1
|
Agrobacterium tumefaciens exoR controls acid response genes and impacts exopolysaccharide synthesis, horizontal gene transfer, and virulence gene expression. J Bacteriol 2014; 196:3221-33. [PMID: 24982308 DOI: 10.1128/jb.01751-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Agrobacterium tumefaciens is a facultative plant pathogen and the causative agent of crown gall disease. The initial stage of infection involves attachment to plant tissues, and subsequently, biofilms may form at these sites. This study focuses on the periplasmic ExoR regulator, which was identified based on the severe biofilm deficiency of A. tumefaciens exoR mutants. Genome-wide expression analysis was performed to elucidate the complete ExoR regulon. Overproduction of the exopolysaccharide succinoglycan is a dramatic phenotype of exoR mutants. Comparative expression analyses revealed that the core ExoR regulon is unaffected by succinoglycan synthesis. Several findings are consistent with previous observations: genes involved in succinoglycan biosynthesis, motility, and type VI secretion are differentially expressed in the ΔexoR mutant. In addition, these studies revealed new functional categories regulated by ExoR, including genes related to virulence, conjugation of the pAtC58 megaplasmid, ABC transporters, and cell envelope architecture. To address how ExoR exerts a broad impact on gene expression from its periplasmic location, a genetic screen was performed to isolate suppressor mutants that mitigate the exoR motility phenotype and identify downstream components of the ExoR regulatory pathway. This suppression analysis identified the acid-sensing two-component system ChvG-ChvI, and the suppressor mutant phenotypes suggest that all or most of the characteristic exoR properties are mediated through ChvG-ChvI. Subsequent analysis indicates that exoR mutants are simulating a response to acidic conditions, even in neutral media. This work expands the model for ExoR regulation in A. tumefaciens and underscores the global role that this regulator plays on gene expression.
Collapse
|
2
|
Tolin S, Arrigoni G, Moscatiello R, Masi A, Navazio L, Sablok G, Squartini A. Quantitative analysis of the naringenin-inducible proteome in Rhizobium leguminosarum by isobaric tagging and mass spectrometry. Proteomics 2013; 13:1961-72. [PMID: 23580418 DOI: 10.1002/pmic.201200472] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/17/2013] [Accepted: 03/12/2013] [Indexed: 11/05/2022]
Abstract
The rhizobium-legume interaction is a critical cornerstone of crop productivity and environmental sustainability. Its potential improvement relies on elucidation of the complex molecular dialogue between its two partners. In the present study, the proteomic patterns of gnotobiotic cultures of Rhizobium leguminosarum bv. viciae 3841 grown for 6 h in presence or absence of the nod gene-inducing plant flavonoid naringenin (10 μM) were analyzed using the iTRAQ approach. A total of 1334 proteins were identified corresponding to 18.67% of the protein-coding genes annotated in the sequenced genome of bv. viciae 3841. The abundance levels of 47 proteins were increased upon naringenin treatment showing fold change ratios ranging from 1.5 to 25 in two biological replicates. Besides the nod units, naringenin enhanced the expression of a number of other genes, many of which organized in operons, including β(1-2) glucan production and secretion, succinoglycan export, the RopA outer membrane protein with homology to an oligogalacturonide-specific porin motif, other enzymes for carbohydrate and amino acid metabolism, and proteins involved in the translation machinery. Data were validated at the transcriptional and phenotypic levels by RT-PCR and an assay of secreted sugars in culture supernatants, respectively. The current approach provides not only a high-resolution analysis of the prokaryotic proteome but also unravels the rhizobium molecular dialogue with legumes by detecting the enhanced expression of several symbiosis-associated proteins, whose flavonoid-dependency had not yet been reported.
Collapse
Affiliation(s)
- Serena Tolin
- Department of Agronomy, Food, Natural Resources, Animals and Environment, DAFNAE, Legnaro, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
3
|
Dong J, Signo KSL, Vanderlinde EM, Yost CK, Dahms TES. Atomic force microscopy of a ctpA mutant in Rhizobium leguminosarum reveals surface defects linking CtpA function to biofilm formation. MICROBIOLOGY-SGM 2011; 157:3049-3058. [PMID: 21852352 DOI: 10.1099/mic.0.051045-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Atomic force microscopy was used to investigate the surface ultrastructure, adhesive properties and biofilm formation of Rhizobium leguminosarum and a ctpA mutant strain. The surface ultrastructure of wild-type R. leguminosarum consists of tightly packed surface subunits, whereas the ctpA mutant has much larger subunits with loose lateral packing. The ctpA mutant strain is not capable of developing fully mature biofilms, consistent with its altered surface ultrastructure, greater roughness and stronger adhesion to hydrophilic surfaces. For both strains, surface roughness and adhesive forces increased as a function of calcium ion concentration, and for each, biofilms were thicker at higher calcium concentrations.
Collapse
Affiliation(s)
- Jun Dong
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| | - Karla S L Signo
- Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada
| | | | | | - Tanya E S Dahms
- Department of Chemistry and Biochemistry, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
4
|
Foreman DL, Vanderlinde EM, Bay DC, Yost CK. Characterization of a gene family of outer membrane proteins (ropB) in Rhizobium leguminosarum bv. viciae VF39SM and the role of the sensor kinase ChvG in their regulation. J Bacteriol 2010; 192:975-83. [PMID: 20023026 PMCID: PMC2812955 DOI: 10.1128/jb.01140-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 12/01/2009] [Indexed: 11/20/2022] Open
Abstract
The outer membrane of Gram-negative bacteria represents the interface between the bacterium and its external environment. It has a critical role as a protective barrier against harmful substances and is also important in host-bacteria interactions representing the initial physical point of contact between the host cell and bacterial cell. RopB is a previously identified outer membrane protein from Rhizobium leguminosarum bv. viciae that is present in free-living cells but absent in bacteroids (H. P. Roest, I. H. Mulders, C. A. Wijffelman, and B. J. Lugtenberg, Mol. Plant Microbe Interact. 8:576-583, 1995). The functions of RopB and the molecular mechanisms of ropB gene regulation have remained unknown. We identified and cloned ropB and two homologs (ropB2 and ropB3) from the R. leguminosarum VF39SM genome. Reporter gene fusions indicated that the expression of ropB was 8-fold higher when cells were grown in complex media than when they were grown in minimal media, while ropB3 expression was constitutively expressed at low levels in both complex and minimal media. Expression of ropB2 was negligible under all conditions tested. The use of minimal media supplemented with various sources of peptides resulted in a 5-fold increase in ropB expression. An increase in ropB expression in the presence of peptides was not observed in a chvG mutant background, indicating a role for the sensor kinase in regulating ropB expression. Each member of the ropB gene family was mutated using insertional mutagenesis, and the mutants were assayed for susceptibility to antimicrobial agents and symbiotic phenotypes. All mutants formed effective nodules on pea plants, and gene expression for each rop gene in bacteroids was negligible. The functions of ropB2 and ropB3 remain cryptic, while the ropB mutant had an increased sensitivity to detergents, hydrophobic antibiotics, and weak organic acids, suggesting a role for RopB in outer membrane stability.
Collapse
Affiliation(s)
- Dallas L. Foreman
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Elizabeth M. Vanderlinde
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Denise C. Bay
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| | - Christopher K. Yost
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan, Canada, S4S 0A2, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada, T2N 1N4
| |
Collapse
|
5
|
Krishnan HB, Kim WS, Sun-Hyung J. Calcium regulates the production of nodulation outer proteins (Nops) and precludes pili formation by Sinorhizobium fredii USDA257, a soybean symbiont. FEMS Microbiol Lett 2007; 271:59-64. [PMID: 17391367 DOI: 10.1111/j.1574-6968.2007.00698.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Sinorhizobium fredii USDA257 forms nitrogen-fixing nodules on primitive soybean cultivars such as 'Peking' but is unable to establish efficient symbiosis with North American cultivars. USDA257 when grown in presence of genistein, a potent nodD-inducing isoflavonoid, secretes at least six nodulation outer proteins (NopX, NopB, NopL, NopP, NopA and NopC) to the extracellular milieu through a type III secretion system. These proteins regulate legume nodulation in a host-specific manner. Here, it is demonstrated that calcium prevents the accumulation of NopB and NopA, and drastically reduces that of NopX and NopL. The inhibitory effect on Nops accumulation appears to be mediated specifically by calcium since other divalent cations such as Mg(2+) and Mn(2+) had no detectable effect. Calcium does not appear to interfere with the secretion of these proteins since Western blot analysis revealed that these Nops do not accumulate inside the cell. The inhibitory effect of calcium on Nops production is mediated at the posttranscriptional level. Studies by the authors indicate that the production of Nops, which function as determinants of host-range, is regulated by calcium.
Collapse
Affiliation(s)
- Hari B Krishnan
- Plant Genetics Research Unit, Agricultural Research Service, United States Department of Agriculture, University of Missouri, Columbia, MO 65211, USA.
| | | | | |
Collapse
|