1
|
Malvino ML. Unraveling the dynamics of Xanthomonas' flagella: insights into host-pathogen interactions. PeerJ 2024; 12:e18204. [PMID: 39465145 PMCID: PMC11505878 DOI: 10.7717/peerj.18204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/10/2024] [Indexed: 10/29/2024] Open
Abstract
Understanding the intricate interplay between plants and bacteria is paramount for elucidating mechanisms of immunity and disease. This review synthesizes current knowledge on the role of flagella in bacterial motility and host recognition, shedding light on the molecular mechanisms underlying plant immunity and bacterial pathogenicity. We delve into the sophisticated signaling network of plants, highlighting the pivotal role of pattern recognition receptors (PRRs) in detecting conserved molecular patterns known as microbe-associated molecular patterns (MAMPs), with a particular focus on flagellin as a key MAMP. Additionally, we explore recent discoveries of solanaceous-specific receptors, such as FLAGELLIN SENSING 3 (FLS3), and their implications for plant defense responses. Furthermore, we examine the role of bacterial motility in host colonization and infection, emphasizing the multifaceted relationship between flagella-mediated chemotaxis and bacterial virulence. Through a comprehensive analysis of flagellin polymorphisms within the genus Xanthomonas, we elucidate their potential impact on host recognition and bacterial pathogenicity, offering insights into strategies for developing disease-resistant crops. This review is intended for professionals within the fields of crops sciences and microbiology.
Collapse
Affiliation(s)
- Maria L. Malvino
- Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| |
Collapse
|
2
|
Pena MM, Bhandari R, Bowers RM, Weis K, Newberry E, Wagner N, Pupko T, Jones JB, Woyke T, Vinatzer BA, Jacques MA, Potnis N. Genetic and Functional Diversity Help Explain Pathogenic, Weakly Pathogenic, and Commensal Lifestyles in the Genus Xanthomonas. Genome Biol Evol 2024; 16:evae074. [PMID: 38648506 PMCID: PMC11032200 DOI: 10.1093/gbe/evae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/25/2024] Open
Abstract
The genus Xanthomonas has been primarily studied for pathogenic interactions with plants. However, besides host and tissue-specific pathogenic strains, this genus also comprises nonpathogenic strains isolated from a broad range of hosts, sometimes in association with pathogenic strains, and other environments, including rainwater. Based on their incapacity or limited capacity to cause symptoms on the host of isolation, nonpathogenic xanthomonads can be further characterized as commensal and weakly pathogenic. This study aimed to understand the diversity and evolution of nonpathogenic xanthomonads compared to their pathogenic counterparts based on their cooccurrence and phylogenetic relationship and to identify genomic traits that form the basis of a life history framework that groups xanthomonads by ecological strategies. We sequenced genomes of 83 strains spanning the genus phylogeny and identified eight novel species, indicating unexplored diversity. While some nonpathogenic species have experienced a recent loss of a type III secretion system, specifically the hrp2 cluster, we observed an apparent lack of association of the hrp2 cluster with lifestyles of diverse species. We performed association analysis on a large data set of 337 Xanthomonas strains to explain how xanthomonads may have established association with the plants across the continuum of lifestyles from commensals to weak pathogens to pathogens. Presence of distinct transcriptional regulators, distinct nutrient utilization and assimilation genes, transcriptional regulators, and chemotaxis genes may explain lifestyle-specific adaptations of xanthomonads.
Collapse
Affiliation(s)
- Michelle M Pena
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
- Present address: Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Rishi Bhandari
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Robert M Bowers
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kylie Weis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric Newberry
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Naama Wagner
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, Tel-Aviv University, Tel Aviv, Israel
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Life and Environmental Sciences, University of California Merced, Merced, CA, USA
| | - Boris A Vinatzer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Marie-Agnès Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, University of Angers, Angers F-49000, France
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| |
Collapse
|
3
|
Chen C, van der Hoorn RAL, Buscaill P. Releasing hidden MAMPs from precursor proteins in plants. TRENDS IN PLANT SCIENCE 2024; 29:428-436. [PMID: 37945394 DOI: 10.1016/j.tplants.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 11/12/2023]
Abstract
The recognition of pathogens by plants at the cell surface is crucial for activating plant immunity. Plants employ pattern recognition receptors (PRRs) to detect microbe-associated molecular patterns (MAMPs). However, our knowledge of the release of peptide MAMPs from their precursor proteins is very limited. Here, we explore seven protein precursors of well-known MAMP peptides and discuss the likelihood of processing being required for their recognition based on structural models and public knowledge. This analysis indicates the existence of multiple extracellular events that are likely pivotal for pathogen perception but remain to be uncovered.
Collapse
Affiliation(s)
- Changlong Chen
- Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China; The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| | | | - Pierre Buscaill
- The Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
4
|
Liang X, Wei F, Yang H, Fan L, Cai X, Ma Y, Shi J, Xing K, Qiu L, Li X, Lu L, Ji J, Wen Y, Feng J. Flagella-Driven Motility Is Critical to the Virulence of Xanthomonas fragariae in Strawberry. PLANT DISEASE 2023; 107:3506-3516. [PMID: 37157097 DOI: 10.1094/pdis-03-23-0409-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Xanthomonas fragariae (X. fragariae) is the causal agent of angular leaf spots (ALS) in strawberry plants. Recently, a study in China isolated X. fragariae strain YL19, which was observed to cause both typical ALS symptoms and dry cavity rot in strawberry crown tissue; this was the first X. fragariae strain to have both these effects in strawberry. In this study, from 2020 to 2022, we isolated 39 X. fragariae strains from diseased strawberries in different production areas in China. Multilocus sequence typing (MLST) and phylogenetic analysis showed that X. fragariae strain YLX21 was genetically different from YL19 and other strains. Tests indicated that YLX21 and YL19 had different pathogenicities toward strawberry leaves and stem crowns. YLX21 did not cause ALS symptoms, rarely caused dry cavity rot in strawberry crown after wound inoculation, and never caused dry cavity rot after spray inoculation, but it did cause severe ALS symptoms after spray inoculation. However, YL19 caused more severe symptoms in strawberry crowns under both conditions. Moreover, YL19 had a single polar flagellum, while YLX21 had no flagellum. Motility and chemotaxis assays showed that YLX21 had weaker motility than YL19, which may explain why YLX21 tended to multiply in situ within the strawberry leaf rather than migrate to other tissues, causing more severe ALS symptoms and mild crown rot symptoms. Taken together, the new strain YLX21 helped us reveal critical factors underlying the pathogenicity of X. fragariae and the mechanism by which dry cavity rot in strawberry crowns forms.
Collapse
Affiliation(s)
- Xia Liang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Feng Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Hongliang Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Li Fan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xiaolin Cai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Yangyang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Jiancheng Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Kun Xing
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Lijuan Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Xixuan Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Lijuan Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| | - Jie Ji
- Institute of Plant Protection, Fujian Academy of Agriculture Sciences, Fuzhou 350013, Fujian, China
| | - Yingqiang Wen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiayue Feng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China
- Key Laboratory of Protected Horticulture Engineering in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, Shaanxi, China
| |
Collapse
|
5
|
Andrade MDO, da Silva JC, Soprano AS, Shimo HM, Leme AFP, Benedetti CE. Suppression of citrus canker disease mediated by flagellin perception. MOLECULAR PLANT PATHOLOGY 2023; 24:331-345. [PMID: 36691963 PMCID: PMC10013774 DOI: 10.1111/mpp.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Citrus cancer, caused by strains of Xanthomonas citri (Xc) and Xanthomonas aurantifolii (Xa), is one of the most economically important citrus diseases. Although our understanding of the molecular mechanisms underlying citrus canker development has advanced remarkably in recent years, exactly how citrus plants fight against these pathogens remains largely unclear. Using a Xa pathotype C strain that infects Mexican lime only and sweet oranges as a pathosystem to study the immune response triggered by this bacterium in these hosts, we herein report that the Xa flagellin C protein (XaFliC) acts as a potent defence elicitor in sweet oranges. Just as Xa blocked canker formation when coinfiltrated with Xc in sweet orange leaves, two polymorphic XaFliC peptides designated flgIII-20 and flgIII-27, not related to flg22 or flgII-28 but found in many Xanthomonas species, were sufficient to protect sweet orange plants from Xc infection. Accordingly, ectopic expression of XaFliC in a Xc FliC-defective mutant completely abolished the ability of this mutant to grow and cause canker in sweet orange but not Mexican lime plants. Because XaFliC and flgIII-27 also specifically induced the expression of several defence-related genes, our data suggest that XaFliC acts as a main immune response determinant in sweet orange plants.
Collapse
Affiliation(s)
- Maxuel de Oliveira Andrade
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Jaqueline Cristina da Silva
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Santos Soprano
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Hugo Massayoshi Shimo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Adriana Franco Paes Leme
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| | - Celso Eduardo Benedetti
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)CampinasBrazil
| |
Collapse
|