1
|
Kamal H, Kotapati KV, Tanaka K, Pappu HR. Investigating the Roles of Coat Protein and Triple Gene Block Proteins of Potato Mop-Top Virus Using a Heterologous Expression System. Int J Mol Sci 2024; 25:6990. [PMID: 39000098 PMCID: PMC11241287 DOI: 10.3390/ijms25136990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Potato mop-top virus (PMTV) is an emerging viral pathogen that causes tuber necrosis in potatoes. PMTV is composed of three single-stranded RNA segments: RNA1 encodes RNA-dependent RNA polymerase, RNA2 contains the coat protein (CP), and RNA3 harbors a triple gene block (TGB 1, TGB2, and TGB3). CP plays a role in viral transmission, while TGB is known to facilitate cell-to-cell and long-distance systemic movement. The role of CP in symptom development, specifically in the presence of TGB genes, was investigated using potato virus X (PVX) as a delivery vehicle to express PMTV genes in the model plant Nicotiana benthamiana. Plants expressing individual genes showed mild symptoms that included leaf curling and crumpling. Interestingly, symptom severity varied among plants infected with three different combinations: CP with TGB1, CP with TGB2, and CP with TGB3. Notably, the combination of CP and TGB3 induced a hypersensitive response, accompanied by stunted growth and downward curling and crumpling. These results suggest the potential role of TGB co-expressed with CP in symptom development during PMTV infection. Additionally, this study demonstrates the use of the PVX-based expression system as a valuable platform for assessing the role of unknown genes in viral pathogenicity.
Collapse
Affiliation(s)
| | | | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA; (H.K.); (K.V.K.); (K.T.)
| |
Collapse
|
2
|
Yue N, Jiang Z, Pi Q, Yang M, Gao Z, Wang X, Zhang H, Wu F, Jin X, Li M, Wang Y, Zhang Y, Li D. Zn2+-dependent association of cysteine-rich protein with virion orchestrates morphogenesis of rod-shaped viruses. PLoS Pathog 2024; 20:e1012311. [PMID: 38885273 PMCID: PMC11213338 DOI: 10.1371/journal.ppat.1012311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 06/28/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.
Collapse
Affiliation(s)
- Ning Yue
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhihao Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qinglin Pi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Meng Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zongyu Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueting Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - He Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Fengtong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuejiao Jin
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Menglin Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Ying Wang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Yongliang Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Dawei Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
3
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
4
|
Zhai Y, Davenport B, Schuetz K, Pappu HR. An on-site adaptable test for rapid and sensitive detection of Potato mop-top virus, a soil-borne virus of potato (Solanum tuberosum). PLoS One 2022; 17:e0270918. [PMID: 35914219 PMCID: PMC9343021 DOI: 10.1371/journal.pone.0270918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Potato mop-top virus (PMTV) is considered an emerging threat to potato production in the United States. PMTV is transmitted by a soil-borne protist, Spongospora subterranean. Rapid, accurate, and sensitive detection of PMTV in leaves and tubers is an essential component in PMTV management program. A rapid test that can be adapted to in-field, on-site testing with minimal sample manipulation could help in ensuring the sanitary status of the produce in situations such as certification programs and shipping point inspections. Toward that goal, a rapid and highly sensitive recombinase polymerase amplification (RPA)-based test was developed for PMTV detection in potato tubers. The test combines the convenience of RPA assay with a simple sample extraction procedure, making it amenable to rapid on-site diagnosis of PMTV. Furthermore, the assay was duplexed with a plant internal control to monitor sample extraction and RPA reaction performance. The method described could detect as little as 10 fg of PMTV RNA transcript in various potato tissues, the diagnostic limit of detection (LOQ) similar to that of traditional molecular methods.
Collapse
Affiliation(s)
- Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | | | | | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
- * E-mail:
| |
Collapse
|
5
|
Xu Y, Ju HJ, DeBlasio S, Carino EJ, Johnson R, MacCoss MJ, Heck M, Miller WA, Gray SM. A Stem-Loop Structure in Potato Leafroll Virus Open Reading Frame 5 (ORF5) Is Essential for Readthrough Translation of the Coat Protein ORF Stop Codon 700 Bases Upstream. J Virol 2018; 92:e01544-17. [PMID: 29514911 PMCID: PMC5952135 DOI: 10.1128/jvi.01544-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/06/2018] [Indexed: 11/20/2022] Open
Abstract
Translational readthrough of the stop codon of the capsid protein (CP) open reading frame (ORF) is used by members of the Luteoviridae to produce their minor capsid protein as a readthrough protein (RTP). The elements regulating RTP expression are not well understood, but they involve long-distance interactions between RNA domains. Using high-resolution mass spectrometry, glutamine and tyrosine were identified as the primary amino acids inserted at the stop codon of Potato leafroll virus (PLRV) CP ORF. We characterized the contributions of a cytidine-rich domain immediately downstream and a branched stem-loop structure 600 to 700 nucleotides downstream of the CP stop codon. Mutations predicted to disrupt and restore the base of the distal stem-loop structure prevented and restored stop codon readthrough. Motifs in the downstream readthrough element (DRTE) are predicted to base pair to a site within 27 nucleotides (nt) of the CP ORF stop codon. Consistent with a requirement for this base pairing, the DRTE of Cereal yellow dwarf virus was not compatible with the stop codon-proximal element of PLRV in facilitating readthrough. Moreover, deletion of the complementary tract of bases from the stop codon-proximal region or the DRTE of PLRV prevented readthrough. In contrast, the distance and sequence composition between the two domains was flexible. Mutants deficient in RTP translation moved long distances in plants, but fewer infection foci developed in systemically infected leaves. Selective 2'-hydroxyl acylation and primer extension (SHAPE) probing to determine the secondary structure of the mutant DRTEs revealed that the functional mutants were more likely to have bases accessible for long-distance base pairing than the nonfunctional mutants. This study reveals a heretofore unknown combination of RNA structure and sequence that reduces stop codon efficiency, allowing translation of a key viral protein.IMPORTANCE Programmed stop codon readthrough is used by many animal and plant viruses to produce key viral proteins. Moreover, such "leaky" stop codons are used in host mRNAs or can arise from mutations that cause genetic disease. Thus, it is important to understand the mechanism(s) of stop codon readthrough. Here, we shed light on the mechanism of readthrough of the stop codon of the coat protein ORFs of viruses in the Luteoviridae by identifying the amino acids inserted at the stop codon and RNA structures that facilitate this "leakiness" of the stop codon. Members of the Luteoviridae encode a C-terminal extension to the capsid protein known as the readthrough protein (RTP). We characterized two RNA domains in Potato leafroll virus (PLRV), located 600 to 700 nucleotides apart, that are essential for efficient RTP translation. We further determined that the PLRV readthrough process involves both local structures and long-range RNA-RNA interactions. Genetic manipulation of the RNA structure altered the ability of PLRV to translate RTP and systemically infect the plant. This demonstrates that plant virus RNA contains multiple layers of information beyond the primary sequence and extends our understanding of stop codon readthrough. Strategic targets that can be exploited to disrupt the virus life cycle and reduce its ability to move within and between plant hosts were revealed.
Collapse
Affiliation(s)
- Yi Xu
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, New York, USA
| | - Ho-Jong Ju
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, New York, USA
| | - Stacy DeBlasio
- Emerging Pests and Pathogens Research Unit, USDA, ARS, Ithaca, New York, USA
| | - Elizabeth J Carino
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, Washington, USA
| | - Michelle Heck
- Emerging Pests and Pathogens Research Unit, USDA, ARS, Ithaca, New York, USA
- Boyce Thompson Institute, Ithaca, New York, USA
| | - W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA
| | - Stewart M Gray
- Section of Plant Pathology and Plant-Microbe Biology, School of Integrated Plant Science, Cornell University, Ithaca, New York, USA
- Emerging Pests and Pathogens Research Unit, USDA, ARS, Ithaca, New York, USA
| |
Collapse
|
6
|
Kalyandurg P, Gil JF, Lukhovitskaya NI, Flores B, Müller G, Chuquillanqui C, Palomino L, Monjane A, Barker I, Kreuze J, Savenkov EI. Molecular and pathobiological characterization of 61 Potato mop-top virus full-length cDNAs reveals great variability of the virus in the centre of potato domestication, novel genotypes and evidence for recombination. MOLECULAR PLANT PATHOLOGY 2017; 18:864-877. [PMID: 28390168 PMCID: PMC6638219 DOI: 10.1111/mpp.12552] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/17/2017] [Accepted: 03/24/2017] [Indexed: 06/07/2023]
Abstract
The evolutionary divergence of Potato mop-top virus (PMTV), a tri-partite, single-stranded RNA virus, is exceptionally low, based on the analysis of sequences obtained from isolates from Europe, Asia and North America. In general, RNA viruses exist as dynamic populations of closely related and recombinant genomes that are subjected to continuous genetic variation. The reason behind the low genetic variation of PMTV remains unclear. The question remains as to whether the low variability is a shared property of all PMTV isolates or is a result of the limited number of isolates characterized so far. We hypothesized that higher divergence of the virus might exist in the Andean regions of South America, the centre of potato domestication. Here, we report high variability of PMTV isolates collected from 12 fields in three locations in the Andean region of Peru. To evaluate PMTV genetic variation in Peru, we generated full-length cDNA clones, which allowed reliable comparative molecular and pathobiological characterization of individual isolates. We found significant divergence of the CP-RT and 8K sequences. The 8K cistron, which encodes a viral suppressor of RNA silencing, was found to be under diversifying selection. Phylogenetic analysis determined that, based on the CP-RT sequence, all PMTV isolates could be categorized into three separate lineages (clades). Moreover, we found evidence for recombination between two clades. Using infectious cDNA clones of the representatives of these two clades, as well as reassortants for the RNA-CP genomic component, we determined the pathobiological differences between the lineages, which we coined as S (for severe) and M (for mild) types. Interestingly, all isolates characterized previously (from Europe, Asia and North America) fall into the S-type clade, whereas most of the Peruvian isolates belong to the M-type. Taken together, our results support the notion of the single introduction of PMTV from the centre of potato origin to Europe, and subsequent spread of the S-type into Asia and USA. This is also supported by the suggested novel classification of isolates based on genetic constellations.
Collapse
Affiliation(s)
- Pruthvi Kalyandurg
- Department of Plant Biology, Uppsala BioCenter SLUSwedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsala75007Sweden
| | - Jose Fernando Gil
- Department of Plant Biology, Uppsala BioCenter SLUSwedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsala75007Sweden
| | - Nina I. Lukhovitskaya
- Department of Plant Biology, Uppsala BioCenter SLUSwedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsala75007Sweden
- Present address:
Division of Virology, Department of PathologyUniversity of CambridgeHills RoadCambridgeCB2 0QQUK
| | - Betty Flores
- International Potato Center (CIP)Apartado 1558Lima12Peru
| | | | | | - Ladislao Palomino
- Instituto Nacional de Innovación Agraria (INIA)EEA – Andenes04540CuzcoPeru
| | - Aderito Monjane
- Department of Plant Biology, Uppsala BioCenter SLUSwedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsala75007Sweden
- Present address:
Norwegian Veterinary Institute0106OsloNorway
| | - Ian Barker
- International Potato Center (CIP)Apartado 1558Lima12Peru
- Present address:
Syngenta Foundation for Sustainable Agriculture4002BaselSwitzerland
| | - Jan Kreuze
- International Potato Center (CIP)Apartado 1558Lima12Peru
| | - Eugene I. Savenkov
- Department of Plant Biology, Uppsala BioCenter SLUSwedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsala75007Sweden
| |
Collapse
|
7
|
Makarov VV, Kalinina NO. Structure and Noncanonical Activities of Coat Proteins of Helical Plant Viruses. BIOCHEMISTRY (MOSCOW) 2016; 81:1-18. [PMID: 26885578 DOI: 10.1134/s0006297916010016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The main function of virus coat protein is formation of the capsid that protects the virus genome against degradation. However, besides the structural function, coat proteins have many additional important activities in the infection cycle of the virus and in the defense response of host plants to viral infection. This review focuses on noncanonical functions of coat proteins of helical RNA-containing plant viruses with positive genome polarity. Analysis of data on the structural organization of coat proteins of helical viruses has demonstrated that the presence of intrinsically disordered regions within the protein structure plays an important role in implementation of nonstructural functions and largely determines the multifunctionality of coat proteins.
Collapse
Affiliation(s)
- V V Makarov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | |
Collapse
|
8
|
Yang J, Zhang F, Xie L, Song XJ, Li J, Chen JP, Zhang HM. Functional identification of two minor capsid proteins from Chinese wheat mosaic virus using its infectious full-length cDNA clones. J Gen Virol 2016; 97:2441-2450. [PMID: 27357465 DOI: 10.1099/jgv.0.000532] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Full-length cDNA clones of Chinese wheat mosaic virus (CWMV) RNA1 and RNA2 were produced from single reverse transcription PCR reactions and transcripts were shown to be infectious in both wheat and Nicotiana benthamiana. An efficient and reliable agro-infiltration method was then developed for reverse genetic assays in N. benthamiana. Inoculation of infectious cDNA clones resulted in obvious chlorotic symptoms, and CWMV viral genomic RNAs, capsid protein (CP)-related proteins, and typical rod-shaped particles were detectable on the inoculated and upper leaves, similar to those of WT virus. The optimal temperature for virus multiplication was 12 °C, but the optimum for systematic infection in plants was 17 °C. Mutant clones that abolished the N- or C-terminal extensions of the major CP did not inhibit systemic infection or the formation of rod-shaped particles but sometimes modified the symptoms in inoculated plants. These results suggest that the two minor CP-related proteins of CWMV are dispensable for viral infection, replication, systemic movement and virion assembly in plants.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Fen Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, PR China
| | - Li Xie
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Xi-Jiao Song
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jing Li
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Jian-Ping Chen
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Heng-Mu Zhang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Key Laboratory of Plant Protection and Biotechnology, MOA and Zhejiang Province, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| |
Collapse
|
9
|
Dall'Ara M, Ratti C, Bouzoubaa SE, Gilmer D. Ins and Outs of Multipartite Positive-Strand RNA Plant Viruses: Packaging versus Systemic Spread. Viruses 2016; 8:E228. [PMID: 27548199 PMCID: PMC4997590 DOI: 10.3390/v8080228] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/29/2016] [Accepted: 08/09/2016] [Indexed: 11/16/2022] Open
Abstract
Viruses possessing a non-segmented genome require a specific recognition of their nucleic acid to ensure its protection in a capsid. A similar feature exists for viruses having a segmented genome, usually consisting of viral genomic segments joined together into one viral entity. While this appears as a rule for animal viruses, the majority of segmented plant viruses package their genomic segments individually. To ensure a productive infection, all viral particles and thereby all segments have to be present in the same cell. Progression of the virus within the plant requires as well a concerted genome preservation to avoid loss of function. In this review, we will discuss the "life aspects" of chosen phytoviruses and argue for the existence of RNA-RNA interactions that drive the preservation of viral genome integrity while the virus progresses in the plant.
Collapse
Affiliation(s)
- Mattia Dall'Ara
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Claudio Ratti
- Dipartimento di Scienze Agrarie, Area Patologia Vegetale, Università di Bologna, Viale Fanin 40, 40127 Bologna, Italy.
| | - Salah E Bouzoubaa
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | - David Gilmer
- Institut de Biologie Moléculaire des Plantes, Integrative Virology, CNRS UPR2367, Université de Strasbourg, 12 rue du Général Zimmer, 67084 Strasbourg, France.
| |
Collapse
|
10
|
Gil JF, Adams I, Boonham N, Nielsen SL, Nicolaisen M. Molecular and biological characterisation of two novel pomo-like viruses associated with potato (Solanum tuberosum) fields in Colombia. Arch Virol 2016; 161:1601-10. [PMID: 27016929 DOI: 10.1007/s00705-016-2839-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 03/20/2016] [Indexed: 01/11/2023]
Abstract
Potato is the fourth most important crop worldwide that is used as a staple food, after rice, wheat and maize. The crop can be affected by a large number of pathogens, including fungi, oomycetes, bacteria and viruses. Diseases caused by viruses are among the most important factors contributing to reduced quality and yield of the crop. Potato mop-top virus (genus Pomovirus) induces necrotic flecks in the tuber flesh and skin of potato in temperate countries. Spongospora subterranea is the vector of PMTV. Both the virus and its vector cause disease in potato. In Colombia, PMTV has been detected throughout the country together with a novel pomo-like virus in the centre (Cundinamarca and Boyacá) and south west (Nariño) of the country. We studied the molecular and biological characteristics of this novel virus. Its genome resembles those of members of the genus Pomovirus, and it is closely related to PMTV. It induces mild systemic symptoms in Nicotiana benthamiana (mosaic, branch curling), but no symptoms in N. tabacum, N. debneyi and Chenopodium amaranticolor. The proposed name for the virus is "Colombian potato soil-borne virus" (CPSbV). Additionally, another pomo-like virus was identified in Nariño. This virus induces severe systemic stem declining and mild mosaic in N. benthamiana. The tentative name "soil-borne virus 2" (SbV2) is proposed for this virus. No vectors have been identified for these viruses despite several attempts. This work focused on the characterisation of CPSbV. The risk posed by these viruses if they are introduced into new territories is discussed.
Collapse
Affiliation(s)
- Jose Fernando Gil
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | - Ian Adams
- Fera, Sand Hutton, York, YO411LZ, UK
| | | | - Steen Lykke Nielsen
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Department of Agroecology, Aarhus University, Flakkebjerg, Forsøgsvej 1, 4200, Slagelse, Denmark
| |
Collapse
|
11
|
Makarov VV, Makarova SS, Makhotenko AV, Obraztsova EA, Kalinina NO. In vitro properties of hordeivirus TGB1 protein forming ribonucleoprotein complexes. J Gen Virol 2015; 96:3422-3431. [PMID: 26276346 DOI: 10.1099/jgv.0.000252] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hordeivirus movement protein encoded by the first gene of the triple gene block (TGB1 protein, TGBp1) interacts in vivo with viral genomic and subgenomic RNAs to form ribonucleoprotein (RNP) particles that are considered to be a form of viral genome (non-virion transport form) capable of cell-to-cell and long-distance transport in infected plants. The structures of these RNPs have not been elucidated. The poa semilatent virus (PSLV) TGBp1 contains a structured C-terminal NTPase/helicase domain and an N-terminal extension region consisting of two domains - a completely intrinsically disordered extreme N-terminal domain and an internal domain (ID) with structure resembling a partially disordered molten globule. Here, we characterized the structures assembled in vitro by the full-length PSLV TGBp1 alone or in the presence of viral RNA. The PSLV TGBp1 was capable of multimerization and self-assembly into extended high-molecular-mass complexes. These complexes disassembled to apparent monomers upon incubation with ATP. Upon incubation with viral RNA, the PSLV TGBp1 in vitro formed RNP structures that appeared as filamentous particles resembling virions of helical filamentous plant viruses in morphology and dimensions. By comparing the biophysical characteristics of PSLV TGBp1 and its domains in the presence and absence of RNA, we show that the ID plays the main structural role in the self-interactions and RNA interactions of TGBp1 leading to the assembly of virus-like RNP particles.
Collapse
Affiliation(s)
- Valentin V Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Svetlana S Makarova
- Department of Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Antonida V Makhotenko
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| | - Ekaterina A Obraztsova
- M. M. Shemyakin and Yu. A. Ovchinnikov Bioorganic Chemistry Institute, Miklukho-Maklaya str. 16/10, Moscow 117997, Russia
| | - Natalia O Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninsky Gory, Moscow 119992, Russia
| |
Collapse
|
12
|
Multiple functions of capsid proteins in (+) stranded RNA viruses during plant–virus interactions. Virus Res 2015; 196:140-9. [DOI: 10.1016/j.virusres.2014.11.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/10/2014] [Accepted: 11/12/2014] [Indexed: 11/18/2022]
|
13
|
Solovyev AG, Savenkov EI. Factors involved in the systemic transport of plant RNA viruses: the emerging role of the nucleus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1689-97. [PMID: 24420565 DOI: 10.1093/jxb/ert449] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Compatible virus-host interactions depend on a suitable milieu in the host cells permitting viral gene expression, replication, and spread. During pathogenesis, viruses hijack the plant cellular machinery to access molecules, subcellular structures, and host transport pathways needed for infection. Vascular trafficking of virus transport forms (VTF) within the phloem is a crucial step in setting-up virus infection within the entire plant. Moreover, vascular trafficking is an essential step for the further transmission of the viruses by their natural vectors as movement of the viruses to the distant parts of the plant from the initial site of infection guarantees accessibility of the virus particle for vector transmission. With the recent advances in the field of plant virology several emerging themes of viral systemic movement occur linking the role of virus-mediated transcriptional reprogramming and nuclear factors in vascular trafficking. Recent studies have uncovered host factors involved in virus vascular trafficking. Surprisingly, it appears that the role of the nucleus and nuclear factors in virus movement is still under-appreciated. This review describes how these new themes started to emerge by using two contrasting modes of virus vascular trafficking. It is argued that the translocation of viral movement proteins into the nuclei is, in many cases, an essential step in promoting virus systemic infection.
Collapse
Affiliation(s)
- Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | |
Collapse
|
14
|
Hipper C, Monsion B, Bortolamiol-Bécet D, Ziegler-Graff V, Brault V. Formation of virions is strictly required for turnip yellows virus long-distance movement in plants. J Gen Virol 2013; 95:496-505. [PMID: 24214396 DOI: 10.1099/vir.0.058867-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Viral genomic RNA of the Turnip yellows virus (TuYV; genus Polerovirus; family Luteoviridae) is protected in virions formed by the major capsid protein (CP) and the minor component, the readthrough (RT*) protein. Long-distance transport, used commonly by viruses to systemically infect host plants, occurs in phloem sieve elements and two viral forms of transport have been described: virions and ribonucleoprotein (RNP) complexes. With regard to poleroviruses, virions have always been presumed to be the long-distance transport form, but the potential role of RNP complexes has not been investigated. Here, we examined the requirement of virions for polerovirus systemic movement by analysing CP-targeted mutants that were unable to form viral particles. We confirmed that TuYV mutants that cannot encapsidate into virions are not able to reach systemic leaves. To completely discard the possibility that the introduced mutations in CP simply blocked the formation or the movement of RNP complexes, we tested in trans complementation of TuYV CP mutants by providing WT CP expressed in transgenic plants. WT CP was able to facilitate systemic movement of TuYV CP mutants and this observation was always correlated with the formation of virions. This demonstrated clearly that virus particles are essential for polerovirus systemic movement.
Collapse
Affiliation(s)
- Clémence Hipper
- UMR INRA-UDS Virus-Vection Group, 28 rue de Herrlisheim, 68021 Colmar, France
| | - Baptiste Monsion
- UMR INRA-UDS Virus-Vection Group, 28 rue de Herrlisheim, 68021 Colmar, France
| | | | | | - Véronique Brault
- UMR INRA-UDS Virus-Vection Group, 28 rue de Herrlisheim, 68021 Colmar, France
| |
Collapse
|
15
|
Lukhovitskaya NI, Thaduri S, Garushyants SK, Torrance L, Savenkov EI. Deciphering the mechanism of defective interfering RNA (DI RNA) biogenesis reveals that a viral protein and the DI RNA act antagonistically in virus infection. J Virol 2013; 87:6091-103. [PMID: 23514891 PMCID: PMC3648117 DOI: 10.1128/jvi.03322-12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 03/05/2013] [Indexed: 11/20/2022] Open
Abstract
Potato mop-top virus (PMTV) produces a defective RNA (D RNA) encompassing the 5'-terminal 479 nucleotides (nt) and 3'-terminal 372 nt of RNA-TGB (where TGB is triple gene block). The mechanism that controls D RNA biogenesis and the role of D RNA in virus accumulation was investigated by introducing deletions, insertions, and point mutations into the sequences of the open reading frames (ORFs) of TGB1 and the 8-kilodalton (8K) protein that were identified as required for efficient production of the D RNA. Transient expression of RNA-TGB in the absence of RNA-Rep (which encodes the replicase) did not result in accumulation of D RNA, indicating that its production is dependent on PMTV replication. The D RNA could be eliminated by disrupting a predicted minus-strand stem-loop structure comprising complementary sequences of the 5' TGB1 ORF and the 3' 8K ORF, suggesting intramolecular template switching during positive-strand synthesis as a mechanism for the D RNA biogenesis. Virus accumulation was reduced when the 8K ORF was disrupted but D RNA was produced. Conversely, the virus accumulated at higher titers when the 8K ORF was intact and D RNA production was blocked. These data demonstrate that the D RNA interferes with virus infection and therefore should be referred to as a defective interfering RNA (DI RNA). The 8K protein was shown to be a weak silencing suppressor. This study provides an example of the interplay between a pathogen and its molecular parasite where virus accumulation was differentially regulated by the 8K protein and DI RNA, indicating that they play antagonistic roles and suggesting a mechanism by which the virus can attenuate replication, decreasing viral load and thereby enhancing its efficiency as a parasite.
Collapse
Affiliation(s)
- Nina I. Lukhovitskaya
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | | | - Lesley Torrance
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| |
Collapse
|
16
|
Hipper C, Brault V, Ziegler-Graff V, Revers F. Viral and cellular factors involved in Phloem transport of plant viruses. FRONTIERS IN PLANT SCIENCE 2013; 4:154. [PMID: 23745125 PMCID: PMC3662875 DOI: 10.3389/fpls.2013.00154] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/05/2013] [Indexed: 05/03/2023]
Abstract
Phloem transport of plant viruses is an essential step in the setting-up of a complete infection of a host plant. After an initial replication step in the first cells, viruses spread from cell-to-cell through mesophyll cells, until they reach the vasculature where they rapidly move to distant sites in order to establish the infection of the whole plant. This last step is referred to as systemic transport, or long-distance movement, and involves virus crossings through several cellular barriers: bundle sheath, vascular parenchyma, and companion cells for virus loading into sieve elements (SE). Viruses are then passively transported within the source-to-sink flow of photoassimilates and are unloaded from SE into sink tissues. However, the molecular mechanisms governing virus long-distance movement are far from being understood. While most viruses seem to move systemically as virus particles, some viruses are transported in SE as viral ribonucleoprotein complexes (RNP). The nature of the cellular and viral factors constituting these RNPs is still poorly known. The topic of this review will mainly focus on the host and viral factors that facilitate or restrict virus long-distance movement.
Collapse
Affiliation(s)
| | | | - Véronique Ziegler-Graff
- Laboratoire Propre du CNRS (UPR 2357), Virologie Végétale, Institut de Biologie Moléculaire des Plantes, Université de StrasbourgStrasbourg, France
| | - Frédéric Revers
- UMR 1332 de Biologie du Fruit et Pathologie, INRA, Université de BordeauxVillenave d’Ornon, France
| |
Collapse
|
17
|
Cowan GH, Roberts AG, Chapman SN, Ziegler A, Savenkov EI, Torrance L. The potato mop-top virus TGB2 protein and viral RNA associate with chloroplasts and viral infection induces inclusions in the plastids. FRONTIERS IN PLANT SCIENCE 2012; 3:290. [PMID: 23269927 PMCID: PMC3529358 DOI: 10.3389/fpls.2012.00290] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 05/27/2023]
Abstract
The potato mop-top virus (PMTV) triple gene block 2 (TGB2) movement proteins fused to monomeric red fluorescent protein (mRFP-TGB2) was expressed under the control of the PMTV subgenomic promoter from a PMTV vector. The subcellular localizations and interactions of mRFP-TGB2 were investigated using confocal imaging [confocal laser-scanning microscope, (CLSM)] and biochemical analysis. The results revealed associations with membranes of the endoplasmic reticulum (ER), mobile granules, small round structures (1-2 μm in diameter), and chloroplasts. Expression of mRFP-TGB2 in epidermal cells enabled cell-to-cell movement of a TGB2 defective PMTV reporter clone, indicating that the mRFP-TGB2 fusion protein was functional and required for cell-to-cell movement. Protein-lipid interaction assays revealed an association between TGB2 and lipids present in chloroplasts, consistent with microscopical observations where the plastid envelope was labeled later in infection. To further investigate the association of PMTV infection with chloroplasts, ultrastructural studies of thin sections of PMTV-infected potato and Nicotiana benthamiana leaves by electron microscopy revealed abnormal chloroplasts with cytoplasmic inclusions and terminal projections. Viral coat protein (CP), genomic RNA and fluorescently-labeled TGB2 were detected in plastid preparations isolated from the infected leaves, and viral RNA was localized to chloroplasts in infected tissues. The results reveal a novel association of TGB2 and vRNA with chloroplasts, and suggest viral replication is associated with chloroplast membranes, and that TGB2 plays a novel role in targeting the virus to chloroplasts.
Collapse
Affiliation(s)
| | | | | | - Angelika Ziegler
- Federal Research Centre for Cultivated Plants, Julius Kühn Institute, Institute for Epidemiology and Pathogen DiagnosticsQuedlinburg, Germany
| | - Eugene I. Savenkov
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural SciencesUppsala, Sweden
| | | |
Collapse
|
18
|
Semashko MA, González I, Shaw J, Leonova OG, Popenko VI, Taliansky ME, Canto T, Kalinina NO. The extreme N-terminal domain of a hordeivirus TGB1 movement protein mediates its localization to the nucleolus and interaction with fibrillarin. Biochimie 2012; 94:1180-8. [PMID: 22349738 DOI: 10.1016/j.biochi.2012.02.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 02/06/2012] [Indexed: 01/13/2023]
Abstract
The hordeiviral movement protein encoded by the first gene of the triple gene block (TGBp1) of Poa semilatent virus (PSLV), interacts with viral genomic RNAs to form RNP particles which are considered to be a form of viral genome capable of cell-to-cell and long-distance transport in infected plants. The PSLV TGBp1 contains a C-terminal NTPase/helicase domain (HELD) and an N-terminal extension region consisting of two structurally and functionally distinct domains: an extreme N-terminal domain (NTD) and an internal domain (ID). This study demonstrates that transient expression of TGBp1 fused to GFP in Nicotiana benthamiana leaves results in faint but obvious fluorescence in the nucleolus in addition to cytosolic distribution. Mutagenesis of the basic amino acids inside the NTD clusters A (116)KSKRKKKNKK(125) and B (175)KKATKKESKKQTK(187) reveals that these clusters are indispensable for nuclear and nucleolar targeting of PSLV TGBp1 and may contain nuclear and nucleolar localization signals or their elements. The PSLV TGBp1 is able to bind to fibrillarin, the major nucleolar protein (AtFib2 from Arabidopsis thaliana) in vitro. This protein-protein interaction occurs between the glycine-arginine-rich (GAR) domain of fibrillarin and the first 82 amino acid residues of TGBp1. The interaction of TGBp1 with fibrillarin is also visualized in vivo by bimolecular fluorescence complementation (BiFC) during co-expression of TGBp1 or its deletion mutants, and fibrillarin as fusions to different halves of YFP in N. benthamiana plants. The sites responsible for nuclear/nucleolar localization and fibrillarin binding, have been located within the intrinsically disordered TGBp1 NTD. These data could suggest that specific functions of hordeivirus TGBp1 may depend on its interaction with nucleolar components.
Collapse
Affiliation(s)
- Maria A Semashko
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Leninsky Gory, Moscow, 119992, Russia
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lukashina E, Ksenofontov A, Fedorova N, Badun G, Mukhamedzhanova A, Karpova O, Rodionova N, Baratova L, Dobrov E. Analysis of the role of the coat protein N-terminal segment in Potato virus X virion stability and functional activity. MOLECULAR PLANT PATHOLOGY 2012; 13:38-45. [PMID: 21726392 PMCID: PMC6638661 DOI: 10.1111/j.1364-3703.2011.00725.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previously, we have reported that intact Potato virus X (PVX) virions cannot be translated in cell-free systems, but acquire this capacity by the binding of PVX-specific triple gene block protein 1 (TGBp1) or after phosphorylation of the exposed N-terminal segment of intravirus coat protein (CP) by protein kinases. With the help of in vitro mutagenesis, a nonphosphorylatable PVX mutant (denoted ST PVX) was prepared in which all 12 S and T residues in the 20-residue-long N-terminal CP segment were substituted by A or G. Contrary to expectations, ST PVX was infectious, produced normal progeny and was translated in vitro in the absence of any additional factors. We suggest that the N-terminal PVX CP segment somehow participates in virion assembly in vivo and that CP subunits in ST virions may differ in structure from those in the wild-type (UK3 strain). In the present work, to test this suggestion, we performed a comparative tritium planigraphy study of CP structure in UK3 and ST virions. It was found that the profile of tritium incorporation into ST mutant virions in some CP segments differed from that of normal UK3 virions and from UK3 complexed with the PVX movement protein TGBp1. It is proposed that amino acid substitutions in ST CP and the TGBp1-driven remodelling of UK3 virions induce structural alterations in intravirus CPs. These alterations affect the predicted RNA recognition motif of PVX CP, but in different ways: for ST PVX, labelling is increased in α-helices 6 and 7, whereas, in remodelled UK3, labelling is increased in the β-sheet strands β3, β4 and β5.
Collapse
Affiliation(s)
- Elena Lukashina
- AN Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Torrance L, Wright KM, Crutzen F, Cowan GH, Lukhovitskaya NI, Bragard C, Savenkov EI. Unusual features of pomoviral RNA movement. Front Microbiol 2011; 2:259. [PMID: 22203822 PMCID: PMC3244614 DOI: 10.3389/fmicb.2011.00259] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 12/02/2011] [Indexed: 01/10/2023] Open
Abstract
Potato mop-top pomovirus (PMTV) is one of a few viruses that can move systemically in plants in the absence of the capsid protein (CP). Pomoviruses encode the triple gene block genetic module of movement proteins (TGB 1, 2, and 3) and recent research suggests that PMTV RNA is transported either as ribonucleoprotein (RNP) complexes containing TGB1 or encapsidated in virions containing TGB1. Furthermore, there are different requirements for local or systemic (long-distance) movement. Research suggests that nucleolar passage of TGB1 may be important for the long-distance movement of both RNP and virions. Moreover, and uniquely, the long-distance movement of the CP-encoding RNA requires expression of both major and minor CP subunits and is inhibited when only the major CP sub unit is expressed. This paper reviews pomovirus research and presents a current model for RNA movement.
Collapse
Affiliation(s)
- Lesley Torrance
- Cell and Molecular Sciences, The James Hutton Institute Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
21
|
Wright KM, Cowan GH, Lukhovitskaya NI, Tilsner J, Roberts AG, Savenkov EI, Torrance L. The N-terminal domain of PMTV TGB1 movement protein is required for nucleolar localization, microtubule association, and long-distance movement. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1486-97. [PMID: 20923354 DOI: 10.1094/mpmi-05-10-0105] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.
Collapse
Affiliation(s)
- Kathryn M Wright
- Plant Pathology Programme, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Verchot-Lubicz J, Torrance L, Solovyev AG, Morozov SY, Jackson AO, Gilmer D. Varied movement strategies employed by triple gene block-encoding viruses. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1231-47. [PMID: 20831404 DOI: 10.1094/mpmi-04-10-0086] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Several RNA virus genera belonging to the Virgaviridae and Flexiviridae families encode proteins organized in a triple gene block (TGB) that facilitate cell-to-cell and long-distance movement. The TGB proteins have been traditionally classified as hordei-like or potex-like based on phylogenetic comparisons and differences in movement mechanisms of the Hordeivirus and Potexvirus spp. However, accumulating data from other model viruses suggests that a revised framework is needed to accommodate the profound differences in protein interactions occurring during infection and ancillary capsid protein requirements for movement. The goal of this article is to highlight common features of the TGB proteins and salient differences in movement properties exhibited by individual viruses encoding these proteins. We discuss common and divergent aspects of the TGB transport machinery, describe putative nucleoprotein movement complexes, highlight recent data on TGB protein interactions and topological properties, and review membrane associations occurring during subcellular targeting and cell-to-cell movement. We conclude that the existing models cannot be used to explain all TGB viruses, and we propose provisional Potexvirus, Hordeivirus, and Pomovirus models. We also suggest areas that might profit from future research on viruses harboring this intriguing arrangement of movement proteins.
Collapse
Affiliation(s)
- Jeanmarie Verchot-Lubicz
- Oklahoma State University, Department of Entomology and Plant Pathology, Stillwater, OK 74078, USA.
| | | | | | | | | | | |
Collapse
|
23
|
Makarov VV, Rybakova EN, Efimov AV, Dobrov EN, Serebryakova MV, Solovyev AG, Yaminsky IV, Taliansky ME, Morozov SY, Kalinina NO. Domain organization of the N-terminal portion of hordeivirus movement protein TGBp1. J Gen Virol 2009; 90:3022-3032. [DOI: 10.1099/vir.0.013862-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Three ‘triple gene block’ proteins known as TGBp1, TGBp2 and TGBp3 are required for cell-to-cell movement of plant viruses belonging to a number of genera including Hordeivirus. Hordeiviral TGBp1 interacts with viral genomic RNAs to form ribonucleoprotein (RNP) complexes competent for translocation between cells through plasmodesmata and over long distances via the phloem. Binding of hordeivirus TGBp1 to RNA involves two protein regions, the C-terminal NTPase/helicase domain and the N-terminal extension region. This study demonstrated that the extension region of hordeivirus TGBp1 consists of two structurally and functionally distinct domains called the N-terminal domain (NTD) and the internal domain (ID). In agreement with secondary structure predictions, analysis of circular dichroism spectra of the isolated NTD and ID demonstrated that the NTD represents a natively unfolded protein domain, whereas the ID has a pronounced secondary structure. Both the NTD and ID were able to bind ssRNA non-specifically. However, whilst the NTD interacted with ssRNA non-cooperatively, the ID bound ssRNA in a cooperative manner. Additionally, both domains bound dsRNA. The NTD and ID formed low-molecular-mass oligomers, whereas the ID also gave rise to high-molecular-mass complexes. The isolated ID was able to interact with both the NTD and the C-terminal NTPase/helicase domain in solution. These data demonstrate that the hordeivirus TGBp1 has three RNA-binding domains and that interaction between these structural units can provide a basis for remodelling of viral RNP complexes at different steps of cell-to-cell and long-distance transport of virus infection.
Collapse
Affiliation(s)
- Valentin V. Makarov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Ekaterina N. Rybakova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Alexander V. Efimov
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region 142290, Russia
| | - Eugene N. Dobrov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | | | - Andrey G. Solovyev
- Institute of Agricultural Biotechnology, Russian Academy of Agricultural Sciences, Moscow 127550, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Igor V. Yaminsky
- Physical Faculty, Moscow State University, Moscow 119992, Russia
| | | | - Sergey Yu. Morozov
- Department of Virology, Biological Faculty, Moscow State University, Moscow 119992, Russia
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| | - Natalia O. Kalinina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119992, Russia
| |
Collapse
|