1
|
Meng T, Jiao H, Zhang Y, Zhou Y, Chen S, Wang X, Yang B, Sun J, Geng X, Ayhan DH, Guo L. FoPGDB: a pangenome database of Fusarium oxysporum, a cross-kingdom fungal pathogen. Database (Oxford) 2024; 2024:baae017. [PMID: 38537199 PMCID: PMC10972551 DOI: 10.1093/database/baae017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 01/09/2024] [Accepted: 02/22/2024] [Indexed: 03/23/2025]
Abstract
Pangenomes, capturing the genetic diversity of a species or genus, are essential to understanding the ecology, pathobiology and evolutionary mechanisms of fungi that cause infection in crops and humans. However, fungal pangenome databases remain unavailable. Here, we report the first fungal pangenome database, specifically for Fusarium oxysporum species complex (FOSC), a group of cross-kingdom pathogens causing devastating vascular wilt to over 100 plant species and life-threatening fusariosis to immunocompromised humans. The F. oxysporum Pangenome Database (FoPGDB) is a comprehensive resource integrating 35 high-quality FOSC genomes, coupled with robust analytical tools. FoPGDB allows for both gene-based and graph-based exploration of the F. oxysporum pangenome. It also curates a large repository of putative effector sequences, crucial for understanding the mechanisms of FOSC pathogenicity. With an assortment of functionalities including gene search, genomic variant exploration and tools for functional enrichment, FoPGDB provides a platform for in-depth investigations of the genetic diversity and adaptability of F. oxysporum. The modular and user-friendly interface ensures efficient data access and interpretation. FoPGDB promises to be a valuable resource for F. oxysporum research, contributing to our understanding of this pathogen's pangenomic landscape and aiding in the development of novel disease management strategies. Database URL: http://www.fopgdb.site.
Collapse
Affiliation(s)
- Tan Meng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Hanqing Jiao
- Department of Computer Science, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Zhang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
| | - Yi Zhou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
- College of Information and Electrical Engineering, China Agricultural University, Haidian District, Beijing 100083, China
| | - Shaoying Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xinrui Wang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Bowen Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Jie Sun
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Xin Geng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Dilay Hazal Ayhan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| | - Li Guo
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Weifang, Shandong 261325, China
| |
Collapse
|
2
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Newman M, Li G, Martínez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. J Fungi (Basel) 2023; 9:359. [PMID: 36983527 PMCID: PMC10056406 DOI: 10.3390/jof9030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspects global transcription factor profiles (TFomes) and their potential roles in coordinating CC and AC functions to accomplish host-specific interactions. Remarkably, we found a clear positive correlation between the sizes of TFomes and the proteomes of an organism. With the acquisition of ACs, the FOSC TFomes were larger than the other fungal genomes included in this study. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls were highly conserved. Among the 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 were most significantly expanded to 671 and 167 genes per family including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) that are involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3% including a disordered protein Ren1. RNA-Seq revealed a steady pattern of expression for conserved TF families and specific activation for AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
Affiliation(s)
- Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - He Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sajeet Haridas
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Richard D. Hayes
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
| | - Hunter Lynch
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Sawyer Andersen
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Madison Newman
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Gengtan Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Domingo Martínez-Soto
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shira Milo-Cochavi
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Dilay Hazal Ayhan
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Yong Zhang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Igor V. Grigoriev
- Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, University of California Berkeley, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94598, USA
| | - Li-Jun Ma
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Yu H, Yang H, Haridas S, Hayes RD, Lynch H, Andersen S, Li G, Mart Nez-Soto D, Milo-Cochavi S, Hazal Ayhan D, Zhang Y, Grigoriev IV, Ma LJ. Conservation and Expansion of Transcriptional Factor Repertoire in the Fusarium oxysporum Species Complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527873. [PMID: 36798233 PMCID: PMC9934661 DOI: 10.1101/2023.02.09.527873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The Fusarium oxysporum species complex (FOSC) includes both plant and human pathogens that cause devastating plant vascular wilt diseases and threaten public health. Each F. oxysporum genome comprises core chromosomes (CCs) for housekeeping functions and accessory chromosomes (ACs) that contribute to host-specific adaptation. This study inspected global transcription factor profiles (TFomes) and their potential roles in coordinating CCs and ACs functions to accomplish host-specific pathogenicity. Remarkably, we found a clear positive correlation between the sizes of TFome and proteome of an organism, and FOSC TFomes are larger due to the acquisition of ACs. Among a total of 48 classified TF families, 14 families involved in transcription/translation regulations and cell cycle controls are highly conserved. Among 30 FOSC expanded families, Zn2-C6 and Znf_C2H2 are most significantly expanded to 671 and 167 genes per family, including well-characterized homologs of Ftf1 (Zn2-C6) and PacC (Znf_C2H2) involved in host-specific interactions. Manual curation of characterized TFs increased the TFome repertoires by 3%, including a disordered protein Ren1. Expression profiles revealed a steady expression of conserved TF families and specific activation of AC TFs. Functional characterization of these TFs could enhance our understanding of transcriptional regulation involved in FOSC cross-kingdom interactions, disentangle species-specific adaptation, and identify targets to combat diverse diseases caused by this group of fungal pathogens.
Collapse
|
4
|
Martínez-Soto D, Yu H, Allen KS, Ma LJ. Differential Colonization of the Plant Vasculature Between Endophytic Versus Pathogenic Fusarium oxysporum Strains. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:4-13. [PMID: 36279112 PMCID: PMC10052776 DOI: 10.1094/mpmi-08-22-0166-sc] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plant xylem colonization is the hallmark of vascular wilt diseases caused by phytopathogens within the Fusarium oxysporum species complex. Recently, xylem colonization has also been reported among endophytic F. oxysporum strains, resulting in some uncertainty. This study compares xylem colonization processes by pathogenic versus endophytic strains in Arabidopsis thaliana and Solanum lycopersicum, using Arabidopsis pathogen Fo5176, tomato pathogen Fol4287, and the endophyte Fo47, which can colonize both plant hosts. We observed that all strains were able to advance from epidermis to endodermis within 3 days postinoculation (dpi) and reached the root xylem at 4 dpi. However, this shared progression was restricted to lateral roots and the elongation zone of the primary root. Only pathogens reached the xylem above the primary-root maturation zone (PMZ). Related to the distinct colonization patterns, we also observed stronger induction of callose at the PMZ and lignin deposition at primary-lateral root junctions by the endophyte in both plants. This observation was further supported by stronger induction of Arabidopsis genes involved in callose and lignin biosynthesis during the endophytic colonization (Fo47) compared with the pathogenic interaction (Fo5176). Moreover, both pathogens encode more plant cell wall-degrading enzymes than the endophyte Fo47. Therefore, observed differences in callose and lignin deposition could be the combination of host production and the subsequent fungal degradation. In summary, this study demonstrates spatial differences between endophytic and pathogenic colonization, strongly suggesting that further investigations of molecular arm-races are needed to understand how plants differentiate friend from foe. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
|
5
|
McTaggart AR, James TY, Shivas RG, Drenth A, Wingfield BD, Summerell BA, Duong TA. Population genomics reveals historical and ongoing recombination in the Fusarium oxysporum species complex. Stud Mycol 2022; 99:100132. [PMID: 35027981 PMCID: PMC8693468 DOI: 10.1016/j.simyco.2021.100132] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The Fusarium oxysporum species complex (FOSC) is a group of closely related plant pathogens long-considered strictly clonal, as sexual stages have never been recorded. Several studies have questioned whether recombination occurs in FOSC, and if it occurs its nature and frequency are unknown. We analysed 410 assembled genomes to answer whether FOSC diversified by occasional sexual reproduction interspersed with numerous cycles of asexual reproduction akin to a model of predominant clonal evolution (PCE). We tested the hypothesis that sexual reproduction occurred in the evolutionary history of FOSC by examining the distribution of idiomorphs at the mating locus, phylogenetic conflict and independent measures of recombination from genome-wide SNPs and genes. A phylogenomic dataset of 40 single copy orthologs was used to define structure a priori within FOSC based on genealogical concordance. Recombination within FOSC was tested using the pairwise homoplasy index and divergence ages were estimated by molecular dating. We called SNPs from assembled genomes using a k-mer approach and tested for significant linkage disequilibrium as an indication of PCE. We clone-corrected and tested whether SNPs were randomly associated as an indication of recombination. Our analyses provide evidence for sexual or parasexual reproduction within, but not between, clades of FOSC that diversified from a most recent common ancestor about 500 000 years ago. There was no evidence of substructure based on geography or host that might indicate how clades diversified. Competing evolutionary hypotheses for FOSC are discussed in the context of our results.
Collapse
Affiliation(s)
- A R McTaggart
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - T Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - R G Shivas
- Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, 4350, Australia
| | - A Drenth
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Ecosciences Precinct, Dutton Park, 4102, Queensland, Australia
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| | - B A Summerell
- Australian Institute of Botanical Science, Royal Botanic Gardens & Domain Trust, Sydney, Australia
| | - T A Duong
- Department of Biochemistry, Genetics and Microbiology, Tree Protection Co-operative Programme (TPCP), Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa
| |
Collapse
|
6
|
Asai S, Ayukawa Y, Gan P, Shirasu K. Draft Genome Resources for Brassicaceae Pathogens Fusarium oxysporum f. sp. raphani and Fusarium oxysporum f. sp. rapae. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:1316-1319. [PMID: 34289713 DOI: 10.1094/mpmi-06-21-0148-a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The soilborne filamentous fungus Fusarium oxysporum causes devastating diseases of many cultivated plant species. F. oxysporum f. sp. raphani and f. sp. rapae are two of four formae speciales that are pathogenic to Brassicaceae plants. Here, we present high-quality genome sequences of F. oxysporum f. sp. raphani strain Tf1262 and F. oxysporum f. sp. rapae strain Tf1208 that were isolated from radish (Raphanus sativus) and turnip (Brassica rapa var. rapa), respectively. These genome resources should facilitate in-depth investigation of interactions between F. oxysporum and Brassicaceae plants, and enable comparative genomics of the F. oxysporum species complex to uncover how pathogenicity evolved within F. oxysporum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Shuta Asai
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
- PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Yu Ayukawa
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Pamela Gan
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| |
Collapse
|