1
|
Parada-Rojas CH, Stahr M, Childs KL, Quesada-Ocampo LM. Effector Repertoire of the Sweetpotato Black Rot Fungal Pathogen Ceratocystis fimbriata. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:315-326. [PMID: 38353601 DOI: 10.1094/mpmi-09-23-0146-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In 2015, sweetpotato producers in the United States experienced one of the worst outbreaks of black rot recorded in history, with up to 60% losses reported in the field and packing houses and at shipping ports. Host resistance remains the ideal management tool to decrease crop losses. Lack of knowledge of Ceratocystis fimbriata biology represents a critical barrier for the deployment of resistance to black rot in sweetpotato. In this study, we scanned the recent near chromosomal-level assembly for putative secreted effectors in the sweetpotato C. fimbriata isolate AS236 using a custom fungal effector annotation pipeline. We identified a set of 188 putative effectors on the basis of secretion signal and in silico prediction in EffectorP. We conducted a deep RNA time-course sequencing experiment to determine whether C. fimbriata modulates effectors in planta and to define a candidate list of effectors expressed during infection. We examined the expression profile of two C. fimbriata isolates, a pre-epidemic (1990s) isolate and a post-epidemic (2015) isolate. Our in planta expression profiling revealed clusters of co-expressed secreted effector candidates. Based on fold-change differences of putative effectors in both isolates and over the course of infection, we suggested prioritization of 31 effectors for functional characterization. Among this set, we identified several effectors that provide evidence for a marked biotrophic phase in C. fimbriata during infection of sweetpotato storage roots. Our study revealed a catalog of effector proteins that provide insight into C. fimbriata infection mechanisms and represent a core catalog to implement effector-assisted breeding in sweetpotato. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Camilo H Parada-Rojas
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Madison Stahr
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Lina M Quesada-Ocampo
- Department of Entomology and Plant Pathology and NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC 27606, U.S.A
| |
Collapse
|
2
|
Han S, Xu X, Yuan H, Li S, Lin T, Liu Y, Li S, Zhu T. Integrated Transcriptome and Metabolome Analysis Reveals the Molecular Mechanism of Rust Resistance in Resistant (Youkang) and Susceptive (Tengjiao) Zanthoxylum armatum Cultivars. Int J Mol Sci 2023; 24:14761. [PMID: 37834210 PMCID: PMC10573174 DOI: 10.3390/ijms241914761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Chinese pepper rust is a live parasitic fungal disease caused by Coleosporium zanthoxyli, which seriously affects the cultivation and industrial development of Z. armatum. Cultivating and planting resistant cultivars is considered the most economical and environmentally friendly strategy to control this disease. Therefore, the mining of excellent genes for rust resistance and the analysis of the mechanism of rust resistance are the key strategies to achieve the targeted breeding of rust resistance. However, there is no relevant report on pepper rust resistance at present. The aim of the present study was to further explore the resistance mechanism of pepper by screening the rust-resistant germplasm resources in the early stage. Combined with the analysis of plant pathology, transcriptomics, and metabolomics, we found that compared with susceptible cultivar TJ, resistant cultivar YK had 2752 differentially expressed genes (DEGs, 1253 up-, and 1499 downregulated) and 321 differentially accumulated metabolites (DAMs, 133 up- and 188 down-accumulated) after pathogen infection. And the genes and metabolites related to phenylpropanoid metabolism were highly enriched in resistant varieties, which indicated that phenylpropanoid metabolism might mediate the resistance of Z. armatum. This finding was further confirmed by a real-time quantitative polymerase chain reaction analysis, which revealed that the expression levels of core genes involved in phenylpropane metabolism in disease-resistant varieties were high. In addition, the difference in flavonoid and MeJA contents in the leaves between resistant and susceptible varieties further supported the conclusion that the flavonoid pathway and methyl jasmonate may be involved in the formation of Chinese pepper resistance. Our research results not only help to better understand the resistance mechanism of Z. armatum rust but also contribute to the breeding and utilization of resistant varieties.
Collapse
Affiliation(s)
- Shan Han
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiu Xu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Huan Yuan
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Shujiang Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tiantian Lin
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
| | - Yinggao Liu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Shuying Li
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianhui Zhu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (S.H.); (X.X.); (H.Y.); (S.L.); (T.L.); (Y.L.); (S.L.)
- Key Laboratory of Forest Protection of Sichuan Education Department, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
3
|
Zhan G, Guo J, Tian Y, Ji F, Bai X, Zhao J, Guo J, Kang Z. High-throughput RNA sequencing reveals differences between the transcriptomes of the five spore forms of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. STRESS BIOLOGY 2023; 3:29. [PMID: 37676525 PMCID: PMC10441873 DOI: 10.1007/s44154-023-00107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
The devastating wheat stripe (yellow) rust pathogen, Puccinia striiformis f. sp. tritici (Pst), is a macrocyclic and heteroecious fungus. Pst produces urediniospores and teliospores on its primary host, wheat, and pycniospores and aeciospores are produced on its alternate hosts, barberry (Berberis spp.) or mahonia (Mahonia spp.). Basidiospores are developed from teliospores and infect alternate hosts. These five spore forms play distinct roles in Pst infection, disease development, and fungal survival, etc. However, the specific genes and mechanisms underlying these functional differences are largely unknown. In this study, we performed, for the first time in rust fungi, the deep RNA sequencing to examine the transcriptomic shift among all five Pst spore forms. Among a total of 29,591 identified transcripts, 951 were specifically expressed in basidiospores, whereas 920, 761, 266, and 110 were specific for teliospores, pycniospores, aeciospores, and urediniospores, respectively. Additionally, transcriptomes of sexual spores, namely pycniospores and basidiospores, showed significant differences from those of asexual spores (urediniospores, teliospores, and aeciospores), and transcriptomes of urediniospores and aeciospores were more similar to each other than to the three other spore forms. Especially, the basidiospores and pycniospores which infected the berberis shows wide differences in the cell wall degrading-enzymes and mating and pheromone response genes. Besides, we also found that there are 6234 differential expressed genes between the urediniospores and pycniospores, while only have 3 genes have alternative splicing enents, suggesting that differential genes expression may make more contribution than AS. This comprehensive transcriptome profiling can substantially improve our understanding of the developmental biology of the wheat stripe rust fungus.
Collapse
Affiliation(s)
- Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, P.R. China
| | - Fan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
4
|
Inoue Y, Phuong Vy TT, Singkaravanit-Ogawa S, Zhang R, Yamada K, Ogawa T, Ishizuka J, Narusaka Y, Takano Y. Selective deployment of virulence effectors correlates with host specificity in a fungal plant pathogen. THE NEW PHYTOLOGIST 2023; 238:1578-1592. [PMID: 36939621 DOI: 10.1111/nph.18790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The hemibiotrophic fungal plant pathogen Colletotrichum orbiculare is predicted to secrete hundreds of effector proteins when the pathogen infects cucurbit crops, such as cucumber and melon, and tobacco (Nicotiana benthamiana), a distantly related Solanaceae species. Here, we report the identification of sets of C. orbiculare effector genes that are differentially required for fungal virulence to two phylogenetically distant host species. Through targeted gene knockout screening of C. orbiculare 'core' effector candidates defined based on in planta gene expression, we identified: four host-specific virulence effectors (named effector proteins for cucurbit infection, or EPCs) that are required for full virulence of C. orbiculare to cucurbit hosts, but not to the Solanaceae host N. benthamiana; and five host-nonspecific virulence effectors, which collectively contribute to fungal virulence to both hosts. During host infection, only a small subset of genes, including the host-specific EPC effector genes, showed preferential expression on one of the hosts, while gene expression profiles of the majority of other genes, including the five host-nonspecific effector genes, were common to both hosts. This work suggests that C. orbiculare adopts a host-specific effector deployment strategy, in addition to general host-blind virulence mechanisms, for adaptation to cucurbit hosts.
Collapse
Affiliation(s)
- Yoshihiro Inoue
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | | | | | - Ru Zhang
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, 770-8513, Japan
| | - Taiki Ogawa
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Junya Ishizuka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshihiro Narusaka
- Research Institute for Biological Sciences, Okayama Prefectural Technology Center for Agriculture, Forestry and Fisheries, Okayama, 716-1241, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
5
|
Müller M, Kües U, Budde KB, Gailing O. Applying molecular and genetic methods to trees and their fungal communities. Appl Microbiol Biotechnol 2023; 107:2783-2830. [PMID: 36988668 PMCID: PMC10106355 DOI: 10.1007/s00253-023-12480-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/30/2023]
Abstract
Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.
Collapse
Affiliation(s)
- Markus Müller
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany.
| | - Ursula Kües
- Molecular Wood Biotechnology and Technical Mycology, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Katharina B Budde
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Oliver Gailing
- Forest Genetics and Forest Tree Breeding, Faculty for Forest Sciences and Forest Ecology, University of Goettingen, Büsgenweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research (CiBreed), University of Goettingen, 37073, Göttingen, Germany
- Center of Sustainable Land Use (CBL), Georg-August-University Göttingen, 37077, Göttingen, Germany
| |
Collapse
|
6
|
Guerillot P, Salamov A, Louet C, Morin E, Frey P, Grigoriev IV, Duplessis S. A Remarkable Expansion of Oligopeptide Transporter Genes in Rust Fungi (Pucciniales) Suggests a Specialization in Nutrient Acquisition for Obligate Biotrophy. PHYTOPATHOLOGY 2023; 113:252-264. [PMID: 36044359 DOI: 10.1094/phyto-04-22-0128-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nutrient acquisition by rust fungi during their biotrophic growth has been assigned to a few transporters expressed in haustorial infection structures. We performed a comparative genomic analysis of all transporter genes (hereafter termed transportome) classified according to the Transporter Classification Database, focusing specifically on rust fungi (order Pucciniales) versus other species in the Dikarya. We also surveyed expression of transporter genes in the poplar rust fungus for which transcriptomics data are available across the whole life cycle. Despite a significant increase in gene number, rust fungi presented a reduced transportome compared with most fungi in the Dikarya. However, a few transporter families in the subclass Porters showed significant expansions. Notably, three metal transport-related families involved in the import, export, and sequestration of metals were expanded in Pucciniales and expressed at various stages of the rust life cycle, suggesting a tight regulation of metal homeostasis. The most remarkable gene expansion in the Pucciniales was observed for the oligopeptide transporter (OPT) family, with 25 genes on average compared with seven to 14 genes in the other surveyed taxonomical ranks. A phylogenetic analysis showed several specific expansion events at the root of the order Pucciniales with subsequent expansions in rust taxonomical families. The OPT genes showed dynamic expression patterns along the rust life cycle and more particularly during infection of the poplar host tree, suggesting a possible specialization for the acquisition of nitrogen and sulfur through the transport of oligopeptides from the host during biotrophic growth.
Collapse
Affiliation(s)
- Pamela Guerillot
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Clémentine Louet
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
| | - Pascal Frey
- Université de Lorraine, INRAE, UMR 1136 IAM, 54000 Nancy, France
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, U.S.A
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, U.S.A
| | | |
Collapse
|
7
|
Perea AJ, Wiegand T, Garrido JL, Rey PJ, Alcántara JM. Spatial phylogenetic and phenotypic patterns reveal ontogenetic shifts in ecological processes of plant community assembly. OIKOS 2022. [DOI: 10.1111/oik.09260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Antonio J. Perea
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
| | - Thorsten Wiegand
- Dept of Ecological Modelling, Helmholtz Centre for Environmental Research (UFZ) Leipzig Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - José L. Garrido
- Depto Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (EEZ‐CSIC) Granada Spain
- Depto Ecología Evolutiva, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (EBD‐CSIC) Sevilla Spain
| | - Pedro J. Rey
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| | - Julio M. Alcántara
- Depto Biología Animal, Biología Vegetal y Ecología, Univ. de Jaén Jaen Spain
- Inst. Interuniversitario de Investigación del Sistema Tierra En Andalucía (IISTA) Granada Spain
| |
Collapse
|
8
|
Xia C, Qiu A, Wang M, Liu T, Chen W, Chen X. Current Status and Future Perspectives of Genomics Research in the Rust Fungi. Int J Mol Sci 2022; 23:9629. [PMID: 36077025 PMCID: PMC9456177 DOI: 10.3390/ijms23179629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Rust fungi in Pucciniales have caused destructive plant epidemics, have become more aggressive with new virulence, rapidly adapt to new environments, and continually threaten global agriculture. With the rapid advancement of genome sequencing technologies and data analysis tools, genomics research on many of the devastating rust fungi has generated unprecedented insights into various aspects of rust biology. In this review, we first present a summary of the main findings in the genomics of rust fungi related to variations in genome size and gene composition between and within species. Then we show how the genomics of rust fungi has promoted our understanding of the pathogen virulence and population dynamics. Even with great progress, many questions still need to be answered. Therefore, we introduce important perspectives with emphasis on the genome evolution and host adaptation of rust fungi. We believe that the comparative genomics and population genomics of rust fungi will provide a further understanding of the rapid evolution of virulence and will contribute to monitoring the population dynamics for disease management.
Collapse
Affiliation(s)
- Chongjing Xia
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Age Qiu
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
- Wheat Health, Genetics, and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Pullman, WA 99164-6430, USA
| |
Collapse
|
9
|
Tao S, Zhang Y, Tian C, Duplessis S, Zhang N. Elevated Ozone Concentration and Nitrogen Addition Increase Poplar Rust Severity by Shifting the Phyllosphere Microbial Community. J Fungi (Basel) 2022; 8:jof8050523. [PMID: 35628778 PMCID: PMC9148057 DOI: 10.3390/jof8050523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 12/04/2022] Open
Abstract
Tropospheric ozone and nitrogen deposition are two major environmental pollutants. A great deal of research has focused on the negative impacts of elevated O3 and the complementary effect of soil N addition on the physiological properties of trees. However, it has been overlooked how elevated O3 and N addition affect tree immunity in face of pathogen infection, as well as of the important roles of phyllosphere microbiome community in host–pathogen–environment interplay. Here, we examined the effects of elevated O3 and soil N addition on poplar leaf rust [Melampsora larici-populina] severity of two susceptible hybrid poplars [clone ‘107’: Populus euramericana cv. ‘74/76’; clone ‘546’: P. deltoides Í P. cathayana] in Free-Air-Controlled-Environment plots, in addition, the link between Mlp-susceptibility and changes in microbial community was determined using Miseq amplicon sequencing. Rust severity of clone ‘107’ significantly increased under elevated O3 or N addition only; however, the negative impact of elevated O3 could be significantly mitigated when accompanied by N addition, likewise, this trade-off was reflected in its phyllosphere microbial α-diversity responding to elevated O3 and N addition. However, rust severity of clone ‘546’ did not differ significantly in the cases of elevated O3 and N addition. Mlp infection altered microbial community composition and increased its sensitivity to elevated O3, as determined by the markedly different abundance of taxa. Elevated O3 and N addition reduced the complexity of microbial community, which may explain the increased severity of poplar rust. These findings suggest that poplars require a changing phyllosphere microbial associations to optimize plant immunity in response to environmental changes.
Collapse
Affiliation(s)
- Siqi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Yunxia Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
| | | | - Naili Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China; (S.T.); (Y.Z.); (C.T.)
- Correspondence:
| |
Collapse
|
10
|
Louet C, Blot C, Shelest E, Guerillot P, Zannini F, Pétrowski J, Frey P, Duplessis S. Annotation survey and life-cycle transcriptomics of transcription factors in rust fungi (Pucciniales) identify a possible role for cold shock proteins in dormancy exit. Fungal Genet Biol 2022; 161:103698. [PMID: 35483517 DOI: 10.1016/j.fgb.2022.103698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 11/16/2022]
Abstract
Fungi of the order Pucciniales are obligate plant biotrophs causing rust diseases. They exhibit a complex life cycle with the production of up to five spore types, infection of two unrelated hosts and an overwintering stage. Transcription factors (TFs) are key regulators of gene expression in eukaryote cells. In order to better understand genetic programs expressed during major transitions of the rust life cycle, we surveyed the complement of TFs in fungal genomes with an emphasis on Pucciniales. We found that despite their large gene numbers, rust genomes have a reduced repertoire of TFs compared to other fungi. The proportions of C2H2 and Zinc cluster -two of the most represented TF families in fungi- indicate differences in their evolutionary relationships in Pucciniales and other fungal taxa. The regulatory gene family encoding cold shock protein (CSP) showed a striking expansion in Pucciniomycotina with specific duplications in the order Pucciniales. The survey of expression profiles collected by transcriptomics along the life cycle of the poplar rust fungus revealed TF genes related to major biological transitions, e.g. response to environmental cues and host infection. Particularly, poplar rust CSPs were strongly expressed in basidia produced after the overwintering stage suggesting a possible role in dormancy exit. Expression during transition from dormant telia to basidia confirmed the specific expression of the three poplar rust CSP genes. Their heterologous expression in yeast improved cell growth after cold stress exposure, suggesting a probable regulatory function when the poplar rust fungus exits dormancy. This study addresses for the first time TF and regulatory genes involved in developmental transition in the rust life cycle opening perspectives to further explore molecular regulation in the biology of the Pucciniales.
Collapse
Affiliation(s)
| | - Carla Blot
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Ekaterina Shelest
- School of biological Sciences, University of Portsmouth, King Henry 1 Street, PO1 D2Y, Portsmouth, United Kingdom
| | | | | | | | - Pascal Frey
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | | |
Collapse
|
11
|
Unravelling the treasure trove of drought-responsive genes in wild-type peanut through transcriptomics and physiological analyses of root. Funct Integr Genomics 2022; 22:215-233. [PMID: 35195841 DOI: 10.1007/s10142-022-00833-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/04/2022]
Abstract
Peanut is one of the most valuable legumes, grown mainly in arid and semi-arid regions, where its production may be hindered by the lack of water. Therefore, breeding drought tolerant varieties is of great importance for peanut breeding programs around the world. Unlike cultivated peanuts, wild peanuts have greater genetic diversity and are an important source of alleles conferring tolerance/resistance to abiotic and biotic stresses. To decipher the transcriptome changes under drought stress, transcriptomics of roots of highly tolerant Arachis duranensis (ADU) and moderately susceptible A. stenosperma (AST) genotypes were performed. Transcriptome analysis revealed an aggregate of 1465 differentially expressed genes (DEGs), and among the identified DEGs, there were 366 single nucleotide polymorphisms (SNPs). Gene ontology and Mapman analyses revealed that the ADU genotype had a higher number of transcripts related to DNA methylation or demethylation, phytohormone signal transduction and flavonoid production, transcription factors, and responses to ethylene. The transcriptome analysis was endorsed by qRT-PCR, which showed a strong correlation value (R2 = 0.96). Physio-biochemical analysis showed that the drought-tolerant plants produced more osmolytes, ROS phagocytes, and sugars, but less MDA, thus attenuating the effects of drought stress. In addition, three SNPs of the gene encoding transcription factor NFAY (Aradu.YE2F8), expansin alpha (Aradu.78HGD), and cytokinin dehydrogenase 1-like (Aradu.U999X) exhibited polymorphism in selected different genotypes. Such SNPs could be useful for the selection of drought-tolerant genotypes.
Collapse
|
12
|
Duplessis S, Lorrain C, Petre B, Figueroa M, Dodds PN, Aime MC. Host Adaptation and Virulence in Heteroecious Rust Fungi. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:403-422. [PMID: 34077239 DOI: 10.1146/annurev-phyto-020620-121149] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rust fungi (Pucciniales, Basidiomycota) are obligate biotrophic pathogens that cause rust diseases in plants, inflicting severe damage to agricultural crops. Pucciniales possess the most complex life cycles known in fungi. These include an alternation of generations, the development of up to five different sporulating stages, and, for many species, the requirement of infecting two unrelated host plants during different parts of their life cycle, termed heteroecism. These fungi have been extensively studied in the past century through microscopy and inoculation studies, providing precise descriptions of their infection processes, although the molecular mechanisms underlying their unique biology are poorly understood. In this review, we cover recent genomic and life cycle transcriptomic studies in several heteroecious rust species, which provide insights into the genetic tool kits associated with host adaptation and virulence, opening new avenues for unraveling their unique evolution.
Collapse
Affiliation(s)
- Sebastien Duplessis
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Cecile Lorrain
- Plant Pathology Group, ETH Zurich, 8092 Zurich, Switzerland;
| | - Benjamin Petre
- Université de Lorraine, INRAE, UMR 1136 IAM, Interactions Arbres-Microorganismes, 54000 Nancy, France; ,
| | - Melania Figueroa
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - Peter N Dodds
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; ,
| | - M Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
13
|
dos Santos KCG, Pelletier G, Séguin A, Guillemette F, Hawkes J, Desgagné-Penix I, Germain H. Unrelated Fungal Rust Candidate Effectors Act on Overlapping Plant Functions. Microorganisms 2021; 9:microorganisms9050996. [PMID: 34063040 PMCID: PMC8148019 DOI: 10.3390/microorganisms9050996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/23/2021] [Accepted: 04/30/2021] [Indexed: 11/21/2022] Open
Abstract
Rust fungi cause epidemics that threaten the production of important plant species, such as wheat and soy. Melampsora larici-populina (Mlp) causes the poplar rust and encodes at least 1184 candidate effectors (CEs) whose functions are poorly known. In this study, we sequenced the transcriptome and used mass spectrometry to analyze the metabolome of Arabidopsis plants constitutively expressing 14 Mlp CEs and of a control line to discover alterations leading to plant susceptibility. We found 2299 deregulated genes across the experiment. Genes involved in pattern-triggered immunity, such as FRK1, PR1, RBOHD, and WRKY33, as well as AUX/IAA genes were down-regulated. We further observed that 680 metabolites were deregulated in at least one CE-expressing transgenic line, with “highly unsaturated and phenolic compounds” and “peptides” enriched among down- and up-regulated metabolites. Interestingly, transgenic lines expressing unrelated CEs had correlated patterns of gene and metabolite deregulation, while expression of CEs belonging to the same family deregulated different genes and metabolites. Thus, our results uncouple effector sequence similarity and function. This supports that effector functional investigation in the context of their virulence activity and effect on plant susceptibility requires the investigation of the individual effector and precludes generalization based on sequence similarity.
Collapse
Affiliation(s)
- Karen Cristine Goncalves dos Santos
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Gervais Pelletier
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC G1V 4C7, Canada; (G.P.); (A.S.)
| | - François Guillemette
- Centre for Research on Aquatic Ecosystem Interactions (RIVE), Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada;
| | - Jeffrey Hawkes
- Department of Chemistry—BMC, Analytical Chemistry, Uppsala University, VJ2J+92 Uppsala, Sweden;
| | - Isabel Desgagné-Penix
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
| | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H9, Canada; (K.C.G.d.S.); (I.D.-P.)
- Plant Biology Research Group, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 1V3, Canada
- Correspondence:
| |
Collapse
|
14
|
Baetsen-Young A, Chen H, Shiu SH, Day B. Contrasting transcriptional responses to Fusarium virguliforme colonization in symptomatic and asymptomatic hosts. THE PLANT CELL 2021; 33:224-247. [PMID: 33681966 PMCID: PMC8136916 DOI: 10.1093/plcell/koaa021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
The broad host range of Fusarium virguliforme represents a unique comparative system to identify and define differentially induced responses between an asymptomatic monocot host, maize (Zea mays), and a symptomatic eudicot host, soybean (Glycine max). Using a temporal, comparative transcriptome-based approach, we observed that early gene expression profiles of root tissue from infected maize suggest that pathogen tolerance coincides with the rapid induction of senescence dampening transcriptional regulators, including ANACs (Arabidopsis thaliana NAM/ATAF/CUC protein) and Ethylene-Responsive Factors. In contrast, the expression of senescence-associated processes in soybean was coincident with the appearance of disease symptom development, suggesting pathogen-induced senescence as a key pathway driving pathogen susceptibility in soybean. Based on the analyses described herein, we posit that root senescence is a primary contributing factor underlying colonization and disease progression in symptomatic versus asymptomatic host-fungal interactions. This process also supports the lifestyle and virulence of F. virguliforme during biotrophy to necrotrophy transitions. Further support for this hypothesis lies in comprehensive co-expression and comparative transcriptome analyses, and in total, supports the emerging concept of necrotrophy-activated senescence. We propose that F. virguliforme conditions an environment within symptomatic hosts, which favors susceptibility through transcriptomic reprogramming, and as described herein, the induction of pathways associated with senescence during the necrotrophic stage of fungal development.
Collapse
Affiliation(s)
- Amy Baetsen-Young
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Huan Chen
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI 48824, USA
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Genetics and Genome Sciences, Michigan State University, East Lansing, MI 48824, USA
- Graduate Program in Molecular Plant Sciences, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Battling the biotypes of balsam: the biological control of Impatiens glandulifera using the rust fungus Puccinia komarovii var. glanduliferae in GB. Fungal Biol 2021; 125:637-645. [PMID: 34281657 DOI: 10.1016/j.funbio.2021.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/18/2021] [Accepted: 03/29/2021] [Indexed: 11/22/2022]
Abstract
Impatiens glandulifera, or Himalayan balsam, is a prolific invader of riverine habitats. Introduced from the Himalayas for ornamental purposes in 1839, this annual species has naturalised across Great Britain (GB) forming dense monocultures with negative affects across whole ecosystems. In 2006 a programme exploring biocontrol as an alternative control method was initiated and to date, two strains of the rust fungus Puccinia komarovii var. glanduliferae have been released. To better understand the observed differences in susceptibility of GB Himalayan balsam stands to the two rust strains, inoculation studies were conducted using urediniospores and basidiospores. Experiments revealed large variation in the susceptibility of stands to urediniospores of the two rust strains, with some resistant to both. Furthermore, the infectivity of basidiospores was found to differ, with some stands fully susceptible to the urediniospore stage, being immune to basidiospore infection. Therefore, before further rust releases at new sites, it is necessary to ensure complete compatibility of the invasive stands with both urediniospores and basidiospores. However, for successful control across GB it is essential that plant biotypes are matched to the most virulent rust strains. This will involve additional strains from the native range to tackle those biotypes resistant to the strains currently released.
Collapse
|
16
|
Gay EJ, Soyer JL, Lapalu N, Linglin J, Fudal I, Da Silva C, Wincker P, Aury JM, Cruaud C, Levrel A, Lemoine J, Delourme R, Rouxel T, Balesdent MH. Large-scale transcriptomics to dissect 2 years of the life of a fungal phytopathogen interacting with its host plant. BMC Biol 2021; 19:55. [PMID: 33757516 PMCID: PMC7986464 DOI: 10.1186/s12915-021-00989-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The fungus Leptosphaeria maculans has an exceptionally long and complex relationship with its host plant, Brassica napus, during which it switches between different lifestyles, including asymptomatic, biotrophic, necrotrophic, and saprotrophic stages. The fungus is also exemplary of "two-speed" genome organisms in the genome of which gene-rich and repeat-rich regions alternate. Except for a few stages of plant infection under controlled conditions, nothing is known about the genes mobilized by the fungus throughout its life cycle, which may last several years in the field. RESULTS We performed RNA-seq on samples corresponding to all stages of the interaction of L. maculans with its host plant, either alive or dead (stem residues after harvest) in controlled conditions or in field experiments under natural inoculum pressure, over periods of time ranging from a few days to months or years. A total of 102 biological samples corresponding to 37 sets of conditions were analyzed. We show here that about 9% of the genes of this fungus are highly expressed during its interactions with its host plant. These genes are distributed into eight well-defined expression clusters, corresponding to specific infection lifestyles or to tissue-specific genes. All expression clusters are enriched in effector genes, and one cluster is specific to the saprophytic lifestyle on plant residues. One cluster, including genes known to be involved in the first phase of asymptomatic fungal growth in leaves, is re-used at each asymptomatic growth stage, regardless of the type of organ infected. The expression of the genes of this cluster is repeatedly turned on and off during infection. Whatever their expression profile, the genes of these clusters are enriched in heterochromatin regions associated with H3K9me3 or H3K27me3 repressive marks. These findings provide support for the hypothesis that part of the fungal genes involved in niche adaptation is located in heterochromatic regions of the genome, conferring an extreme plasticity of expression. CONCLUSION This work opens up new avenues for plant disease control, by identifying stage-specific effectors that could be used as targets for the identification of novel durable disease resistance genes, or for the in-depth analysis of chromatin remodeling during plant infection, which could be manipulated to interfere with the global expression of effector genes at crucial stages of plant infection.
Collapse
Affiliation(s)
- Elise J Gay
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Juliette Linglin
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Corinne Da Silva
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Université d'Evry, Université Paris-Saclay, 91057, Evry, France
| | - Corinne Cruaud
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Anne Levrel
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Jocelyne Lemoine
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Regine Delourme
- INRAE, Institut Agro, Univ Rennes, IGEPP, 35653, Le Rheu, France
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- Université Paris-Saclay, INRAE, AgroParisTech, UMR BIOGER, 78850, Thiverval-Grignon, France.
| |
Collapse
|
17
|
Zhao J, Duan W, Xu Y, Zhang C, Wang L, Wang J, Tian S, Pei G, Zhan G, Zhuang H, Zhao J, Kang Z. Distinct Transcriptomic Reprogramming in the Wheat Stripe Rust Fungus During the Initial Infection of Wheat and Barberry. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:198-209. [PMID: 33118856 DOI: 10.1094/mpmi-08-20-0244-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Puccinia striiformis f. sp. tritici is the causal agent of wheat stripe rust that causes severe yield losses all over the world. As a macrocyclic heteroecious rust fungus, it is able to infect two unrelated host plants, wheat and barberry. Its urediniospores infect wheat and cause disease epidemic, while its basidiospores parasitize barberry to fulfill the sexual reproduction. This complex life cycle poses interesting questions on the different mechanisms of pathogenesis underlying the infection of the two different hosts. In the present study, transcriptomes of P. striiformis f. sp. tritici during the initial infection of wheat and barberry leaves were qualitatively and quantitatively compared. As a result, 142 wheat-specifically expressed genes (WEGs) were identified, which was far less than the 2,677 barberry-specifically expressed genes (BEGs). A larger proportion of evolutionarily conserved genes were observed in BEGs than that in WEGs, implying a longer history of the interaction between P. striiformis f. sp. tritici and barberry. Additionally, P. striiformis f. sp. tritici differentially expressed genes (DEGs) between wheat at 1 and 2 days postinoculation (dpi) and barberry at 3 and 4 dpi were identified by quantitative analysis. Gene Ontology analysis of these DEGs and expression patterns of P. striiformis f. sp. tritici pathogenic genes, including those encoding candidate secreted effectors, cell wall-degrading enzymes, and nutrient transporters, demonstrated that urediniospores and basidiospores exploited distinct strategies to overcome host defense systems. These results represent the first analysis of the P. striiformis f. sp. tritici transcriptome in barberry and contribute to a better understanding of the evolutionary processes and strategies of different types of rust spores during the infection process on different hosts.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jing Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Wanlu Duan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yiwen Xu
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Ce Zhang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Long Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jierong Wang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Song Tian
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Guoliang Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Gangming Zhan
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Hua Zhuang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Jie Zhao
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zhensheng Kang
- College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
18
|
Chen H, Raffaele S, Dong S. Silent control: microbial plant pathogens evade host immunity without coding sequence changes. FEMS Microbiol Rev 2021; 45:6095737. [PMID: 33440001 DOI: 10.1093/femsre/fuab002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Both animals and plants have evolved a robust immune system to surveil and defeat invading pathogenic microbes. Evasion of host immune surveillance is the key for pathogens to initiate successful infection. To evade the host immunity, plant pathogens evolved a variety of strategies such as masking themselves from host immune recognitions, blocking immune signaling transductions, reprogramming immune responses and adapting to immune microenvironmental changes. Gain of new virulence genes, sequence and structural variations enables plant pathogens to evade host immunity through changes in the genetic code. However, recent discoveries demonstrated that variations at the transcriptional, post-transcriptional, post-translational and glycome level enable pathogens to cope with the host immune system without coding sequence changes. The biochemical modification of pathogen associated molecular patterns and silencing of effector genes emerged as potent ways for pathogens to hide from host recognition. Altered processing in mRNA activities provide pathogens with resilience to microenvironment changes. Importantly, these hiding variants are directly or indirectly modulated by catalytic enzymes or enzymatic complexes and cannot be revealed by classical genomics alone. Unveiling these novel host evasion mechanisms in plant pathogens enables us to better understand the nature of plant disease and pinpoints strategies for rational diseases management in global food protection.
Collapse
Affiliation(s)
- Han Chen
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes, INRAE, CNRS, 24 Chemin de Borde Rouge - Auzeville, CS52627, F31326 Castanet Tolosan Cedex, France
| | - Suomeng Dong
- Department of Plant Pathology and The Key Laboratory of Plant Immunity, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
19
|
Panstruga R, Moscou MJ. What is the Molecular Basis of Nonhost Resistance? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1253-1264. [PMID: 32808862 DOI: 10.1094/mpmi-06-20-0161-cr] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This article is part of the Top 10 Unanswered Questions in MPMI invited review series.Nonhost resistance is typically considered the ability of a plant species to repel all attempts of a pathogen species to colonize it and reproduce on it. Based on this common definition, nonhost resistance is presumed to be very durable and, thus, of great interest for its potential use in agriculture. Despite considerable research efforts, the molecular basis of this type of plant immunity remains nebulous. We here stress the fact that "nonhost resistance" is a phenomenological rather than a mechanistic concept that comprises more facets than typically considered. We further argue that nonhost resistance essentially relies on the very same genes and pathways as other types of plant immunity, of which some may act as bottlenecks for particular pathogens on a given plant species or under certain conditions. Thus, in our view, the frequently used term "nonhost genes" is misleading and should be avoided. Depending on the plant-pathogen combination, nonhost resistance may involve the recognition of pathogen effectors by host immune sensor proteins, which might give rise to host shifts or host range expansions due to evolutionary-conditioned gains and losses in respective armories. Thus, the extent of nonhost resistance also defines pathogen host ranges. In some instances, immune-related genes can be transferred across plant species to boost defense, resulting in augmented disease resistance. We discuss future routes for deepening our understanding of nonhost resistance and argue that the confusing term "nonhost resistance" should be used more cautiously in the light of a holistic view of plant immunity.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Institute for Biology I, Unit of Plant Molecular Cell Biology, Worringer Weg 1, 52056 Aachen, Germany
| | - Matthew J Moscou
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, NR4 7UK, United Kingdom
| |
Collapse
|
20
|
Jaswal R, Rajarammohan S, Dubey H, Sharma TR. Smut fungi as a stratagem to characterize rust effectors: opportunities and challenges. World J Microbiol Biotechnol 2020; 36:150. [PMID: 32924088 DOI: 10.1007/s11274-020-02927-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 09/05/2020] [Indexed: 11/30/2022]
Abstract
The rust pathogens are one of the most complex fungi in the Basidiomycetes. The development of genomic resources for rust and other plant pathogens has opened the opportunities for functional genomics of fungal genes. Despite significant progress in the field of fungal genomics, functional characterization of the genome components has lacked, especially for the rust pathogens. Their obligate nature and lack of standard stable transformation protocol are the primary reasons for rusts to be one of the least explored genera despite its significance. In the recently sequenced rust genomes, a vast catalogue of predicted effectors and pathogenicity genes have been reported. However, most of these candidate genes remained unexplored due to the lack of suitable characterization methods. The heterologous expression of putative effectors in Nicotiana benthamiana and Arabidopsis thaliana has proved to be a rapid screening method for identifying the role of these effectors in virulence. However, no fungal system has been used for the functional validation of these candidate genes. The smuts, from the evolutionary point of view, are closely related to the rust pathogens. Moreover, they have been widely studied and hence could be a suitable model system for expressing rust fungal genes heterologously. The genetic manipulation methods for smuts are also well standardized. Complementation assays can be used for functional validation of the homologous genes present in rust and smut fungal pathogens, while the species-specific proteins can be expressed in the mutant strains of smut pathogens having reduced or no virulence for virulence analysis. We propose that smuts, especially Ustilago maydis, may prove to be a good model system to characterize rust effector proteins in the absence of methods to manipulate the rust genomes directly.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Sivasubramanian Rajarammohan
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Sector-81 (Knowledge City), PO Manauli, S.A.S. Nagar, Mohali, Punjab, 140306, India.
- Crop Science Division, Indian Council of Agricultural Research, New Delhi, 110001, India.
| |
Collapse
|
21
|
Jaswal R, Kiran K, Rajarammohan S, Dubey H, Singh PK, Sharma Y, Deshmukh R, Sonah H, Gupta N, Sharma TR. Effector Biology of Biotrophic Plant Fungal Pathogens: Current Advances and Future Prospects. Microbiol Res 2020; 241:126567. [PMID: 33080488 DOI: 10.1016/j.micres.2020.126567] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/21/2020] [Accepted: 07/25/2020] [Indexed: 12/13/2022]
Abstract
The interaction of fungal pathogens with their host requires a novel invading mechanism and the presence of various virulence-associated components responsible for promoting the infection. The small secretory proteins, explicitly known as effector proteins, are one of the prime mechanisms of host manipulation utilized by the pathogen to disarm the host. Several effector proteins are known to translocate from fungus to the plant cell for host manipulation. Many fungal effectors have been identified using genomic, transcriptomic, and bioinformatics approaches. Most of the effector proteins are devoid of any conserved signatures, and their prediction based on sequence homology is very challenging, therefore by combining the sequence consensus based upon machine learning features, multiple tools have also been developed for predicting apoplastic and cytoplasmic effectors. Various post-genomics approaches like transcriptomics of virulent isolates have also been utilized for identifying active consortia of effectors. Significant progress has been made in understanding biotrophic effectors; however, most of it is underway due to their complex interaction with host and complicated recognition and signaling networks. This review discusses advances, and challenges in effector identification and highlighted various features of the potential effector proteins and approaches for understanding their genetics and strategies for regulation.
Collapse
Affiliation(s)
- Rajdeep Jaswal
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India; Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India
| | - Kanti Kiran
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | | | - Himanshu Dubey
- ICAR-National Institute for Plant Biotechnology, Pusa Campus New Delhi, 110012, India
| | - Pankaj Kumar Singh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Yogesh Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India
| | - Naveen Gupta
- Department of Microbiology, Panjab University, Chandigarh, Punjab, 160014, India.
| | - T R Sharma
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab, 140306, India.
| |
Collapse
|
22
|
Petre B, Lorrain C, Stukenbrock EH, Duplessis S. Host-specialized transcriptome of plant-associated organisms. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:81-88. [PMID: 32505091 DOI: 10.1016/j.pbi.2020.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/30/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Living organisms respond to their immediate environment by modulating their genetic programme to perform adapted functions. Eukaryotic organisms that associate with plants (fungi, oomycetes, insects, …) alter their transcriptome in a host-specific manner. Recent comparative transcriptomic studies revealed that host-specialized transcriptomes consist of a limited set of genes. Such a set typically encodes proteins that modulate host structures and functions (predicted effectors and other secreted proteins), control nutrient assimilation (proteases, transporters), and maintain cellular homeostasis (oxidoreductases, detoxification enzymes). We conclude by discussing open mechanistic and evolutionary questions and integrated approaches to move beyond descriptive studies.
Collapse
Affiliation(s)
- Benjamin Petre
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France
| | - Cécile Lorrain
- Université de Lorraine, INRAE, IAM, F-54000 Nancy, France; Max Planck Institute for Evolutionary Biology, Environmental Genomics Group, 24306, Plön, Germany; Christian-Albrechts University Kiel, Environmental Genomics Group, 24000, Kiel, Germany
| | - Eva H Stukenbrock
- Max Planck Institute for Evolutionary Biology, Environmental Genomics Group, 24306, Plön, Germany; Christian-Albrechts University Kiel, Environmental Genomics Group, 24000, Kiel, Germany
| | | |
Collapse
|
23
|
Abstract
Among the thousands of rust species described, many are known for their devastating effects on their hosts, which include major agriculture crops and trees. Hence, for over a century, these basidiomycete pathogenic fungi have been researched and experimented with. However, due to their biotrophic nature, they are challenging organisms to work with and, needing their hosts for propagation, represent pathosystems that are not easily experimentally accessible. Indeed, efforts to perform genetics have been few and far apart for the rust fungi, though one study performed in the 1940s was famously instrumental in formulating the gene-for-gene hypothesis describing pathogen-host interactions. By taking full advantage of the molecular genetic tools developed in the 1980s, research on many plant pathogenic microbes thrived, yet similar work on the rusts remained very challenging though not without some successes. However, the genomics era brought real breakthrough research for the biotrophic fungi and with innovative experimentation and the use of heterologous systems, molecular genetic analyses over the last 2 decades have significantly advanced our insight into the function of many rust fungus genes and their role in the interaction with their hosts. This has allowed optimizing efforts for resistance breeding and the design and testing of various novel strategies to reduce the devastating diseases they cause.
Collapse
Affiliation(s)
- Guus Bakkeren
- Agriculture and Agri-Food Canada, Summerland Research & Development Centre, 4200 Hwy 97, Summerland, BC, Canada V0H 1Z0
| | - Les J Szabo
- U.S. Department of Agriculture-Agriculture Research Service, Cereal Disease Laboratory and University of Minnesota, 1551 Lindig Street, St. Paul, MN 55108, U.S.A
| |
Collapse
|
24
|
Tao SQ, Auer L, Morin E, Liang YM, Duplessis S. Transcriptome Analysis of Apple Leaves Infected by the Rust Fungus Gymnosporangium yamadae at Two Sporulation Stages. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:444-461. [PMID: 31765287 DOI: 10.1094/mpmi-07-19-0208-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Apple rust disease caused by Gymnosporangium yamadae is one of the major threats to apple orchards. In this study, dual RNA-seq analysis was conducted to simultaneously monitor gene expression profiles of G. yamadae and infected apple leaves during the formation of rust spermogonia and aecia. The molecular mechanisms underlying this compatible interaction at 10 and 30 days postinoculation (dpi) indicate a significant reaction from the host plant and comprise detoxication pathways at the earliest stage and the induction of secondary metabolism pathways at 30 dpi. Such host reactions have been previously reported in other rust pathosystems and may represent a general reaction to rust infection. G. yamadae transcript profiling indicates a conserved genetic program in spermogonia and aecia that is shared with other rust fungi, whereas secretome prediction reveals the presence of specific secreted candidate effector proteins expressed during apple infection. Unexpectedly, the survey of fungal unigenes in the transcriptome assemblies of inoculated and mock-inoculated apple leaves reveals that G. yamadae infection may modify the fungal community composition in the apple phyllosphere at 30 dpi. Collectively, our results provide novel insights into the compatible apple-G. yamadae interaction and advance the knowledge of this heteroecious demicyclic rust fungus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing 100083, China
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Lucas Auer
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University
| | - Sébastien Duplessis
- Université de Lorraine, INRAE, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, 54280, Champenoux, France
| |
Collapse
|
25
|
Tao SQ, Cao B, Morin E, Liang YM, Duplessis S. Comparative transcriptomics of Gymnosporangium spp. teliospores reveals a conserved genetic program at this specific stage of the rust fungal life cycle. BMC Genomics 2019; 20:723. [PMID: 31597570 PMCID: PMC6785864 DOI: 10.1186/s12864-019-6099-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/11/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gymnosporangium spp. are fungal plant pathogens causing rust disease and most of them are known to infect two different host plants (heteroecious) with four spore stages (demicyclic). In the present study, we sequenced the transcriptome of G. japonicum teliospores on its host plant Juniperus chinensis and we performed comparison to the transcriptomes of G. yamadae and G. asiaticum at the same life stage, that happens in the same host but on different organs. RESULTS Functional annotation for the three Gymnosporangium species showed the expression of a conserved genetic program with the top abundant cellular categories corresponding to energy, translation and signal transduction processes, indicating that this life stage is particularly active. Moreover, the survey of predicted secretomes in the three Gymnosporangium transcriptomes revealed shared and specific genes encoding carbohydrate active enzymes and secreted proteins of unknown function that could represent candidate pathogenesis effectors. A transcript encoding a hemicellulase of the glycoside hydrolase 26 family, previously identified in other rust fungi, was particularly highly expressed suggesting a general role in rust fungi. The comparison between the transcriptomes of the three Gymnosporangium spp. and selected Pucciniales species in different taxonomical families allowed to identify lineage-specific protein families that may relate to the biology of teliospores in rust fungi. Among clustered gene families, 205, 200 and 152 proteins were specifically identified in G. japonicum, G. yamadae and G. asiaticum, respectively, including candidate effectors expressed in teliospores. CONCLUSIONS This comprehensive comparative transcriptomics study of three Gymnosporangium spp. identified gene functions and metabolic pathways particularly expressed in teliospores, a stage of the life cycle that is mostly overlooked in rust fungi. Secreted protein encoding transcripts expressed in teliospores may reveal new candidate effectors related to pathogenesis. Although this spore stage is not involved in host plant infection but in the production of basidiospores infecting plants in the Amygdaloideae, we speculate that candidate effectors may be expressed as early as the teliospore stage for preparing further infection by basidiospores.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Bin Cao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Emmanuelle Morin
- Université de Lorraine, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Champenoux, France
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing Forestry University, Beijing, 100083, China.
| | - Sébastien Duplessis
- Université de Lorraine, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1136 Interactions Arbres-Microorganismes, Champenoux, France.
| |
Collapse
|
26
|
Thines M. An evolutionary framework for host shifts - jumping ships for survival. THE NEW PHYTOLOGIST 2019; 224:605-617. [PMID: 31381166 DOI: 10.1111/nph.16092] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Host jumping is a process by which pathogens settle in new host groups. It is a cornerstone in the evolution of pathogens, as it leads to pathogen diversification. It is unsurprising that host jumping is observed in facultative pathogens, as they can reproduce even if they kill their hosts. However, host jumps were thought to be rare in obligate biotrophic pathogens, but molecular phylogenetics has revealed that the opposite is true. Here, I review some concepts and recent findings and present several hypotheses on the matter. In short, pathogens evolve and diversify via host jumps, followed by radiation, specialisation and speciation. Host jumps are facilitated by, for example, effector innovations, stress, compatible pathogens and physiological similarities. Host jumping, subsequent establishment, and speciation takes place rapidly - within centuries and millennia rather than over millions of years. If pathogens are unable to evolve into neutral or mutualistic interactions with their hosts, they will eventually be removed from the host population, despite balancing trade-offs. Thus, generally, plant pathogens only survive in the course of evolution if they jump hosts. This is also reflected by the diversity patterns observed in many genera of plant pathogens, where it leads to a mosaic pattern of host groups over time, in which the original host group becomes increasingly obscure.
Collapse
Affiliation(s)
- Marco Thines
- Department of Biological Sciences, Institute of Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Str. 13, D-60486, Frankfurt am Main, Germany
- Senckenberg Gesellschaft für Naturforschung, Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberganlage 25, D-60325, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
27
|
Lorrain C, Gonçalves Dos Santos KC, Germain H, Hecker A, Duplessis S. Advances in understanding obligate biotrophy in rust fungi. THE NEW PHYTOLOGIST 2019; 222:1190-1206. [PMID: 30554421 DOI: 10.1111/nph.15641] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/13/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Collapse
Affiliation(s)
- Cécile Lorrain
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | | | - Hugo Germain
- Department of Chemistry, Biochemistry and Physics, Université du Quebec à Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Arnaud Hecker
- Université de Lorraine, UMR 1136 Université de Lorraine/INRA Interactions Arbres/Microorganismes, Vandoeuvre-lès-Nancy, France
| | - Sébastien Duplessis
- INRA Centre Grand Est - Nancy, UMR 1136 INRA/Université de Lorraine Interactions Arbres/Microorganismes, Champenoux, 54280, France
| |
Collapse
|
28
|
Blaazer CJH, Villacis-Perez EA, Chafi R, Van Leeuwen T, Kant MR, Schimmel BCJ. Why Do Herbivorous Mites Suppress Plant Defenses? FRONTIERS IN PLANT SCIENCE 2018; 9:1057. [PMID: 30105039 PMCID: PMC6077234 DOI: 10.3389/fpls.2018.01057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 06/28/2018] [Indexed: 05/03/2023]
Abstract
Plants have evolved numerous defensive traits that enable them to resist herbivores. In turn, this resistance has selected for herbivores that can cope with defenses by either avoiding, resisting or suppressing them. Several species of herbivorous mites, such as the spider mites Tetranychus urticae and Tetranychus evansi, were found to maximize their performance by suppressing inducible plant defenses. At first glimpse it seems obvious why such a trait will be favored by natural selection. However, defense suppression appeared to readily backfire since mites that do so also make their host plant more suitable for competitors and their offspring more attractive for natural enemies. This, together with the fact that spider mites are infamous for their ability to resist (plant) toxins directly, justifies the question as to why traits that allow mites to suppress defenses nonetheless seem to be relatively common? We argue that this trait may facilitate generalist herbivores, like T. urticae, to colonize new host species. While specific detoxification mechanisms may, on average, be suitable only on a narrow range of similar hosts, defense suppression may be more broadly effective, provided it operates by targeting conserved plant signaling components. If so, resistance and suppression may be under frequency-dependent selection and be maintained as a polymorphism in generalist mite populations. In that case, the defense suppression trait may be under rapid positive selection in subpopulations that have recently colonized a new host but may erode in relatively isolated populations in which host-specific detoxification mechanisms emerge. Although there is empirical evidence to support these scenarios, it contradicts the observation that several of the mite species found to suppress plant defenses actually are relatively specialized. We argue that in these cases buffering traits may enable such mites to mitigate the negative side effects of suppression in natural communities and thus shield this trait from natural selection.
Collapse
Affiliation(s)
- C. Joséphine H. Blaazer
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Ernesto A. Villacis-Perez
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Rachid Chafi
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Thomas Van Leeuwen
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Merijn R. Kant
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| | - Bernardus C. J. Schimmel
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|