1
|
Ouyang HB, Wang YP, He MH, Wu EJ, Hu BH, Zhan J, Yang L. Mutations in the signal peptide of effector gene Pi04314 contribute to the adaptive evolution of the Phytophthora infestans. BMC Ecol Evol 2025; 25:21. [PMID: 40082776 PMCID: PMC11907978 DOI: 10.1186/s12862-025-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND Effectors are critical in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes of effectors remains fragmented despite its importance for the sustainable management of plant diseases. Here, we used a population genetic approach to explore the evolution of the effector gene Pi04314 in Phytophthora infestans, the causal agent of potato blight. RESULTS We found that Pi04314 gene exhibits a low genetic variation generated by point mutations mainly occurring in the signal peptide. Two of the 14 amino acid isoforms completely abolished the secretion functions of signal peptides. The effector is under purifying selection, supported by the comparative analyses between its population differentiation with that of SSR marker loci as well as by negative Tajima's D (-1.578, p = 0.040) and Fu's FS (-10.485, p = 0.000). Furthermore, we found that the nucleotide diversity of Pi04314 is significantly correlated with the annual mean temperature at the collection sites. CONCLUSION These results suggest that the evolution of effector genes could be influenced by local air temperature and signal peptides may contribute to the ecological adaptation of pathogens. The implications of these results for agricultural and natural sustainability are discussed.
Collapse
Affiliation(s)
- Hai-Bing Ouyang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural, Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Meng-Han He
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - E-Jiao Wu
- Institute of Pomology, Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bin-Hong Hu
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Bioaffiliationersity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
2
|
Coomber A, Saville A, Ristaino JB. Evolution of Phytophthora infestans on its potato host since the Irish potato famine. Nat Commun 2024; 15:6488. [PMID: 39103347 DOI: 10.1038/s41467-024-50749-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 08/07/2024] Open
Abstract
Phytophthora infestans is a major oomycete plant pathogen, responsible for potato late blight, which led to the Irish Potato Famine from 1845-1852. Since then, potatoes resistant to this disease have been bred and deployed worldwide. Their resistance (R) genes recognize pathogen effectors responsible for virulence and then induce a plant response stopping disease progression. However, most deployed R genes are quickly overcome by the pathogen. We use targeted sequencing of effector and R genes on herbarium specimens to examine the joint evolution in both P. infestans and potato from 1845-1954. Currently relevant effectors are historically present in P. infestans, but with alternative alleles compared to modern reference genomes. The historic FAM-1 lineage has the virulent Avr1 allele and the ability to break the R1 resistance gene before breeders deployed it in potato. The FAM-1 lineage is diploid, but later, triploid US-1 lineages appear. We show that pathogen virulence genes and host resistance genes have undergone significant changes since the Famine, from both natural and artificial selection.
Collapse
Affiliation(s)
- Allison Coomber
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
- Functional Genomics Program, NC State University, Raleigh, NC, USA
| | - Amanda Saville
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC, USA.
- Emerging Plant Disease and Global Food Security Cluster, NC State University, Raleigh, NC, USA.
| |
Collapse
|
3
|
Jaswal R, Rajarammohan S, Dubey H, Kiran K, Rawal H, Sonah H, Deshmukh R, Sharma TR. Intrinsically Disordered Kiwellin Protein-Like Effectors Target Plant Chloroplasts and are Extensively Present in Rust Fungi. Mol Biotechnol 2024; 66:845-864. [PMID: 37000361 DOI: 10.1007/s12033-023-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 03/08/2023] [Indexed: 04/01/2023]
Abstract
The effector proteins produced by plant pathogens are one of the essential components of host-pathogen interaction. Despite being important, most of the effector proteins remain unexplored due to the diversity in their primary sequence generated by the high selection pressure of the host immune system. However to maintain the primary function in the infection process, these effectors may tend to maintain their native protein fold to perform the corresponding biological function. In the present study, unannotated candidate secretory effector proteins of sixteen major plant fungal pathogens were analyzed to find the conserved known protein folds using homology, ab initio, and Alpha Fold/Rosetta Fold protein dimensional (3D) structure approaches. Several unannotated candidate effector proteins were found to match various known conserved protein families potentially involved in host defense manipulation in different plant pathogens. Surprisingly a large number of plant Kiwellin proteins fold like secretory proteins (> 100) were found in studied rust fungal pathogens. Many of them were predicted as potential effector proteins. Furthermore, template independent modelling using Alpha Fold/Rosetta Fold analysis and structural comparison of these candidates also predicted them to match with plant Kiwellin proteins. We also found plant Kiwellin matching proteins outside rusts including several non-pathogenic fungi suggesting the broad function of these proteins. One of the highest confidently modeled Kiwellin matching candidates effectors, Pstr_13960 (97.8%), from the Indian P. striiformis race Yr9 was characterized using overexpression, localization, and deletion studies in Nicotiana benthamiana. The Pstr_13960 suppressed the BAX-induced cell death and localized in the chloroplast. Furthermore, the expression of the Kiwellin matching region (Pst_13960_kiwi) alone suppressed the BAX-induced cell death in N. benthamiana despite the change of location to the cytoplasm and nucleus, suggesting the novel function of the Kiwellin core fold in rust fungi. Molecular docking showed that Pstr_13960 can interact with plant Chorismate mutases (CMs) using three loops conserved in plant and rust Kiwellins. Further analysis of Pstr_13960 showed to contain Intrinsically disordered regions (IDRs) in place of the N-terminal β1/β2 region found in plant Kiwellins suggesting the evolution of rust Kiwellins-like effectors (KLEs). Overall, this study reports the presence of a Kiwellin protein-like fold containing a novel effector protein family in rust fungi depicting a classical example of the evolution of effectors at the structure level as Kiwellin effectors show very low significant similarity to plant Kiwellin at the sequence level.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | | | - Himanshu Dubey
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kanti Kiran
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Hukam Rawal
- National Institute On Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Tilak Raj Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
- Division of Crop Science, Indian Council of Agricultural Research, Krishi Bhavan, New Delhi, 110001, India.
| |
Collapse
|
4
|
Nkurikiyimfura O, Waheed A, Fang H, Yuan X, Chen L, Wang YP, Lu G, Zhan J, Yang L. Fitness difference between two synonymous mutations of Phytophthora infestans ATP6 gene. BMC Ecol Evol 2024; 24:36. [PMID: 38494489 PMCID: PMC10946160 DOI: 10.1186/s12862-024-02223-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/11/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Sequence variation produced by mutation provides the ultimate source of natural selection for species adaptation. Unlike nonsynonymous mutation, synonymous mutations are generally considered to be selectively neutral but accumulating evidence suggests they also contribute to species adaptation by regulating the flow of genetic information and the development of functional traits. In this study, we analysed sequence characteristics of ATP6, a housekeeping gene from 139 Phytophthora infestans isolates, and compared the fitness components including metabolic rate, temperature sensitivity, aggressiveness, and fungicide tolerance among synonymous mutations. RESULTS We found that the housekeeping gene exhibited low genetic variation and was represented by two major synonymous mutants at similar frequency (0.496 and 0.468, respectively). The two synonymous mutants were generated by a single nucleotide substitution but differed significantly in fitness as well as temperature-mediated spatial distribution and expression. The synonymous mutant ending in AT was more common in cold regions and was more expressed at lower experimental temperature than the synonymous mutant ending in GC and vice versa. CONCLUSION Our results are consistent with the argument that synonymous mutations can modulate the adaptive evolution of species including pathogens and have important implications for sustainable disease management, especially under climate change.
Collapse
Affiliation(s)
- Oswald Nkurikiyimfura
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Abdul Waheed
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Hanmei Fang
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiaoxian Yuan
- Institute of Plant Virology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Lixia Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, Sichuan, 611130, China
| | - Guodong Lu
- Department of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden.
| | - Lina Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China.
| |
Collapse
|
5
|
Chepsergon J, Moleleki LN. "Order from disordered": Potential role of intrinsically disordered regions in phytopathogenic oomycete intracellular effector proteins. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102402. [PMID: 37329857 DOI: 10.1016/j.pbi.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/19/2023]
Abstract
There is a continuous arms race between pathogens and their host plants. However, successful pathogens, such as phytopathogenic oomycetes, secrete effector proteins to manipulate host defense responses for disease development. Structural analyses of these effector proteins reveal the existence of regions that fail to fold into three-dimensional structures, intrinsically disordered regions (IDRs). Because of their flexibility, these regions are involved in important biological functions of effector proteins, such as effector-host protein interactions that perturb host immune responses. Despite their significance, the role of IDRs in phytopathogenic oomycete effector-host protein interactions is not clear. This review, therefore, searched the literature for functionally characterized oomycete intracellular effectors with known host interactors. We further classify regions that mediate effector-host protein interactions into globular or disordered binding sites in these proteins. To fully appreciate the potential role of IDRs, five effector proteins encoding potential disordered binding sites were used as case studies. We also propose a pipeline that can be used to identify, classify as well as characterize potential binding regions in effector proteins. Understanding the role of IDRs in these effector proteins can aid in the development of new disease-control strategies.
Collapse
Affiliation(s)
- Jane Chepsergon
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
6
|
Farias KS, Ferreira MM, Amaral GV, Zugaib M, Santos AS, Gomes FP, Rezende RP, Gramacho KP, Aguiar ERGR, Pirovani CP. BASIDIN as a New Protein Effector of the Phytopathogen Causing Witche's Broom Disease in Cocoa. Int J Mol Sci 2023; 24:11714. [PMID: 37511472 PMCID: PMC10380501 DOI: 10.3390/ijms241411714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Geiseane Veloso Amaral
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Fábio Pinto Gomes
- Fisiologia Vegetal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Rachel Passos Rezende
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Karina Peres Gramacho
- Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau-MAPA, Laboratório de Fitopatologia Molecular, km 22 Rodovia Ilhéus Itabuna, Ilhéus 45600-970, Bahia, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
7
|
Aparicio Chacón MV, Van Dingenen J, Goormachtig S. Characterization of Arbuscular Mycorrhizal Effector Proteins. Int J Mol Sci 2023; 24:9125. [PMID: 37298075 PMCID: PMC10252856 DOI: 10.3390/ijms24119125] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.
Collapse
Affiliation(s)
- María V. Aparicio Chacón
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Judith Van Dingenen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium;
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
8
|
Wang X, Wu W, Zhang Y, Li C, Wang J, Wen J, Zhang S, Yao Y, Lu W, Zhao Z, Zhan J, Pan Q. The Lesson Learned from the Unique Evolutionary Story of Avirulence Gene AvrPii of Magnaporthe oryzae. Genes (Basel) 2023; 14:genes14051065. [PMID: 37239425 DOI: 10.3390/genes14051065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Blast, caused by Magnaporthe oryzae, is one of the most destructive diseases affecting rice production. Understanding population dynamics of the pathogen's avirulence genes is pre-required for breeding and then deploying new cultivars carrying promising resistance genes. The divergence and population structure of AvrPii was dissected in the populations of southern (Guangdong, Hunan, and Guizhou) and northern (Jilin, Liaoning, and Heilongjiang) China, via population genetic and evolutionary approaches. The evolutionary divergence between a known haplotype AvrPii-J and a novel one AvrPii-C was demonstrated by haplotype-specific amplicon-based sequencing and genetic transformation. The different avirulent performances of a set of seven haplotype-chimeric mutants suggested that the integrity of the full-length gene structures is crucial to express functionality of individual haplotypes. All the four combinations of phenotypes/genotypes were detected in the three southern populations, and only two in the northern three, suggesting that genic diversity in the southern region was higher than those in the northern one. The population structure of the AvrPii family was shaped by balancing, purifying, and positive selection pressures in the Chinese populations. The AvrPii-J was recognized as the wild type that emerged before rice domestication. Considering higher frequencies of avirulent isolates were detected in Hunan, Guizhou, and Liaoning, the cognate resistance gene Pii could be continuously used as a basic and critical resistance resource in such regions. The unique population structures of the AvrPii family found in China have significant implications for understanding how the AvrPii family has kept an artful balance and purity among its members (haplotypes) those keenly interact with Pii under gene-for-gene relationships. The lesson learned from case studies on the AvrPii family is that much attention should be paid to haplotype divergence of target gene.
Collapse
Affiliation(s)
- Xing Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Weihuai Wu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yaling Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- College of Agronomy, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Cheng Li
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jinyan Wang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Jianqiang Wen
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Shulin Zhang
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Hefei 230036, China
| | - Yongxiang Yao
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
- Corn Research Institute, Dandong Academy of Agricultural Sciences, Dandong 118109, China
| | - Weisheng Lu
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| | - Zhenghong Zhao
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Qinghua Pan
- Rice Blast Research Center, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
9
|
Hadimani S, De Britto S, Udayashankar AC, Geetha N, Nayaka CS, Ali D, Alarifi S, Ito SI, Jogaiah S. Genome-Wide Characterization of Effector Protein-Encoding Genes in Sclerospora graminicola and Its Validation in Response to Pearl Millet Downy Mildew Disease Stress. J Fungi (Basel) 2023; 9:jof9040431. [PMID: 37108886 PMCID: PMC10142805 DOI: 10.3390/jof9040431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Pearl millet [Pennisetum glaucum (L.) R. Br.] is the essential food crop for over ninety million people living in drier parts of India and South Africa. Pearl millet crop production is harshly hindered by numerous biotic stresses. Sclerospora graminicola causes downy mildew disease in pearl millet. Effectors are the proteins secreted by several fungi and bacteria that manipulate the host cell structure and function. This current study aims to identify genes encoding effector proteins from the S. graminicola genome and validate them through molecular techniques. In silico analyses were employed for candidate effector prediction. A total of 845 secretory transmembrane proteins were predicted, out of which 35 proteins carrying LxLFLAK (Leucine–any amino acid–Phenylalanine–Leucine–Alanine–Lysine) motif were crinkler, 52 RxLR (Arginine, any amino acid, Leucine, Arginine), and 17 RxLR-dEER putative effector proteins. Gene validation analysis of 17 RxLR-dEER effector protein-producing genes was carried out, of which 5genes were amplified on the gel. These novel gene sequences were submitted to NCBI. This study is the first report on the identification and characterization of effector genes in Sclerospora graminicola. This dataset will aid in the integration of effector classes that act independently, paving the way to investigate how pearl millet responds to effector protein interactions. These results will assist in identifying functional effector proteins involving the omic approach using newer bioinformatics tools to protect pearl millet plants against downy mildew stress. Considered together, the identified effector protein-encoding functional genes can be utilized in screening oomycetes downy mildew diseases in other crops across the globe.
Collapse
Affiliation(s)
- Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka 441, Papua New Guinea
| | - Arakere C. Udayashankar
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Nagaraj Geetha
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Chandra S. Nayaka
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysuru 570006, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Shin-ichi Ito
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, PG Department of Biotechnology and Microbiology, Karnatak University, Dharwad 580003, India
- Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO) 671316, Kasaragod (DT), Kerala, India
- Correspondence: ; Tel.: +91-836-2779533; Fax: +91-836-2747884
| |
Collapse
|
10
|
Hou X, He Z, Che Z, Li H, Tan X, Wang Q. Molecular mechanisms of Phytophthora sojae avirulence effectors escaping host recognition. Front Microbiol 2023; 13:1111774. [PMID: 36699593 PMCID: PMC9868715 DOI: 10.3389/fmicb.2022.1111774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/10/2023] Open
Abstract
Phytophthora sojae is a well-known destructive oomycete pathogen, which causes soybean stem and root rot and poses a serious threat to global food security. Growing soybean cultivars with the appropriate resistance to P. sojae (Rps) genes are the primary management strategy to reduce losses. In most Phytophthora pathosystems, host resistance protein encoded by a specific R gene in the plant recognizes corresponding RxLR effector protein, encoded by an avirulence gene. This gene-for-gene relationship has been exploited to help breeders and agronomists deploy soybean cultivars. To date, 6 Rps genes have been incorporated into commercial soybean germplasm and trigger plant immunity in response to 8 P. sojae avirulence effectors. The incorporation of Rps genes in the soybean population creates selection pressure in favor of novel pathotypes of P. sojae. The 8 avirulence genes evolved to evade the host immune system, driven by genetic selection pressures. Understanding the evading strategies has important reference value for the prevention and control of Phytophthora stem and root rot. This investigation primarily highlights the research on the strategies of P. sojae avirulence effector evasion of host recognition, looking forward to creating durable resistance genes and thereby enabling successful disease management.
Collapse
Affiliation(s)
- Xiaoyuan Hou
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zheng He
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Zhengzheng Che
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Hengjing Li
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xinwei Tan
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Qunqing Wang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China,State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China,*Correspondence: Qunqing Wang,
| |
Collapse
|
11
|
Macquet J, Mounichetty S, Raffaele S. Genetic co-option into plant-filamentous pathogen interactions. TRENDS IN PLANT SCIENCE 2022; 27:1144-1158. [PMID: 35909010 DOI: 10.1016/j.tplants.2022.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/16/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plants are engaged in a coevolutionary arms race with their pathogens that drives rapid diversification and specialization of genes involved in resistance and virulence. However, some major innovations in plant-pathogen interactions, such as molecular decoys, trans-kingdom RNA interference, two-speed genomes, and receptor networks, evolved through the expansion of the functional landscape of genes. This is a typical outcome of genetic co-option, the evolutionary process by which available genes are recruited into new biological functions. Co-option into plant-pathogen interactions emerges generally from (i) cis-regulatory variation, (ii) horizontal gene transfer (HGT), (iii) mutations altering molecular promiscuity, and (iv) rewiring of gene networks and protein complexes. Understanding these molecular mechanisms is key for the functional and predictive biology of plant-pathogen interactions.
Collapse
Affiliation(s)
- Joris Macquet
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Shantala Mounichetty
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plante-Microbe-Environnement (LIPME), Université de Toulouse, Institut National de Recherche pour l'Agriculture, l'Alimentation, et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Castanet Tolosan, France.
| |
Collapse
|
12
|
Yang LN, Ouyang H, Nkurikiyimfura O, Fang H, Waheed A, Li W, Wang YP, Zhan J. Genetic variation along an altitudinal gradient in the Phytophthora infestans effector gene Pi02860. Front Microbiol 2022; 13:972928. [PMID: 36160230 PMCID: PMC9492930 DOI: 10.3389/fmicb.2022.972928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Effector genes, together with climatic and other environmental factors, play multifaceted roles in the development of plant diseases. Understanding the role of environmental factors, particularly climate conditions affecting the evolution of effector genes, is important for predicting the long-term value of the genes in controlling agricultural diseases. Here, we collected Phytophthora infestans populations from five locations along a mountainous hill in China and sequenced the effector gene Pi02860 from >300 isolates. To minimize the influence of other ecological factors, isolates were sampled from the same potato cultivar on the same day. We also expressed the gene to visualise its cellular location, assayed its pathogenicity and evaluated its response to experimental temperatures. We found that Pi02860 exhibited moderate genetic variation at the nucleotide level which was mainly generated by point mutation. The mutations did not change the cellular location of the effector gene but significantly modified the fitness of P. infestans. Genetic variation and pathogenicity of the effector gene were positively associated with the altitude of sample sites, possibly due to increased mutation rate induced by the vertical distribution of environmental factors such as UV radiation and temperature. We further found that Pi02860 expression was regulated by experimental temperature with reduced expression as experimental temperature increased. Together, these results indicate that UV radiation and temperature are important environmental factors regulating the evolution of effector genes and provide us with considerable insight as to their future sustainable action under climate and other environmental change.
Collapse
Affiliation(s)
- Li-Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang,
| | - Haibing Ouyang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hanmei Fang
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Abdul Waheed
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenyang Li
- Institute of Plant Pathology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Jiasui Zhan,
| |
Collapse
|
13
|
Wang YP, Yang LN, Feng YY, Liu S, Zhan J. Single Amino Acid Substitution the DNA Repairing Gene Radiation-Sensitive 4 Contributes to Ultraviolet Tolerance of a Plant Pathogen. Front Microbiol 2022; 13:927139. [PMID: 35910660 PMCID: PMC9330021 DOI: 10.3389/fmicb.2022.927139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
To successfully survive and reproduce, all species constantly modify the structure and expression of their genomes to cope with changing environmental conditions including ultraviolet (UV) radiation. Thus, knowledge of species adaptation to environmental changes is a central theme of evolutionary studies which could have important implication for disease management and social-ecological sustainability in the future but is generally insufficient. Here, we investigated the evolution of UV adaptation in organisms by population genetic analysis of sequence structure, physiochemistry, transcription, and fitness variation in the radiation-sensitive 4 (RAD4) gene of the Irish potato famine pathogen Phytophthora infestans sampled from various altitudes. We found that RAD4 is a key gene determining the resistance of the pathogen to UV stress as indicated by strong phenotype-genotype-geography associations and upregulated transcription after UV exposure. We also found conserved evolution in the RAD4 gene. Only five nucleotide haplotypes corresponding to three protein isoforms generated by point mutations were detected in the 140 sequences analyzed and the mutations were constrained to the N-terminal domain of the protein. Physiochemical changes associated with non-synonymous mutations generate severe fitness penalty to mutants, which are purged out by natural selection, leading to the conserved evolution observed in the gene.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yuan-Yuan Feng
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Songqing Liu
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
14
|
Metatranscriptomics captures dynamic shifts in mycorrhizal coordination in boreal forests. Proc Natl Acad Sci U S A 2022; 119:e2118852119. [PMID: 35727987 PMCID: PMC9245616 DOI: 10.1073/pnas.2118852119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Advances in DNA sequencing have provided an unprecedented view of the complex microbial communities that populate global ecosystems. We present a metatranscriptomic analysis of samples from the boreal forest—the largest terrestrial carbon store—capturing the seasonally resolved transcriptomes of Norway spruce roots and more than 350 root-associated fungal species. Our findings link the functional response of host-trees to increased nutrient availability, with profound perturbations in the fungal community. Notably, we observed an exchange in prevalence and host-coordination of specialist ectomycorrhizal species critical for enzymatic cycling of recalcitrant carbon, to metabolically versatile species with resilient melanized cell walls. This research unites kingdom-spanning taxonomic and functional details of the boreal root microbiome, contributing a missing perspective toward modeling global carbon cycling. Carbon storage and cycling in boreal forests—the largest terrestrial carbon store—is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree–microbe coordination of over 350 root-associated fungal species. In response to altered nutrient status, host trees redefined their relationship with the fungal community by reducing sugar efflux carriers and enhancing defense processes. This resulted in a profound restructuring of the fungal community and a collapse in functional coordination between the tree and the dominant Basidiomycete species, and an increase in functional coordination with versatile Ascomycete species. As such, there was a functional shift in community dominance from Basidiomycetes species, with important roles in enzymatically cycling recalcitrant carbon, to Ascomycete species that have melanized cell walls that are highly resistant to degradation. These changes were accompanied by prominent shifts in transcriptional coordination between over 60 predicted fungal effectors, with more than 5,000 Norway spruce transcripts, providing mechanistic insight into the complex molecular dialogue coordinating host trees and their fungal partners. The host–microbe dynamics captured by this study functionally inform how these complex and sensitive biological relationships may mediate the carbon storage potential of boreal soils under changing nutrient conditions.
Collapse
|
15
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Mitochondrial Genome Contributes to the Thermal Adaptation of the Oomycete Phytophthora infestans. Front Microbiol 2022; 13:928464. [PMID: 35836411 PMCID: PMC9273971 DOI: 10.3389/fmicb.2022.928464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
As a vital element of climate change, elevated temperatures resulting from global warming present new challenges to natural and agricultural sustainability, such as ecological disease management. Mitochondria regulate the energy production of cells in responding to environmental fluctuation, but studying their contribution to the thermal adaptation of species is limited. This knowledge is needed to predict future disease epidemiology for ecology conservation and food security. Spatial distributions of the mitochondrial genome (mtDNA) in 405 Phytophthora infestans isolates originating from 15 locations were characterized. The contribution of MtDNA to thermal adaptation was evaluated by comparative analysis of mtDNA frequency and intrinsic growth rate, relative population differentiation in nuclear and mtDNA, and associations of mtDNA distribution with local geography climate conditions. Significant variation in frequency, intrinsic growth rate, and spatial distribution was detected in mtDNA. Population differentiation in mtDNA was significantly higher than that in the nuclear genome, and spatial distribution of mtDNA was strongly associated with local climatic conditions and geographic parameters, particularly air temperature, suggesting natural selection caused by a local temperature is the main driver of the adaptation. Dominant mtDNA grew faster than the less frequent mtDNA. Our results provide useful insights into the evolution of pathogens under global warming. Given its important role in biological functions and adaptation to local air temperature, mtDNA intervention has become an increasing necessity for future disease management. To secure ecological integrity and food production under global warming, a synergistic study on the interactive effect of changing temperature on various components of biological and ecological functions of mitochondria in an evolutionary frame is urgently needed.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Abdul Waheed
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yan-Ping Wang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Oswald Nkurikiyimfura
- Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Institute of Oceanography, Minjiang University, Fuzhou, China
- *Correspondence: Li-Na Yang
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Garg A, Dabburu GR, Singhal N, Kumar M. Investigating the disordered regions (MoRFs, SLiMs and LCRs) and functions of mimicry proteins/peptides in silico. PLoS One 2022; 17:e0265657. [PMID: 35421114 PMCID: PMC9009644 DOI: 10.1371/journal.pone.0265657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mimicry of the host proteins/peptides can elicit host auto-reactive T- or B-cells resulting in autoimmune disease(s). Since intrinsically disordered protein regions (IDPRs) are involved in several host cell signaling and PPI networks, molecular mimicry of the IDPRs can help the pathogens in substituting their own proteins in the host cell-signaling and PPI networks and, ultimately hijacking the host cellular machinery. Thus, the present study was conducted to discern the structural disorder and intrinsically disordered protein regions (IDPRs) like, molecular recognition features (MoRFs), short linear motifs (SLiMs), and low complexity regions (LCRs) in the experimentally verified mimicry proteins and peptides (mimitopes) of bacteria, viruses and host. Also, functional characteristics of the mimicry proteins were studied in silico. Our results indicated that 78% of the bacterial host mimicry proteins and 45% of the bacterial host mimitopes were moderately/highly disordered while, 73% of the viral host mimicry proteins and 31% of the viral host mimitopes were moderately/highly disordered. Among the pathogens, 27% of the bacterial mimicry proteins and 13% of the bacterial mimitopes were moderately/highly disordered while, 53% of the viral mimicry proteins and 21% of the viral mimitopes were moderately/highly disordered. Though IDPR were frequent in host, bacterial and viral mimicry proteins, only a few mimitopes overlapped with the IDPRs like, MoRFs, SLiMs and LCRs. This suggests that most of the microbes cannot use molecular mimicry to modulate the host PPIs and hijack the host cell machinery. Functional analyses indicated that most of the pathogens exhibited mimicry with the host proteins involved in ion binding and signaling pathways. This is the first report on the disordered regions and functional aspects of experimentally proven host and microbial mimicry proteins.
Collapse
Affiliation(s)
- Anjali Garg
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Govinda Rao Dabburu
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
| | - Neelja Singhal
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| | - Manish Kumar
- Department of Biophysics, University of Delhi South Campus, New Delhi, India
- * E-mail: (MK); (NS)
| |
Collapse
|
17
|
Short Linear Motifs (SLiMs) in “Core” RxLR Effectors of
Phytophthora parasitica
var.
nicotianae
: a Case of PpRxLR1 Effector. Microbiol Spectr 2022; 10:e0177421. [PMID: 35404090 PMCID: PMC9045269 DOI: 10.1128/spectrum.01774-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Oomycetes of the genus Phytophthora encompass several of the most successful plant pathogens described to date. The success of infection by Phytophthora species is attributed to the pathogens’ ability to secrete effector proteins that alter the host’s physiological processes. Structural analyses of effector proteins mainly from bacterial and viral pathogens have revealed the presence of intrinsically disordered regions that host short linear motifs (SLiMs). These motifs play important biological roles by facilitating protein-protein interactions as well as protein translocation. Nonetheless, SLiMs in Phytophthora species RxLR effectors have not been investigated previously and their roles remain unknown. Using a bioinformatics pipeline, we identified 333 candidate RxLR effectors in the strain INRA 310 of Phytophthora parasitica. Of these, 71 (21%) were also found to be present in 10 other genomes of P. parasitica, and hence, these were designated core RxLR effectors (CREs). Within the CRE sequences, the N terminus exhibited enrichment in intrinsically disordered regions compared to the C terminus, suggesting a potential role of disorder in effector translocation. Although the disorder content was reduced in the C-terminal regions, it is important to mention that most SLiMs were in this terminus. PpRxLR1 is one of the 71 CREs identified in this study, and its genes encode a 6-amino acid (aa)-long SLiM at the C terminus. We showed that PpRxLR1 interacts with several host proteins that are implicated in defense. Structural analysis of this effector using homology modeling revealed the presence of potential ligand-binding sites. Among key residues that were predicted to be crucial for ligand binding, L102 and Y106 were of interest since they form part of the 6-aa-long PpRxLR1 SLiM. In silico substitution of these two residues to alanine was predicted to have a significant effect on both the function and the structure of PpRxLR1 effector. Molecular docking simulations revealed possible interactions between PpRxLR1 effector and ubiquitin-associated proteins. The ubiquitin-like SLiM carried in this effector was shown to be a potential mediator of these interactions. Further studies are required to validate and elucidate the underlying molecular mechanism of action. IMPORTANCE The continuous gain and loss of RxLR effectors makes the control of Phytophthora spp. difficult. Therefore, in this study, we endeavored to identify RxLR effectors that are highly conserved among species, also known as “core” RxLR effectors (CREs). We reason that these highly conserved effectors target conserved proteins or processes; thus, they can be harnessed in breeding for durable resistance in plants. To further understand the mechanisms of action of CREs, structural dissection of these proteins is crucial. Intrinsically disordered regions (IDRs) that do not adopt a fixed, three-dimensional fold carry short linear motifs (SLiMs) that mediate biological functions of proteins. The presence and potential role of these SLiMs in CREs of Phytophthora spp. have been overlooked. To our knowledge, we have effectively identified CREs as well as SLiMs with the potential of promoting effector virulence. Together, this work has advanced our comprehension of Phytophthora RxLR effector function and may facilitate the development of innovative and effective control strategies.
Collapse
|
18
|
Hsiao AS. Plant Protein Disorder: Spatial Regulation, Broad Specificity, Switch of Signaling and Physiological Status. FRONTIERS IN PLANT SCIENCE 2022; 13:904446. [PMID: 35685011 PMCID: PMC9171514 DOI: 10.3389/fpls.2022.904446] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/10/2022] [Indexed: 05/14/2023]
Affiliation(s)
- An-Shan Hsiao
- *Correspondence: An-Shan Hsiao ; orcid.org/0000-0002-2485-9034
| |
Collapse
|
19
|
Ivanov AA, Ukladov EO, Golubeva TS. Phytophthora infestans: An Overview of Methods and Attempts to Combat Late Blight. J Fungi (Basel) 2021; 7:1071. [PMID: 34947053 PMCID: PMC8707485 DOI: 10.3390/jof7121071] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/20/2022] Open
Abstract
Phytophthora infestans (Mont.) de Bary is one of the main pathogens in the agricultural sector. The most affected are the Solanaceae species, with the potato (Solanum tuberosum) and the tomato (Solanum lycopersicum) being of great agricultural importance. Ornamental Solanaceae can also host the pests Petunia spp., Calibrachoa spp., as well as the wild species Solanum dulcamara, Solanum sarrachoides, etc. Annual crop losses caused by this pathogen are highly significant. Although the interaction between P. infestans and the potato has been investigated for a long time, further studies are still needed. This review summarises the basic approaches in the fight against the late blight over the past 20 years and includes four sections devoted to methods of control: (1) fungicides; (2) R-gene-based resistance of potato species; (3) RNA interference approaches; (4) other approaches to control P. infestans. Based on the latest advances, we have provided a description of the significant advantages and disadvantages of each approach.
Collapse
Affiliation(s)
- Artemii A. Ivanov
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Egor O. Ukladov
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| | - Tatiana S. Golubeva
- Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia;
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia;
| |
Collapse
|
20
|
Shen LL, Waheed A, Wang YP, Nkurikiyimfura O, Wang ZH, Yang LN, Zhan J. Multiple Mechanisms Drive the Evolutionary Adaptation of Phytophthora infestans Effector Avr1 to Host Resistance. J Fungi (Basel) 2021; 7:jof7100789. [PMID: 34682211 PMCID: PMC8538934 DOI: 10.3390/jof7100789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 11/16/2022] Open
Abstract
Effectors, a group of small proteins secreted by pathogens, play a central role in antagonistic interactions between plant hosts and pathogens. The evolution of effector genes threatens plant disease management and sustainable food production, but population genetic analyses to understand evolutionary mechanisms of effector genes are limited compared to molecular and functional studies. Here we investigated the evolution of the Avr1 effector gene from 111 Phytophthora infestans isolates collected from six areas covering three potato cropping regions in China using a population genetic approach. High genetic variation of the effector gene resulted from diverse mechanisms including base substitution, pre-termination, intragenic recombination and diversifying selection. Nearly 80% of the 111 sequences had a point mutation in the 512th nucleotide (T512G), which generated a pre-termination stop codon truncating 38 amino acids in the C-terminal, suggesting that the C-terminal may not be essential to ecological and biological functions of P. infestans. A significant correlation between the frequency of Avr1 sequences with the pre-termination and annual mean temperature in the collection sites suggests that thermal heterogeneity might be one of contributors to the diversifying selection, although biological and biochemical mechanisms of the likely thermal adaptation are not known currently. Our results highlight the risk of rapid adaptation of P. infestans and possibly other pathogens as well to host resistance, and the application of eco-evolutionary principles is necessary for sustainable disease management in agricultural ecosystems.
Collapse
Affiliation(s)
- Lin-Lin Shen
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Abdul Waheed
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Yan-Ping Wang
- College of Chemistry and Life Sciences, Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu 611130, China;
| | - Oswald Nkurikiyimfura
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Li-Na Yang
- Key Lab for Biopesticide and Chemical Biology, Fujian Agriculture and Forestry University, Ministry of Education, Fuzhou 350002, China; (L.-L.S.); (A.W.); (O.N.)
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Correspondence: (L.-N.Y.); (J.Z.); Tel.: +86-177-2080-5328 (L.-N.Y.); +46-18-673-639 (J.Z.)
| |
Collapse
|
21
|
Waheed A, Wang YP, Nkurikiyimfura O, Li WY, Liu ST, Lurwanu Y, Lu GD, Wang ZH, Yang LN, Zhan J. Effector Avr4 in Phytophthora infestans Escapes Host Immunity Mainly Through Early Termination. Front Microbiol 2021; 12:646062. [PMID: 34122360 PMCID: PMC8192973 DOI: 10.3389/fmicb.2021.646062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/19/2021] [Indexed: 11/13/2022] Open
Abstract
Effector genes play critical roles in the antagonistic interactions between plants and pathogens. However, knowledge of mutation mechanisms and evolutionary processes in effector genes and the contribution of climatic factors to the evolution of effector genes are fragmented but important in sustainable management of plant diseases and securing food supply under changing climates. Here, we used a population genetic approach to explore the evolution of the Avr4 gene in Phytophthora infestans, the causal agent of potato blight. We found that the Avr4 gene exhibited a high genetic diversity generated by point mutation and sequence deletion. Frameshifts caused by a single base-pair deletion at the 194th nucleotide position generate two stop codons, truncating almost the entire C-terminal, which is important for effector function and R4 recognition in all sequences. The effector is under natural selection for adaptation supported by comparative analyses of population differentiation (FST ) and isolation-by-distance between Avr4 sequences and simple sequence repeat marker loci. Furthermore, we found that local air temperature was positively associated with pairwise FST in the Avr4 sequences. These results suggest that the evolution of the effector gene is influenced by local air temperature, and the C-terminal truncation is one of the main mutation mechanisms in the P. infestans effector gene to circumvent the immune response of potato plants. The implication of these results to agricultural and natural sustainability in future climate conditions is discussed.
Collapse
Affiliation(s)
- Abdul Waheed
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan-Ping Wang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Oswald Nkurikiyimfura
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wen-Yang Li
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shi-Ting Liu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yahuza Lurwanu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Crop Protection, Bayero University Kano, Kano, Nigeria
| | - Guo-Dong Lu
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zong-Hua Wang
- Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Li-Na Yang
- Key Lab for Bio Pesticide and Chemical Biology, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
22
|
Wang YP, Wu EJ, Lurwanu Y, Ding JP, He DC, Waheed A, Nkurikiyimfura O, Liu ST, Li WY, Wang ZH, Yang L, Zhan J. Evidence for a synergistic effect of post-translational modifications and genomic composition of eEF-1α on the adaptation of Phytophthora infestans. Ecol Evol 2021; 11:5484-5496. [PMID: 34026022 PMCID: PMC8131795 DOI: 10.1002/ece3.7442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/18/2022] Open
Abstract
Genetic variation plays a fundamental role in pathogen's adaptation to environmental stresses. Pathogens with low genetic variation tend to survive and proliferate more poorly due to their lack of genotypic/phenotypic polymorphisms in responding to fluctuating environments. Evolutionary theory hypothesizes that the adaptive disadvantage of genes with low genomic variation can be compensated for structural diversity of proteins through post-translation modification (PTM) but this theory is rarely tested experimentally and its implication to sustainable disease management is hardly discussed. In this study, we analyzed nucleotide characteristics of eukaryotic translation elongation factor-1α (eEF-lα) gene from 165 Phytophthora infestans isolates and the physical and chemical properties of its derived proteins. We found a low sequence variation of eEF-lα protein, possibly attributable to purifying selection and a lack of intra-genic recombination rather than reduced mutation. In the only two isoforms detected by the study, the major one accounted for >95% of the pathogen collection and displayed a significantly higher fitness than the minor one. High lysine representation enhances the opportunity of the eEF-1α protein to be methylated and the absence of disulfide bonds is consistent with the structural prediction showing that many disordered regions are existed in the protein. Methylation, structural disordering, and possibly other PTMs ensure the ability of the protein to modify its functions during biological, cellular and biochemical processes, and compensate for its adaptive disadvantage caused by sequence conservation. Our results indicate that PTMs may function synergistically with nucleotide codes to regulate the adaptive landscape of eEF-1α, possibly as well as other housekeeping genes, in P. infestans. Compensatory evolution between pre- and post-translational phase in eEF-1α could enable pathogens quickly adapting to disease management strategies while efficiently maintaining critical roles of the protein playing in biological, cellular, and biochemical activities. Implications of these results to sustainable plant disease management are discussed.
Collapse
Affiliation(s)
- Yan-Ping Wang
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - E-Jiao Wu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Yahuza Lurwanu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
- Department of Crop Protection Bayero University Kano Kano Nigeria
| | - Ji-Peng Ding
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Dun-Chun He
- School of Economics and Trade Fujian Jiangxia University Fuzhou China
| | - Abdul Waheed
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Oswald Nkurikiyimfura
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Shi-Ting Liu
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Wen-Yang Li
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
| | - Zong-Hua Wang
- Fujian University Key Laboratory for Plant-Microbe Interaction College of Life Sciences Fujian Agriculture and Forestry University Fuzhou China
- Institute of Oceanography Minjiang University Fuzhou China
| | - Lina Yang
- Key lab for Bio pesticide and Chemical Biology Ministry of Education Fujian Agriculture and Forestry University Fuzhou China
- Institute of Oceanography Minjiang University Fuzhou China
| | - Jiasui Zhan
- Department of Forest Mycology and Plant Pathology Swedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
23
|
Naveed ZA, Wei X, Chen J, Mubeen H, Ali GS. The PTI to ETI Continuum in Phytophthora-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:593905. [PMID: 33391306 PMCID: PMC7773600 DOI: 10.3389/fpls.2020.593905] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/24/2020] [Indexed: 05/15/2023]
Abstract
Phytophthora species are notorious pathogens of several economically important crop plants. Several general elicitors, commonly referred to as Pathogen-Associated Molecular Patterns (PAMPs), from Phytophthora spp. have been identified that are recognized by the plant receptors to trigger induced defense responses in a process termed PAMP-triggered Immunity (PTI). Adapted Phytophthora pathogens have evolved multiple strategies to evade PTI. They can either modify or suppress their elicitors to avoid recognition by host and modulate host defense responses by deploying hundreds of effectors, which suppress host defense and physiological processes by modulating components involved in calcium and MAPK signaling, alternative splicing, RNA interference, vesicle trafficking, cell-to-cell trafficking, proteolysis and phytohormone signaling pathways. In incompatible interactions, resistant host plants perceive effector-induced modulations through resistance proteins and activate downstream components of defense responses in a quicker and more robust manner called effector-triggered-immunity (ETI). When pathogens overcome PTI-usually through effectors in the absence of R proteins-effectors-triggered susceptibility (ETS) ensues. Qualitatively, many of the downstream defense responses overlap between PTI and ETI. In general, these multiple phases of Phytophthora-plant interactions follow the PTI-ETS-ETI paradigm, initially proposed in the zigzag model of plant immunity. However, based on several examples, in Phytophthora-plant interactions, boundaries between these phases are not distinct but are rather blended pointing to a PTI-ETI continuum.
Collapse
Affiliation(s)
- Zunaira Afzal Naveed
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Xiangying Wei
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- Institute of Oceanography, Minjiang University, Fuzhou, China
- Xiangying Wei
| | - Jianjun Chen
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
| | - Hira Mubeen
- Departement of Biotechnology, University of Central Punjab, Lahore, Pakistan
| | - Gul Shad Ali
- Department of Plant Pathology, Institute of Food and Agriculture Sciences, University of Florida, Gainesville, FL, United States
- Mid-Florida Research and Education Center, Institute of Food and Agriculture Sciences, University of Florida, Apopka, FL, United States
- EukaryoTech LLC, Apopka, FL, United States
- *Correspondence: Gul Shad Ali
| |
Collapse
|