1
|
Guan H, Zhang P, Park RF, Ding Y. Genomics Research on the Road of Studying Biology and Virulence of Cereal Rust Fungi. MOLECULAR PLANT PATHOLOGY 2025; 26:e70082. [PMID: 40181494 PMCID: PMC11968332 DOI: 10.1111/mpp.70082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/05/2025]
Abstract
Rust fungi are highly destructive pathogens that pose a significant threat to crop production worldwide, especially cereals. Obligate biotrophy and, in many cases, complex life cycles make rust fungi particularly challenging to study. However, recent rapid advances in sequencing technologies and genomic analysis tools have revolutionised rust fungal research. It is anticipated that the increasing availability and ongoing substantial improvements in genome assemblies will propel the field of rust biology into the post-genomic era, instigating a cascade of research endeavours encompassing multi-omics and gene discoveries. This is especially the case for many cereal rust pathogens, for which continental-scale studies of virulence have been conducted over many years and historical collections of viable isolates have been sequenced and assembled. Genomic analysis plays a crucial role in uncovering the underlying causes of the high variability of virulence and the complexity of population dynamics in rust fungi. Here, we provide an overview of progress in rust genomics, discuss the strategies employed in genomic analysis, and elucidate the strides that will drive cereal rust biology into the post-genomic era.
Collapse
Affiliation(s)
- Haixia Guan
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Peng Zhang
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Robert F. Park
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| | - Yi Ding
- School of Life and Environment SciencesPlant Breeding Institute, The University of SydneyCobbittyNew South WalesAustralia
| |
Collapse
|
2
|
Li Y, Zhang S, Liu D, Zhang T, Zhang Z, Zhao J, Zhang B, Cao S, Xu X, Yao Q, Hu X. Migration of wheat stripe rust from the primary oversummering region to neighboring regions in China. Commun Biol 2025; 8:350. [PMID: 40033097 PMCID: PMC11876435 DOI: 10.1038/s42003-025-07789-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 02/20/2025] [Indexed: 03/05/2025] Open
Abstract
Changing climate and changes in cropping systems have greatly affected outbreaks of plant diseases. Wheat stripe rust is a disease posing a threat to global wheat production, caused by Puccinia striiformis f. sp. tritici (Pst). Pst oversummering regions play a crucial role in the emergence of new races in China. To unveil the migration pattern of oversummering to adjacent regions, we develop a set of KASP-SNP marker from 28 Pst whole-genome sequences to investigate the population structure in the oversummering and its adjacent regions. A set of 19 Chinese wheat differentials is used to characterize the virulence patterns of 308 sampled Pst isolates. By integrating virulence characterization, population genetic analysis, air trajectory simulation and field disease monitoring, two main Pst dispersal routes are identified. Inocula from Eastern Qinghai are dispersed to Western and Eastern Liupan Mountain, and reach Guanzhong Plain. The second route originates from Middle Gansu, then through Longnan, and reaches the Guanzhong Plain via Eastern Liupan Mountain. Both dispersal routes result in Pst inoculum spreading to the Huang-Huai-Hai region, the main wheat-growing region in China. The proposed migration routes can be used to develop disease management strategies at a regional and national scale.
Collapse
Affiliation(s)
- Yuxiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Siyue Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Di Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Taixue Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Zhibo Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Jingchen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China
| | - Bo Zhang
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Shiqin Cao
- Institute of Plant Protection, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East Malling, West Malling, Kent, UK
| | - Qiang Yao
- Qinghai Provincial Key Laboratory of Agricultural Integrated Pest Management Scientific Observing and Experimental Station of Crop Pest in Xining, Ministry of Agriculture and Rural Affairs, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai, China.
| | - Xiaoping Hu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, China.
| |
Collapse
|
3
|
Fagundes WC, Huang YS, Häußler S, Langner T. From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:187-205. [PMID: 39813026 DOI: 10.1094/mpmi-09-24-0115-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Yu-Seng Huang
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | - Sophia Häußler
- Max-Planck-Institute for Biology, 72076 Tübingen, Germany
| | | |
Collapse
|
4
|
Mojerlou S, Moeller M, Schwessinger B, Rodriguez-Algaba J. Beyond Asexual: Genomics-Driven Progress in Unveiling Sexual Reproduction in Cereal Rust Fungi. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:206-212. [PMID: 39616556 DOI: 10.1094/mpmi-10-24-0122-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Recent advances in genomics technologies have revolutionized our understanding of cereal rust fungi, providing unprecedented insights into the complexities of their sexual life cycle. Genomic approaches, including long-read sequencing, genome assembly, and haplotype phasing technologies, have revealed critical insights into mating systems, genetic diversity, virulence evolution, and host adaptation. Population genomics studies have uncovered diverse reproductive strategies across different cereal rust species and geographic regions, highlighting the interplay between sexual recombination and asexual reproduction. Transcriptomics have begun to unravel the gene expression networks driving sexual reproduction, and complementary omics approaches such as proteomics and metabolomics offer potential insights into the underlying molecular processes. Despite this progress, many aspects of cereal rust sexual reproduction remain elusive. Integrating multiple omics approaches with advanced cell biology techniques can help address these knowledge gaps, particularly in understanding sexual reproduction and its role in pathogen evolution. This comprehensive approach will be crucial for developing more targeted and resilient crop protection strategies, ultimately contributing to global food security. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Shideh Mojerlou
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse 4200, Denmark
| | - Mareike Moeller
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Benjamin Schwessinger
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Julian Rodriguez-Algaba
- Department of Agroecology, Faculty of Science and Technology, Aarhus University, Slagelse 4200, Denmark
| |
Collapse
|
5
|
Ni F, Yu Y, Epstein L, Fu D, Wu J. Sequencing Trait-Associated Mutations (STAM) to Clone Rust Resistance Genes. Methods Mol Biol 2025; 2898:291-305. [PMID: 40198565 DOI: 10.1007/978-1-0716-4378-5_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Sequencing trait-associated mutations (STAM) is a simple and straightforward gene cloning method that was developed in wheat. It uses full-length isoform sequencing (Iso-Seq) of the wild type as the reference and employs transcriptome sequencing of multiple, independently derived mutants for gene cloning. The STAM method eliminates the need for fine-mapping or a high-quality whole genome assembly of a specific wheat cultivar, and it could also be used in other plant species with complex genomes. Detailed, bioinformatic analysis protocol and tips for STAM are provided in this chapter.
Collapse
Affiliation(s)
- Fei Ni
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yang Yu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, USA
| | - Daolin Fu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, China.
| | - Jiajie Wu
- State Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
6
|
Wang J, Xu Y, Peng Y, Wang Y, Kang Z, Zhao J. A fully haplotype-resolved and nearly gap-free genome assembly of wheat stripe rust fungus. Sci Data 2024; 11:508. [PMID: 38755209 PMCID: PMC11099153 DOI: 10.1038/s41597-024-03361-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 05/10/2024] [Indexed: 05/18/2024] Open
Abstract
Stripe rust fungus Puccinia striiformis f. sp. tritici (Pst) is a destructive pathogen of wheat worldwide. Pst has a macrocyclic-heteroecious lifecycle, in which one-celled urediniospores are dikaryotic, each nucleus containing one haploid genome. We successfully generated the first fully haplotype-resolved and nearly gap-free chromosome-scale genome assembly of Pst by combining PacBio HiFi sequencing and trio-binning strategy. The genome size of the two haploid assemblies was 75.59 Mb and 75.91 Mb with contig N50 of 4.17 Mb and 4.60 Mb, and both had 18 pseudochromosomes. The high consensus quality values of 55.57 and 59.02 for both haplotypes confirmed the correctness of the assembly. Of the total 18 chromosomes, 15 and 16 were gapless while there were only five and two gaps for the remaining chromosomes of the two haplotypes, respectively. In total, 15,046 and 15,050 protein-coding genes were predicted for the two haplotypes, and the complete BUSCO scores achieved 97.7% and 97.9%, respectively. The genome will lay the foundation for further research on genetic variations and the evolution of rust fungi.
Collapse
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuxi Peng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiping Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
7
|
Wang J, Peng Y, Xu Y, Li Z, Zhan G, Kang Z, Zhao J. Pan-genome analysis reveals a highly plastic genome and extensive secreted protein polymorphism in Puccinia striiformis f. sp. tritici. J Genet Genomics 2024; 51:574-577. [PMID: 38128825 DOI: 10.1016/j.jgg.2023.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Affiliation(s)
- Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China; College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuxi Peng
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhiru Li
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Luo Z, McTaggart A, Schwessinger B. Genome biology and evolution of mating-type loci in four cereal rust fungi. PLoS Genet 2024; 20:e1011207. [PMID: 38498573 PMCID: PMC10977897 DOI: 10.1371/journal.pgen.1011207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/28/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.
Collapse
Affiliation(s)
- Zhenyan Luo
- Research Biology School, Australian National University, Canberra, ACT, Australia
| | - Alistair McTaggart
- Centre for Horticultural Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | | |
Collapse
|
9
|
Ni F, Zheng Y, Liu X, Yu Y, Zhang G, Epstein L, Mao X, Wu J, Yuan C, Lv B, Yu H, Li J, Zhao Q, Yang Q, Liu J, Qi J, Fu D, Wu J. Sequencing trait-associated mutations to clone wheat rust-resistance gene YrNAM. Nat Commun 2023; 14:4353. [PMID: 37468469 PMCID: PMC10356923 DOI: 10.1038/s41467-023-39993-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/06/2023] [Indexed: 07/21/2023] Open
Abstract
Stripe (yellow) rust, caused by Puccinia striiformis f. sp. tritici (Pst), can significantly affect wheat production. Cloning resistance genes is critical for efficient and effective breeding of stripe rust resistant wheat cultivars. One resistance gene (Yr10CG) underlying the Pst resistance locus Yr10 has been cloned. However, following haplotype and linkage analyses indicate the presence of additional Pst resistance gene(s) underlying/near Yr10 locus. Here, we report the cloning of the Pst resistance gene YrNAM in this region using the method of sequencing trait-associated mutations (STAM). YrNAM encodes a non-canonical resistance protein with a NAM domain and a ZnF-BED domain. We show that both domains are required for resistance. Transgenic wheat harboring YrNAM gene driven by its endogenous promoter confers resistance to stripe rust races CYR32 and CYR33. YrNAM is an ancient gene and present in wild wheat species Aegilops longissima and Ae. sharonensis; however, it is absent in most wheat cultivars, which indicates its breeding value.
Collapse
Affiliation(s)
- Fei Ni
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yanyan Zheng
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Zhoucun District Agricultural Technology Service Center, Zibo, Shandong, 255300, China
| | - Xiaoke Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yang Yu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Guangqiang Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze, Shandong, 274015, China
| | - Lynn Epstein
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Xue Mao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jingzheng Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Zhejiang Pharmaceutical University, Ningbo, Zhejiang, 315000, China
| | - Cuiling Yuan
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Shandong Peanut Research Institute, Qingdao, Shandong, 266100, China
| | - Bo Lv
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haixia Yu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jinlong Li
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Qi Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qiyu Yang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiajun Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Juan Qi
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Daolin Fu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
- Spring Valley Agriscience Co., Ltd., Jinan, Shandong, 250300, China.
| | - Jiajie Wu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
10
|
Wang J, Chen T, Tang Y, Zhang S, Xu M, Liu M, Zhang J, Loake GJ, Jiang J. The Biological Roles of Puccinia striiformis f. sp. tritici Effectors during Infection of Wheat. Biomolecules 2023; 13:889. [PMID: 37371469 PMCID: PMC10296696 DOI: 10.3390/biom13060889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
Puccinia striiformis f. sp. tritici (Pst) is the causative agent of wheat stripe rust, which can lead to a significant loss in annual wheat yields. Therefore, there is an urgent need for a deeper comprehension of the basic mechanisms underlying Pst infection. Effectors are known as the agents that plant pathogens deliver into host tissues to promote infection, typically by interfering with plant physiology and biochemistry. Insights into effector activity can significantly aid the development of future strategies to generate disease-resistant crops. However, the functional analysis of Pst effectors is still in its infancy, which hinders our understanding of the molecular mechanisms of the interaction between Pst and wheat. In this review, we summarize the potential roles of validated and proposed Pst effectors during wheat infection, including proteinaceous effectors, non-coding RNAs (sRNA effectors), and secondary metabolites (SMs effectors). Further, we suggest specific countermeasures against Pst pathogenesis and future research directions, which may promote our understanding of Pst effector functions during wheat immunity attempts.
Collapse
Affiliation(s)
- Junjuan Wang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Tongtong Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yawen Tang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Sihan Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Mengyao Xu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Meiyan Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Zhang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Gary J. Loake
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, UK
| | - Jihong Jiang
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
11
|
Gupta YK, Marcelino-Guimarães FC, Lorrain C, Farmer A, Haridas S, Ferreira EGC, Lopes-Caitar VS, Oliveira LS, Morin E, Widdison S, Cameron C, Inoue Y, Thor K, Robinson K, Drula E, Henrissat B, LaButti K, Bini AMR, Paget E, Singan V, Daum C, Dorme C, van Hoek M, Janssen A, Chandat L, Tarriotte Y, Richardson J, Melo BDVA, Wittenberg AHJ, Schneiders H, Peyrard S, Zanardo LG, Holtman VC, Coulombier-Chauvel F, Link TI, Balmer D, Müller AN, Kind S, Bohnert S, Wirtz L, Chen C, Yan M, Ng V, Gautier P, Meyer MC, Voegele RT, Liu Q, Grigoriev IV, Conrath U, Brommonschenkel SH, Loehrer M, Schaffrath U, Sirven C, Scalliet G, Duplessis S, van Esse HP. Major proliferation of transposable elements shaped the genome of the soybean rust pathogen Phakopsora pachyrhizi. Nat Commun 2023; 14:1835. [PMID: 37005409 PMCID: PMC10067951 DOI: 10.1038/s41467-023-37551-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 03/22/2023] [Indexed: 04/04/2023] Open
Abstract
With >7000 species the order of rust fungi has a disproportionately large impact on agriculture, horticulture, forestry and foreign ecosystems. The infectious spores are typically dikaryotic, a feature unique to fungi in which two haploid nuclei reside in the same cell. A key example is Phakopsora pachyrhizi, the causal agent of Asian soybean rust disease, one of the world's most economically damaging agricultural diseases. Despite P. pachyrhizi's impact, the exceptional size and complexity of its genome prevented generation of an accurate genome assembly. Here, we sequence three independent P. pachyrhizi genomes and uncover a genome up to 1.25 Gb comprising two haplotypes with a transposable element (TE) content of ~93%. We study the incursion and dominant impact of these TEs on the genome and show how they have a key impact on various processes such as host range adaptation, stress responses and genetic plasticity.
Collapse
Affiliation(s)
- Yogesh K Gupta
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | | | - Cécile Lorrain
- Pathogen Evolutionary Ecology, ETH Zürich, Zürich, Switzerland
| | - Andrew Farmer
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Sajeet Haridas
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Everton Geraldo Capote Ferreira
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | - Valéria S Lopes-Caitar
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | - Liliane Santana Oliveira
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | | | | | - Connor Cameron
- National Center for Genome Resources, Santa Fe, New Mexico, USA
| | - Yoshihiro Inoue
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Kathrin Thor
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Kelly Robinson
- 2Blades, Evanston, Illinois, USA
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK
| | - Elodie Drula
- AFMB, Aix-Marseille Univ., INRAE, Marseille, France
- Biodiversité et Biotechnologie Fongiques, INRAE, Marseille, France
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- DTU Bioengineering, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Kurt LaButti
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Aline Mara Rudsit Bini
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Paraná, Brazil
| | - Eric Paget
- Bayer SAS, Crop Science Division, Lyon, France
| | - Vasanth Singan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Christopher Daum
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Tobias I Link
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| | - Dirk Balmer
- Syngenta Crop Protection AG, Stein, Switzerland
| | - André N Müller
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Sabine Kind
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Stefan Bohnert
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Louisa Wirtz
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Cindy Chen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Mi Yan
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Vivian Ng
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | | | - Maurício Conrado Meyer
- Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil
| | | | - Qingli Liu
- Syngenta Crop Protection, LLC, Research Triangle Park, Durham, NC, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Uwe Conrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | | - Marco Loehrer
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | - Ulrich Schaffrath
- Department of Plant Physiology, RWTH Aachen University, Aachen, Germany
| | | | | | | | - H Peter van Esse
- 2Blades, Evanston, Illinois, USA.
- The Sainsbury Laboratory, University of East Anglia, Norwich, UK.
| |
Collapse
|
12
|
Li C, Qiao L, Lu Y, Xing G, Wang X, Zhang G, Qian H, Shen Y, Zhang Y, Yao W, Cheng K, Ma Z, Liu N, Wang D, Zheng W. Gapless Genome Assembly of Puccinia triticina Provides Insights into Chromosome Evolution in Pucciniales. Microbiol Spectr 2023; 11:e0282822. [PMID: 36688678 PMCID: PMC9927501 DOI: 10.1128/spectrum.02828-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/02/2022] [Indexed: 01/24/2023] Open
Abstract
Chromosome evolution drives species evolution, speciation, and adaptive radiation. Accurate genome assembly is crucial to understanding chromosome evolution of species, such as dikaryotic fungi. Rust fungi (Pucciniales) in dikaryons represent the largest group of plant pathogens, but the evolutionary process of adaptive radiation in Pucciniales remains poorly understood. Here, we report a gapless genome for the wheat leaf rust fungus Puccinia triticina determined using PacBio high-fidelity (HiFi) sequencing. This gapless assembly contains two sets of chromosomes, showing that one contig represents one chromosome. Comparisons of homologous chromosomes between the phased haplotypes revealed that highly frequent small-scale sequence divergence shapes haplotypic variation. Genome analyses of Puccinia triticina along with other rusts revealed that recent transposable element bursts and extensive segmental gene duplications synergistically highlight the evolution of chromosome structures. Comparative analysis of chromosomes indicated that frequent chromosomal rearrangements may act as a major contributor to rapid radiation of Pucciniales. This study presents the first gapless, phased assembly for a dikaryotic rust fungus and provides insights into adaptive evolution and species radiation in Pucciniales. IMPORTANCE Rust fungi (Pucciniales) are the largest group of plant pathogens. Adaptive radiation is a predominant feature in Pucciniales evolution. Chromosome evolution plays an important role in adaptive evolution. Accurate chromosome-scale assembly is required to understand the role of chromosome evolution in Pucciniales. We took advantage of HiFi sequencing to construct a gapless, phased genome for Puccinia triticina. Further analyses revealed that the evolution of chromosome structures in rust lineage is shaped by the combination of transposable element bursts and segmental gene duplications. Chromosome comparisons of Puccinia triticina and other rusts suggested that frequent chromosomal arrangements may make remarkable contributions to high species diversity of rust fungi. Our results present the first gapless genome for Pucciniales and shed light on the feature of chromosome evolution in Pucciniales.
Collapse
Affiliation(s)
- Chuang Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Liuhui Qiao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Yanan Lu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Guozhen Xing
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding, China
| | | | - Huimin Qian
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yilin Shen
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yibo Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Wen Yao
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Kun Cheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Zhenling Ma
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Na Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, China
| | - Wenming Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
13
|
Xia C, Huang L, Huang J, Zhang H, Huang Y, Benhamed M, Wang M, Chen X, Zhang M, Liu T, Chen W. Folding Features and Dynamics of 3D Genome Architecture in Plant Fungal Pathogens. Microbiol Spectr 2022; 10:e0260822. [PMID: 36250889 PMCID: PMC9769607 DOI: 10.1128/spectrum.02608-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/18/2022] [Indexed: 01/07/2023] Open
Abstract
The folding and dynamics of three-dimensional (3D) genome organization are fundamental for eukaryotes executing genome functions but have been largely unexplored in nonmodel fungi. Using high-throughput sequencing coupled with chromosome conformation capture (Hi-C) data, we generated two chromosome-level assemblies for Puccinia striiformis f. sp. tritici, a fungus causing stripe rust disease on wheat, for studying 3D genome architectures of plant pathogenic fungi. The chromatin organization of the fungus followed a combination of the fractal globule model and the equilibrium globule model. Surprisingly, chromosome compartmentalization was not detected. Dynamics of 3D genome organization during two developmental stages of P. striiformis f. sp. tritici indicated that regulation of gene activities might be independent of the changes of genome organization. In addition, chromatin conformation conservation was found to be independent of genome sequence synteny conservation among different fungi. These results highlighted the distinct folding principles of fungal 3D genomes. Our findings should be an important step toward a holistic understanding of the principles and functions of genome architecture across different eukaryotic kingdoms. IMPORTANCE Previously, our understanding of 3D genome architecture has mainly come from model mammals, insects, and plants. However, the organization and regulatory functions of 3D genomes in fungi are largely unknown. In this study, we comprehensively investigated P. striiformis f. sp. tritici, a plant fungal pathogen, and revealed distinct features of the 3D genome, comparing it with the universal folding feature of 3D genomes in higher eukaryotic organisms. We further suggested that there might be distinct regulatory mechanisms of gene expression that are independent of chromatin organization changes during the developmental stages of this rust fungus. Moreover, we showed that the evolutionary pattern of 3D genomes in this fungus is also different from the cases in mammalian genomes. In addition, the genome assembly pipeline and the generated two chromosome-level genomes will be valuable resources. These results highlighted the unexplored distinct features of 3D genome organization in fungi. Therefore, our study provided complementary knowledge to holistically understand the organization and functions of 3D genomes across different eukaryotes.
Collapse
Affiliation(s)
- Chongjing Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Liang Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Gansu, China
| | - Jie Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Hao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Huang
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Paris, France
| | - Moussa Benhamed
- Université de Paris, Institute of Plant Sciences Paris-Saclay (IPS2), Paris, France
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, Washington, USA
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, Washington, USA
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Gansu, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- National Agricultural Experimental Station for Plant Protection, Gangu, Ministry of Agriculture and Rural Affairs, Gansu, China
| |
Collapse
|
14
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|