014; 32:1045-52. [PMID: 25218520 DOI: 10.1038/nbt.2979] [Citation(s) in RCA: 404] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 07/02/2014] [Indexed: 12/13/2022]
Abstract
Wild relatives of crops are an important source of genetic diversity for agriculture, but their gene repertoire remains largely unexplored. We report the establishment and analysis of a pan-genome of Glycine soja, the wild relative of cultivated soybean Glycine max, by sequencing and de novo assembly of seven phylogenetically and geographically representative accessions. Intergenomic comparisons identified lineage-specific genes and genes with copy number variation or large-effect mutations, some of which show evidence of positive selection and may contribute to variation of agronomic traits such as biotic resistance, seed composition, flowering and maturity time, organ size and final biomass. Approximately 80% of the pan-genome was present in all seven accessions (core), whereas the rest was dispensable and exhibited greater variation than the core genome, perhaps reflecting a role in adaptation to diverse environments. This work will facilitate the harnessing of untapped genetic diversity from wild soybean for enhancement of elite cultivars.
Collapse
Affiliation(s)
- Ying-hui Li
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [4]
| | - Guangyu Zhou
- 1] Novogene Bioinformatics Institute, Beijing, P.R. China. [2] [3]
| | - Jianxin Ma
- 1] Department of Agronomy, Purdue University, West Lafayette, Indiana, USA. [2]
| | - Wenkai Jiang
- 1] Novogene Bioinformatics Institute, Beijing, P.R. China. [2]
| | - Long-guo Jin
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhouhao Zhang
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Yong Guo
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jinbo Zhang
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Yi Sui
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | | | - Shan-shan Zhang
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qiyang Zuo
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Xue-hui Shi
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yan-fei Li
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Wan-ke Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Yiyao Hu
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Guanyi Kong
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Hui-long Hong
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Bing Tan
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jian Song
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhang-xiong Liu
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yaoshen Wang
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Hang Ruan
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | | | - Jian Liu
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Hailong Wang
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Li-juan Zhang
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Rong-xia Guan
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ke-jing Wang
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Wen-bin Li
- Key Laboratory of Soybean Biology in Chinese Ministry of Education, Northeast Agricultural University, Harbin, P.R. China
| | - Shou-yi Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, P.R. China
| | - Ru-zhen Chang
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, P.R. China
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, Athens, Georgia, USA
| | - Ruiqiang Li
- 1] Novogene Bioinformatics Institute, Beijing, P.R. China. [2] Peking-Tsinghua Center for Life Sciences, Biodynamic Optical Imaging Center, and School of Life Sciences, Peking University, Beijing, P.R. China
| | - Li-juan Qiu
- 1] The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [2] Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China. [3] Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| |
Collapse
|
43
|
Nakahara KS, Masuta C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:88-95. [PMID: 24875766 DOI: 10.1016/j.pbi.2014.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/24/2014] [Accepted: 05/01/2014] [Indexed: 05/18/2023]
Abstract
To elucidate events in the molecular arms race between the host and pathogen in evaluating plant immunity, a zigzag model is useful for uncovering aspects common to different host-pathogen interactions. By analogy of the steps in virus-host interactions with the steps in the standard zigzag model outlined in recent papers, we may regard RNA silencing as pattern-triggered immunity (PTI) against viruses, RNA silencing suppressors (RSSs) as effectors to overcome host RNA silencing and resistance gene (R-gene)-mediated defense as effector-triggered immunity (ETI) recognizing RSSs as avirulence proteins. However, because the standard zigzag model does not fully apply to some unique aspects in the interactions between a plant host and virus, we here defined a model especially designed for viruses. Although we simplified the phenomena involved in the virus-host interactions in the model, certain specific interactive steps can be explained by integrating additional host factors into the model. These host factors are thought to play an important role in maintaining the efficacy of the various steps in the main pathway of defense against viruses in this model for virus-plant interactions. For example, we propose candidates that may interact with viral RSSs to induce the resistance response.
Collapse
Affiliation(s)
- Kenji S Nakahara
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| | - Chikara Masuta
- Plant Breeding Science, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan.
| |
Collapse
|
44
|
Feng X, Poplawsky AR, Nikolaeva OV, Myers JR, Karasev AV. Recombinants of bean common mosaic virus (BCMV) and genetic determinants of BCMV involved in overcoming resistance in common bean. PHYTOPATHOLOGY 2014; 104:786-793. [PMID: 24915430 DOI: 10.1094/phyto-08-13-0243-r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bean common mosaic virus (BCMV) exists as a complex of strains classified by reactions to resistance genes found in common bean (Phaseolus vulgaris); seven BCMV pathotypes have been distinguished thus far, numbered I to VII. Virus genetic determinants involved in pathogenicity interactions with resistance genes have not yet been identified. Here, we describe the characterization of two novel field isolates of BCMV that helped to narrow down these genetic determinants interacting with specific P. vulgaris resistance factors. Based on a biological characterization on common bean differentials, both isolates were classified as belonging to pathotype VII, similar to control isolate US10, and both isolates exhibited the B serotype. The whole genome was sequenced for both isolates and found to be 98 to 99% identical to the BCMV isolate RU1 (pathotype VI), and a single name was retained: BCMV RU1-OR. To identify a genetic determinant of BCMV linked to the BCMV pathotype VII, the whole genome was also sequenced for two control isolates, US10 and RU1-P. Inspection of the nucleotide sequences for BCMV RU1-OR and US10 (both pathotype VII) and three closely related sequences of BCMV (RU1-P, RU1-D, and RU1-W, all pathotype VI) revealed that RU1-OR originated through a series of recombination events between US10 and an as-yet-unidentified BCMV parental genome, resulting in changes in virus pathology. The data obtained suggest that a fragment of the RU1-OR genome between positions 723 and 1,961 nucleotides that is common to US10 and RU1-OR in the P1-HC-Pro region of the BCMV genome may be responsible for the ability to overcome resistance in bean conferred by the bc-2(2) gene. This is the first report of a virus genetic determinant responsible for overcoming a specific BCMV resistance gene in common bean.
Collapse
|
45
|
de Ronde D, Butterbach P, Kormelink R. Dominant resistance against plant viruses. FRONTIERS IN PLANT SCIENCE 2014; 5:307. [PMID: 25018765 PMCID: PMC4073217 DOI: 10.3389/fpls.2014.00307] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/10/2014] [Indexed: 05/17/2023]
Abstract
To establish a successful infection plant viruses have to overcome a defense system composed of several layers. This review will overview the various strategies plants employ to combat viral infections with main emphasis on the current status of single dominant resistance (R) genes identified against plant viruses and the corresponding avirulence (Avr) genes identified so far. The most common models to explain the mode of action of dominant R genes will be presented. Finally, in brief the hypersensitive response (HR) and extreme resistance (ER), and the functional and structural similarity of R genes to sensors of innate immunity in mammalian cell systems will be described.
Collapse
Affiliation(s)
- Dryas de Ronde
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Patrick Butterbach
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University Wageningen, Netherlands
| |
Collapse
|
46
|
Sorel M, Garcia JA, German-Retana S. The Potyviridae cylindrical inclusion helicase: a key multipartner and multifunctional protein. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:215-226. [PMID: 24405034 DOI: 10.1094/mpmi-11-13-0333-cr] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A unique feature shared by all plant viruses of the Potyviridae family is the induction of characteristic pinwheel-shaped inclusion bodies in the cytoplasm of infected cells. These cylindrical inclusions are composed of the viral-encoded cylindrical inclusion helicase (CI protein). Its helicase activity was characterized and its involvement in replication demonstrated through different reverse genetics approaches. In addition to replication, the CI protein is also involved in cell-to-cell and long-distance movements, possibly through interactions with the recently discovered viral P3N-PIPO protein. Studies over the past two decades demonstrate that the CI protein is present in several cellular compartments interacting with viral and plant protein partners likely involved in its various roles in different steps of viral infection. Furthermore, the CI protein acts as an avirulence factor in gene-for-gene interactions with dominant-resistance host genes and as a recessive-resistance overcoming factor. Although a significant amount of data concerning the potential functions and subcellular localization of this protein has been published, no synthetic review is available on this important multifunctional protein. In this review, we compile and integrate all information relevant to the current understanding of this viral protein structure and function and present a mode of action for CI, combining replication and movement.
Collapse
|
47
|
Khatabi B, Wen RH, Hajimorad MR. Fitness penalty in susceptible host is associated with virulence of Soybean mosaic virus on Rsv1-genotype soybean: a consequence of perturbation of HC-Pro and not P3. MOLECULAR PLANT PATHOLOGY 2013; 14:885-97. [PMID: 23782556 PMCID: PMC6638797 DOI: 10.1111/mpp.12054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The multigenic Rsv1 locus in the soybean plant introduction (PI) 'PI96983' confers extreme resistance against the majority of Soybean mosaic virus (SMV) strains, including SMV-N, but not SMV-G7 and SMV-G7d. In contrast, in susceptible soybean cultivars lacking a functional Rsv1 locus, such as 'Williams82' (rsv1), SMV-N induces severe disease symptoms and accumulates to a high level, whereas both SMV-G7 and SMV-G7d induce mild symptoms and accumulate to a significantly lower level. Gain of virulence by SMV-N on Rsv1-genotype soybean requires concurrent mutations in both the helper-component proteinase (HC-Pro) and P3 cistrons. This is because of the presence of at least two resistance (R) genes, probably belonging to the nucleotide-binding leucine-rich repeat (NB-LRR) class, within the Rsv1 locus, independently mediating the recognition of HC-Pro or P3. In this study, we show that the majority of experimentally evolved mutational pathways that disrupt the avirulence functions of SMV-N on Rsv1-genotype soybean also result in mild symptoms and reduced accumulation, relative to parental SMV-N, in Williams82 (rsv1). Furthermore, the evaluation of SMV-N-derived HC-Pro and P3 chimeras, containing homologous sequences from virulent SMV-G7 or SMV-G7d strains, as well as SMV-N-derived variants containing HC-Pro or P3 point mutation(s) associated with gain of virulence, reveals a direct correlation between the perturbation of HC-Pro and a fitness penalty in Williams82 (rsv1). Collectively, these data demonstrate that gain of virulence by SMV on Rsv1-genotype soybean results in fitness loss in a previously susceptible soybean genotype, this being a consequence of mutations in HC-Pro, but not in P3.
Collapse
Affiliation(s)
- B Khatabi
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | | | | |
Collapse
|
48
|
Ahangaran A, Habibi MK, Mohammadi GHM, Winter S, García-Arenal F. Analysis of Soybean mosaic virus genetic diversity in Iran allows the characterization of a new mutation resulting in overcoming Rsv4-resistance. J Gen Virol 2013; 94:2557-2568. [PMID: 23939982 DOI: 10.1099/vir.0.055434-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The genetic variation and population structure of Soybean mosaic virus (SMV) in Iran was analysed through the characterization of a set of isolates collected in the soybean-growing provinces of Iran. The partial nucleotide sequence of these isolates showed a single, undifferentiated population with low genetic diversity, highly differentiated from other SMV world populations. These traits are compatible with a population bottleneck associated with the recent introduction of SMV in Iran. Phylogenetic analyses suggest that SMV was introduced into Iran from East Asia, with at least three introduction events. The limited genetic diversification of SMV in Iran may be explained by strong negative selection in most viral genes eliminating the majority of mutations, together with recombination purging deleterious mutations. The pathogenicity of Iranian SMV isolates was typified on a set of soybean differential lines either susceptible or carrying different resistance genes or alleles to SMV. Two pathotypes were distinguished according to the ability to overcome Rsv4 resistance in line V94-5152. Amino acid sequence comparisons of virulent and avirulent isolates on V94-5152 (Rsv4), plus site-directed mutagenesis in a biologically active cDNA clone, identified mutation S1053N in the P3 protein as the determinant for virulence on V94-5152. Codon 1053 was shown to be under positive selection, and S1053N-determined Rsv4-virulence occurred in isolates with different genealogies. The V94-5152 (Rsv4)-virulence determinant in Iranian isolates maps into a different amino acid position in the P3 protein than those previously reported, indicating different evolutionary pathways towards resistance breaking that might be conditioned by sequence context.
Collapse
Affiliation(s)
- Akbar Ahangaran
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mina Koohi Habibi
- Department of Plant Protection, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | | | - Stephan Winter
- German Collection of Microorganisms and Cell Cultures, DSMZ, Braunschweig, Germany
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
49
|
Sansregret R, Dufour V, Langlois M, Daayf F, Dunoyer P, Voinnet O, Bouarab K. Extreme resistance as a host counter-counter defense against viral suppression of RNA silencing. PLoS Pathog 2013; 9:e1003435. [PMID: 23785291 PMCID: PMC3681747 DOI: 10.1371/journal.ppat.1003435] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 05/06/2013] [Indexed: 01/02/2023] Open
Abstract
RNA silencing mediated by small RNAs (sRNAs) is a conserved regulatory process with key antiviral and antimicrobial roles in eukaryotes. A widespread counter-defensive strategy of viruses against RNA silencing is to deploy viral suppressors of RNA silencing (VSRs), epitomized by the P19 protein of tombusviruses, which sequesters sRNAs and compromises their downstream action. Here, we provide evidence that specific Nicotiana species are able to sense and, in turn, antagonize the effects of P19 by activating a highly potent immune response that protects tissues against Tomato bushy stunt virus infection. This immunity is salicylate- and ethylene-dependent, and occurs without microscopic cell death, providing an example of "extreme resistance" (ER). We show that the capacity of P19 to bind sRNA, which is mandatory for its VSR function, is also necessary to induce ER, and that effects downstream of P19-sRNA complex formation are the likely determinants of the induced resistance. Accordingly, VSRs unrelated to P19 that also bind sRNA compromise the onset of P19-elicited defense, but do not alter a resistance phenotype conferred by a viral protein without VSR activity. These results show that plants have evolved specific responses against the damages incurred by VSRs to the cellular silencing machinery, a likely necessary step in the never-ending molecular arms race opposing pathogens to their hosts.
Collapse
Affiliation(s)
- Raphaël Sansregret
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Vanessa Dufour
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mathieu Langlois
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Fouad Daayf
- Department of Plant Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Patrice Dunoyer
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Olivier Voinnet
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- Department of Biology, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland
| | - Kamal Bouarab
- Centre SEVE, Département de Biologie, Faculté des Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|