1
|
Chen T, Lin S, Chen Z, Yang T, Zhang S, Zhang J, Xu G, Wan X, Zhang Z. Theanine, a tea-plant-specific non-proteinogenic amino acid, is involved in the regulation of lateral root development in response to nitrogen status. HORTICULTURE RESEARCH 2023; 10:uhac267. [PMID: 36778187 PMCID: PMC9909507 DOI: 10.1093/hr/uhac267] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 06/18/2023]
Abstract
Glutamine synthetase type I (GSI)-like proteins are proposed to mediate nitrogen signaling and developmental fate by synthesizing yet unidentified metabolites. Theanine, the most abundant non-proteinogenic amino acid in tea plants, is the first identified metabolite synthesized by a GSI-like protein (CsTSI) in a living system. However, the roles of theanine in nitrogen signaling and development are little understood. In this study we found that nitrogen deficiency significantly reduced theanine accumulation and increased lateral root development in tea plant seedlings. Exogenous theanine feeding significantly repressed lateral root development of seedlings of tea plants and the model plant Arabidopsis. The transcriptomic analysis revealed that the differentially expressed genes in the roots under theanine feeding were enriched in the apoplastic pathway and H2O2 metabolism. Consistently, theanine feeding reduced H2O2 levels in the roots. Importantly, when co-treated with H2O2, theanine abolished the promoting effect of H2O2 on lateral root development in both tea plant and Arabidopsis seedlings. The results of histochemical assays confirmed that theanine inhibited reactive oxygen species accumulation in the roots. Further transcriptomic analyses suggested the expression of genes encoding enzymes involved in H2O2 generation and scavenging was down- and upregulated by theanine, respectively. Moreover, the expression of genes involved in auxin metabolism and signaling, cell division, and cell expansion was also regulated by theanine. Collectively, these results suggested that CsTSI-synthesized theanine is likely involved in the regulation of lateral root development, via modulating H2O2 accumulation, in response to nitrogen levels in tea plants. This study also implied that the module consisting of GSI-like protein and theanine-like metabolite is probably conserved in regulating development in response to nitrogen status in plant species.
Collapse
Affiliation(s)
| | | | | | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Shupei Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Jinsong Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China
| | | |
Collapse
|
2
|
She G, Yu S, Li Z, Peng A, Li P, Li Y, Chang M, Liu L, Chen Q, Shi C, Sun J, Zhao J, Wan X. Characterization of CsTSI in the Biosynthesis of Theanine in Tea Plants ( Camellia sinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:826-836. [PMID: 35029385 DOI: 10.1021/acs.jafc.1c04816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Theanine is a unique major amino acid in tea plants responsible for umami taste and mental health benefits of tea. However, theanine biosynthesis and physiological role in tea plants are not fully understood. Here, we demonstrate that tea plant theanine synthetase is encoded by a glutamine synthetase gene CsTSI. The expression pattern of CsTSI is closely correlated with theanine and glutamine levels in various tissues. CsTSI transcripts were accumulated in root tip epidermal cells, pericycle and procambial cells, where CsTSI presents as a cytosolic protein. Ectopic expression of the gene in Arabidopsis led to greater glutamine and theanine production than controls when fed with ethylamine (EA). RNAi knockdown or overexpression of CsTSI in tea plant hairy roots reduced or enhanced theanine and glutamine contents, respectively, compared with controls. The CsTSI recombinant enzymes used glutamate as an acceptor and ammonium or EA as a donor to synthesize glutamine and theanine, respectively. CsTSI expression in tea roots responded to nitrogen supply and deprivation and was correlated with theanine contents. This study provides fresh insights into the molecular basis for the biosynthesis of theanine, which may facilitate the breeding of high-theanine tea plants for improving the nutritional benefit of tea.
Collapse
Affiliation(s)
- Guangbiao She
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Yu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenguo Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Anqi Peng
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Penghui Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Yingying Li
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Chengying Shi
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jian Zhao
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
3
|
Capstaff NM, Morrison F, Cheema J, Brett P, Hill L, Muñoz-García JC, Khimyak YZ, Domoney C, Miller AJ. Fulvic acid increases forage legume growth inducing preferential up-regulation of nodulation and signalling-related genes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5689-5704. [PMID: 32599619 PMCID: PMC7501823 DOI: 10.1093/jxb/eraa283] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
The use of potential biostimulants is of broad interest in plant science for improving yields. The application of a humic derivative called fulvic acid (FA) may improve forage crop production. FA is an uncharacterized mixture of chemicals and, although it has been reported to increase growth parameters in many species including legumes, its mode of action remains unclear. Previous studies of the action of FA have lacked appropriate controls, and few have included field trials. Here we report yield increases due to FA application in three European Medicago sativa cultivars, in studies which include the appropriate nutritional controls which hitherto have not been used. No significant growth stimulation was seen after FA treatment in grass species in this study at the treatment rate tested. Direct application to bacteria increased Rhizobium growth and, in M. sativa trials, root nodulation was stimulated. RNA transcriptional analysis of FA-treated plants revealed up-regulation of many important early nodulation signalling genes after only 3 d. Experiments in plate, glasshouse, and field environments showed yield increases, providing substantial evidence for the use of FA to benefit M. sativa forage production.
Collapse
Affiliation(s)
- Nicola M Capstaff
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Freddie Morrison
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Jitender Cheema
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Brett
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Lionel Hill
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Juan C Muñoz-García
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Yaroslav Z Khimyak
- School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Claire Domoney
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| | - Anthony J Miller
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich, UK
| |
Collapse
|
4
|
Iradi-Serrano M, Tola-García L, Cortese MS, Ugalde U. The Early Asexual Development Regulator fluG Codes for a Putative Bifunctional Enzyme. Front Microbiol 2019; 10:778. [PMID: 31057506 PMCID: PMC6478659 DOI: 10.3389/fmicb.2019.00778] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 03/27/2019] [Indexed: 11/13/2022] Open
Abstract
FluG is a long recognized early regulator of asexual development in Aspergillus nidulans. fluG null mutants show profuse aerial growth and no conidial production. Initial studies reported sequence homology of FluG with a prokaryotic type I glutamine synthetase, but catalytic activity has not been demonstrated. In this study, we conducted an in-depth analysis of the FluG sequence, which revealed a single polypeptide containing a putative N-terminal amidohydrolase region linked to a putative C-terminal γ-glutamyl ligase region. Each region corresponded, separately and completely, to respective single function bacterial enzymes. Separate expression of these regions confirmed that the C-terminal region was essential for asexual development. The N-terminal region alone did not support conidial development, but contributed to increased conidial production under high nutrient availability. Point mutations directed at respective key catalytic residues in each region demonstrated that they were essential for biological function. Moreover, the substitution of the N- and C-terminal regions with homologs from Lactobacillus paracasei and Pseudomonas aeruginosa, respectively, maintained functionality, albeit with altered characteristics. Taken together, the results lead us to conclude that FluG is a bifunctional enzyme that participates in an as yet unidentified metabolic or signaling pathway involving a γ-glutamylated intermediate that contributes to developmental fate.
Collapse
Affiliation(s)
| | | | | | - Unai Ugalde
- Microbial Biochemistry Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country, San Sebastian, Spain
| |
Collapse
|
5
|
Malolepszy A, Kelly S, Sørensen KK, James EK, Kalisch C, Bozsoki Z, Panting M, Andersen SU, Sato S, Tao K, Jensen DB, Vinther M, Jong ND, Madsen LH, Umehara Y, Gysel K, Berentsen MU, Blaise M, Jensen KJ, Thygesen MB, Sandal N, Andersen KR, Radutoiu S. A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis. eLife 2018; 7:38874. [PMID: 30284535 PMCID: PMC6192697 DOI: 10.7554/elife.38874] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
Morphogens provide positional information and their concentration is key to the organized development of multicellular organisms. Nitrogen-fixing root nodules are unique organs induced by Nod factor-producing bacteria. Localized production of Nod factors establishes a developmental field within the root where plant cells are reprogrammed to form infection threads and primordia. We found that regulation of Nod factor levels by Lotus japonicus is required for the formation of nitrogen-fixing organs, determining the fate of this induced developmental program. Our analysis of plant and bacterial mutants shows that a host chitinase modulates Nod factor levels possibly in a structure-dependent manner. In Lotus, this is required for maintaining Nod factor signalling in parallel with the elongation of infection threads within the nodule cortex, while root hair infection and primordia formation are not influenced. Our study shows that infected nodules require balanced levels of Nod factors for completing their transition to functional, nitrogen-fixing organs.
Collapse
Affiliation(s)
- Anna Malolepszy
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Simon Kelly
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | | | - Christina Kalisch
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Zoltan Bozsoki
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Michael Panting
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Stig U Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Shusei Sato
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Ke Tao
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dorthe Bødker Jensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Maria Vinther
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Noor de Jong
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Lene Heegaard Madsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kira Gysel
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mette U Berentsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Mickael Blaise
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Knud Jørgen Jensen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Mikkel B Thygesen
- Department of Chemistry, University of Copenhagen, Frederiksberg, Denmark
| | - Niels Sandal
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | | | - Simona Radutoiu
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Qiao Z, Pingault L, Nourbakhsh-Rey M, Libault M. Comprehensive Comparative Genomic and Transcriptomic Analyses of the Legume Genes Controlling the Nodulation Process. FRONTIERS IN PLANT SCIENCE 2016; 7:34. [PMID: 26858743 PMCID: PMC4732000 DOI: 10.3389/fpls.2016.00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/10/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen is one of the most essential plant nutrients and one of the major factors limiting crop productivity. Having the goal to perform a more sustainable agriculture, there is a need to maximize biological nitrogen fixation, a feature of legumes. To enhance our understanding of the molecular mechanisms controlling the interaction between legumes and rhizobia, the symbiotic partner fixing and assimilating the atmospheric nitrogen for the plant, researchers took advantage of genetic and genomic resources developed across different legume models (e.g., Medicago truncatula, Lotus japonicus, Glycine max, and Phaseolus vulgaris) to identify key regulatory protein coding genes of the nodulation process. In this study, we are presenting the results of a comprehensive comparative genomic analysis to highlight orthologous and paralogous relationships between the legume genes controlling nodulation. Mining large transcriptomic datasets, we also identified several orthologous and paralogous genes characterized by the induction of their expression during nodulation across legume plant species. This comprehensive study prompts new insights into the evolution of the nodulation process in legume plant and will benefit the scientific community interested in the transfer of functional genomic information between species.
Collapse
|
7
|
Silva LS, Seabra AR, Leitão JN, Carvalho HG. Possible role of glutamine synthetase of the prokaryotic type (GSI-like) in nitrogen signaling in Medicago truncatula. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:98-108. [PMID: 26475191 DOI: 10.1016/j.plantsci.2015.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/31/2015] [Accepted: 09/01/2015] [Indexed: 06/05/2023]
Abstract
Genes containing domains related to glutamine synthetase of the prokaryotic type (GSI-like) are widespread in higher plants, but their function is currently unknown. To gain insights into the possible role of GSI-like proteins, we characterized the GSI-like gene family of Medicago truncatula and investigated the functionality of the encoded proteins. M. truncatula contains two-expressed GSI-like genes, MtGSIa and MtGSIb, encoding polypeptides of 454 and 453 amino acids, respectively. Heterologous complementation assays of a bacterial glnA mutant indicate that the proteins are not catalytically functional for glutamine synthesis. Gene expression was investigated by qRT-PCR and western blot analysis in different organs of the plant and under different nitrogen (N) regimes, revealing that both genes are preferentially expressed in roots and root nodules, and that their expression is influenced by the N-status of the plant. Analysis of transgenic plants expressing MtGSI-like-promoter-gusA fusion, indicate that the two genes are strongly expressed in the root pericycle, and interestingly, the expression is enhanced at the sites of nodule emergence being particularly strong in specific cells located in front of the protoxylem poles. Taken together, the results presented here support a role of GSI-like proteins in N sensing and/or signaling, probably operating at the interface between perception of the N-status and the developmental processes underlying both root nodule and lateral root formation. This study indicates that GSI-like genes may represent a novel class of molecular players of the N-mediated signaling events.
Collapse
Affiliation(s)
- Liliana S Silva
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Portugal
| | - Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - José N Leitão
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal
| | - Helena G Carvalho
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Rua do Campo Alegre, 823, 4150-180 Porto, Portugal.
| |
Collapse
|
8
|
Roux B, Rodde N, Jardinaud MF, Timmers T, Sauviac L, Cottret L, Carrère S, Sallet E, Courcelle E, Moreau S, Debellé F, Capela D, de Carvalho-Niebel F, Gouzy J, Bruand C, Gamas P. An integrated analysis of plant and bacterial gene expression in symbiotic root nodules using laser-capture microdissection coupled to RNA sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:817-37. [PMID: 24483147 DOI: 10.1111/tpj.12442] [Citation(s) in RCA: 305] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/02/2014] [Indexed: 05/19/2023]
Abstract
Rhizobium-induced root nodules are specialized organs for symbiotic nitrogen fixation. Indeterminate-type nodules are formed from an apical meristem and exhibit a spatial zonation which corresponds to successive developmental stages. To get a dynamic and integrated view of plant and bacterial gene expression associated with nodule development, we used a sensitive and comprehensive approach based upon oriented high-depth RNA sequencing coupled to laser microdissection of nodule regions. This study, focused on the association between the model legume Medicago truncatula and its symbiont Sinorhizobium meliloti, led to the production of 942 million sequencing read pairs that were unambiguously mapped on plant and bacterial genomes. Bioinformatic and statistical analyses enabled in-depth comparison, at a whole-genome level, of gene expression in specific nodule zones. Previously characterized symbiotic genes displayed the expected spatial pattern of expression, thus validating the robustness of our approach. We illustrate the use of this resource by examining gene expression associated with three essential elements of nodule development, namely meristem activity, cell differentiation and selected signaling processes related to bacterial Nod factors and redox status. We found that transcription factor genes essential for the control of the root apical meristem were also expressed in the nodule meristem, while the plant mRNAs most enriched in nodules compared with roots were mostly associated with zones comprising both plant and bacterial partners. The data, accessible on a dedicated website, represent a rich resource for microbiologists and plant biologists to address a variety of questions of both fundamental and applied interest.
Collapse
Affiliation(s)
- Brice Roux
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, Castanet-Tolosan, F-31326, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, Castanet-Tolosan, F-31326, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Afonso-Grunz F, Molina C, Hoffmeier K, Rycak L, Kudapa H, Varshney RK, Drevon JJ, Winter P, Kahl G. Genome-based analysis of the transcriptome from mature chickpea root nodules. FRONTIERS IN PLANT SCIENCE 2014; 5:325. [PMID: 25071808 PMCID: PMC4093793 DOI: 10.3389/fpls.2014.00325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/21/2014] [Indexed: 05/07/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in root nodules of grain legumes such as chickpea is a highly complex process that drastically affects the gene expression patterns of both the prokaryotic as well as eukaryotic interacting cells. A successfully established symbiotic relationship requires mutual signaling mechanisms and a continuous adaptation of the metabolism of the involved cells to varying environmental conditions. Although some of these processes are well understood today many of the molecular mechanisms underlying SNF, especially in chickpea, remain unclear. Here, we reannotated our previously published transcriptome data generated by deepSuperSAGE (Serial Analysis of Gene Expression) to the recently published draft genome of chickpea to assess the root- and nodule-specific transcriptomes of the eukaryotic host cells. The identified gene expression patterns comprise up to 71 significantly differentially expressed genes and the expression of twenty of these was validated by quantitative real-time PCR with the tissues from five independent biological replicates. Many of the differentially expressed transcripts were found to encode proteins implicated in sugar metabolism, antioxidant defense as well as biotic and abiotic stress responses of the host cells, and some of them were already known to contribute to SNF in other legumes. The differentially expressed genes identified in this study represent candidates that can be used for further characterization of the complex molecular mechanisms underlying SNF in chickpea.
Collapse
Affiliation(s)
- Fabian Afonso-Grunz
- Institute for Molecular BioSciences, Goethe University Frankfurt am MainFrankfurt am Main, Germany
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
- *Correspondence: Fabian Afonso-Grunz, Laboratory of Prof. Dr. Günter Kahl, Goethe University Frankfurt am Main, Institute for Molecular BioSciences, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany e-mail:
| | - Carlos Molina
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
- Plant Breeding Institute, Christian-Albrechts-University KielKiel, Germany
| | - Klaus Hoffmeier
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Lukas Rycak
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Jean-Jacques Drevon
- French National Institute for Agricultural Research (INRA), Eco&SolsMontpellier-Cedex, France
| | - Peter Winter
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| | - Günter Kahl
- Institute for Molecular BioSciences, Goethe University Frankfurt am MainFrankfurt am Main, Germany
- GenXPro GmbH, Frankfurt Biotechnology Innovation Center (FIZ)Frankfurt am Main, Germany
| |
Collapse
|
10
|
cell- and tissue-specific transcriptome analyses of Medicago truncatula root nodules. PLoS One 2013; 8:e64377. [PMID: 23734198 PMCID: PMC3667139 DOI: 10.1371/journal.pone.0064377] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 04/12/2013] [Indexed: 11/25/2022] Open
Abstract
Legumes have the unique ability to host nitrogen-fixing Rhizobium bacteria as symbiosomes inside root nodule cells. To get insight into this key process, which forms the heart of the endosymbiosis, we isolated specific cells/tissues at different stages of symbiosome formation from nodules of the model legume Medicago truncatula using laser-capture microdissection. Next, we determined their associated expression profiles using Affymetrix Medicago GeneChips. Cells were collected from the nodule infection zone divided into a distal (where symbiosome formation and division occur) and proximal region (where symbiosomes are mainly differentiating), as well as infected cells from the fixation zone containing mature nitrogen fixing symbiosomes. As non-infected cells/tissue we included nodule meristem cells and uninfected cells from the fixation zone. Here, we present a comprehensive gene expression map of an indeterminate Medicago nodule and selected genes that show specific enriched expression in the different cells or tissues. Validation of the obtained expression profiles, by comparison to published gene expression profiles and experimental verification, indicates that the data can be used as digital “in situ”. This digital “in situ” offers a genome-wide insight into genes specifically associated with subsequent stages of symbiosome and nodule cell development, and can serve to guide future functional studies.
Collapse
|
11
|
Seabra AR, Pereira PA, Becker JD, Carvalho HG. Inhibition of glutamine synthetase by phosphinothricin leads to transcriptome reprograming in root nodules of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:976-92. [PMID: 22414438 DOI: 10.1094/mpmi-12-11-0322] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Glutamine synthetase (GS) is a vital enzyme for the assimilation of ammonia into amino acids in higher plants. In legumes, GS plays a crucial role in the assimilation of the ammonium released by nitrogen-fixing bacteria in root nodules, constituting an important metabolic knob controlling the nitrogen (N) assimilatory pathways. To identify new regulators of nodule metabolism, we profiled the transcriptome of Medicago truncatula nodules impaired in N assimilation by specifically inhibiting GS activity using phosphinothricin (PPT). Global transcript expression of nodules collected before and after PPT addition (4, 8, and 24 h) was assessed using Affymetrix M. truncatula GeneChip arrays. Hundreds of genes were regulated at the three time points, illustrating the dramatic alterations in cell metabolism that are imposed on the nodules upon GS inhibition. The data indicate that GS inhibition triggers a fast plant defense response, induces premature nodule senescence, and promotes loss of root nodule identity. Consecutive metabolic changes were identified at the three time points analyzed. The results point to a fast repression of asparagine synthesis and of the glycolytic pathway and to the synthesis of glutamate via reactions alternative to the GS/GOGAT cycle. Several genes potentially involved in the molecular surveillance for internal organic N availability are identified and a number of transporters potentially important for nodule functioning are pinpointed. The data provided by this study contributes to the mapping of regulatory and metabolic networks involved in root nodule functioning and highlight candidate modulators for functional analysis.
Collapse
Affiliation(s)
- Ana R Seabra
- Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
12
|
Doskočilová A, Plíhal O, Volc J, Chumová J, Kourová H, Halada P, Petrovská B, Binarová P. A nodulin/glutamine synthetase-like fusion protein is implicated in the regulation of root morphogenesis and in signalling triggered by flagellin. PLANTA 2011; 234:459-476. [PMID: 21533644 DOI: 10.1007/s00425-011-1419-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 04/06/2011] [Indexed: 05/30/2023]
Abstract
The nodulin/glutamine synthetase-like protein (NodGS) that we identified proteomically in Arabidopsis thaliana is a fusion protein composed of an N-terminal amidohydrolase domain that shares homology with nodulins and a C-terminal domain of prokaryotic glutamine synthetase type I. The protein is homologous to the FluG protein, a morphogenetic factor in fungi. Although genes encoding NodGS homologues are present in many plant genomes, their products have not yet been characterized. The Arabidopsis NodGS was present in an oligomeric form of ~700-kDa, mainly in the cytosol, and to a lesser extent in the microsomal membrane fraction. The oligomeric NodGS was incorporated into large heterogeneous protein complexes >700 kDa and partially co-immunoprecipitated with γ-tubulin. In situ and in vivo microscopic analyses revealed a NodGS signal in the cytoplasm, with endomembranes, particularly in the perinuclear area. NodGS had no detectable glutamine synthetase activity. Downregulation of NodGS by RNAi resulted in plants with a short main root, reduced meristematic activity and disrupted development of the root cap. Y2H analysis and publicly available microarray data indicated a role for NodGS in biotic stress signalling. We found that flagellin enhanced the expression of the NodGS protein, which was then preferentially localized in the nuclear periphery. Our results point to a role for NodGS in root morphogenesis and microbial elicitation. These data might help in understanding the family of NodGS/FluG-like fusion genes that are widespread in prokaryotes, fungi and plants.
Collapse
Affiliation(s)
- Anna Doskočilová
- Institute of Microbiology, v.v.i., Academy of Sciences of the Czech Republic, Vídeňská 1083, 14220 Prague 4, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hocher V, Alloisio N, Auguy F, Fournier P, Doumas P, Pujic P, Gherbi H, Queiroux C, Da Silva C, Wincker P, Normand P, Bogusz D. Transcriptomics of actinorhizal symbioses reveals homologs of the whole common symbiotic signaling cascade. PLANT PHYSIOLOGY 2011; 156:700-11. [PMID: 21464474 PMCID: PMC3177269 DOI: 10.1104/pp.111.174151] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 03/30/2011] [Indexed: 05/19/2023]
Abstract
Comparative transcriptomics of two actinorhizal symbiotic plants, Casuarina glauca and Alnus glutinosa, was used to gain insight into their symbiotic programs triggered following contact with the nitrogen-fixing actinobacterium Frankia. Approximately 14,000 unigenes were recovered in roots and 3-week-old nodules of each of the two species. A transcriptomic array was designed to monitor changes in expression levels between roots and nodules, enabling the identification of up- and down-regulated genes as well as root- and nodule-specific genes. The expression levels of several genes emblematic of symbiosis were confirmed by quantitative polymerase chain reaction. As expected, several genes related to carbon and nitrogen exchange, defense against pathogens, or stress resistance were strongly regulated. Furthermore, homolog genes of the common and nodule-specific signaling pathways known in legumes were identified in the two actinorhizal symbiotic plants. The conservation of the host plant signaling pathway is all the more surprising in light of the lack of canonical nod genes in the genomes of its bacterial symbiont, Frankia. The evolutionary pattern emerging from these studies reinforces the hypothesis of a common genetic ancestor of the Fabid (Eurosid I) nodulating clade with a genetic predisposition for nodulation.
Collapse
|
14
|
Dolgikh EA, Leppyanen IV, Osipova MA, Savelyeva NV, Borisov AY, Tsyganov VE, Geurts R, Tikhonovich IA. Genetic dissection of Rhizobium-induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:285-96. [PMID: 21309975 DOI: 10.1111/j.1438-8677.2010.00372.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In legumes, perception of rhizobial lipochitooligosacharide-based molecules (Nod factors) and subsequent signal transduction triggers transcription of plant symbiosis-specific genes (early nodulins). We present genetic dissection of Nod factor-controlled processes in Pisum sativum using two early nodulin genes PsENOD12a and PsENOD5, that are differentially up-regulated during symbiosis. A novel set of non-nodulating pea mutants in fourteen loci was examined, among which seven loci are not described in Lotus japonicus and Medicago truncatula. Mutants defective in Pssym10, Pssym8, Pssym19, Pssym9 and Pssym7 exhibited no PsENOD12a and PsENOD5 activation in response to Nod factor-producing rhizobia. Thus, a conserved signalling module from the LysM receptor kinase encoded by Pssym10 down to the GRAS transcription factor encoded by Pssym7 is essential for Nod factor-induced gene expression. Of the two investigated genes, PsENOD5 was more strictly regulated; not only requiring the SYM10-SYM7 module, but also SYM35 (NIN transcription factor), SYM14, SYM16 and SYM34. Since Pssym35, Pssym14, Pssym34 and Pssym16 mutants show arrested infection and nodule formation at various stages, PsENOD5 expression seems to be essential for later symbiotic events, when rhizobia enter into plant tissues. Activation of PsENOD12a only requires components involved in early steps of signalling and can be considered as a marker of early symbiotic events preceding infection.
Collapse
Affiliation(s)
- E A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology (ARRIAM), St. Petersburg, Russia.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Moreau S, Verdenaud M, Ott T, Letort S, de Billy F, Niebel A, Gouzy J, de Carvalho-Niebel F, Gamas P. Transcription reprogramming during root nodule development in Medicago truncatula. PLoS One 2011; 6:e16463. [PMID: 21304580 PMCID: PMC3029352 DOI: 10.1371/journal.pone.0016463] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/17/2010] [Indexed: 12/28/2022] Open
Abstract
Many genes which are associated with root nodule development and activity in the model legume Medicago truncatula have been described. However information on precise stages of activation of these genes and their corresponding transcriptional regulators is often lacking. Whether these regulators are shared with other plant developmental programs also remains an open question. Here detailed microarray analyses have been used to study the transcriptome of root nodules induced by either wild type or mutant strains of Sinorhizobium meliloti. In this way we have defined eight major activation patterns in nodules and identified associated potential regulatory genes. We have shown that transcription reprogramming during consecutive stages of nodule differentiation occurs in four major phases, respectively associated with (i) early signalling events and/or bacterial infection; plant cell differentiation that is either (ii) independent or (iii) dependent on bacteroid differentiation; (iv) nitrogen fixation. Differential expression of several genes involved in cytokinin biosynthesis was observed in early symbiotic nodule zones, suggesting that cytokinin levels are actively controlled in this region. Taking advantage of databases recently developed for M. truncatula, we identified a small subset of gene expression regulators that were exclusively or predominantly expressed in nodules, whereas most other regulators were also activated under other conditions, and notably in response to abiotic or biotic stresses. We found evidence suggesting the activation of the jasmonate pathway in both wild type and mutant nodules, thus raising questions about the role of jasmonate during nodule development. Finally, quantitative RT-PCR was used to analyse the expression of a series of nodule regulator and marker genes at early symbiotic stages in roots and allowed us to distinguish several early stages of gene expression activation or repression.
Collapse
Affiliation(s)
- Sandra Moreau
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Marion Verdenaud
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Thomas Ott
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Sébastien Letort
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Françoise de Billy
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Andreas Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Fernanda de Carvalho-Niebel
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-organismes, Centre National de la Recherche Scientifique – Institut National de la Recherche Agronomique, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
16
|
Maunoury N, Redondo-Nieto M, Bourcy M, Van de Velde W, Alunni B, Laporte P, Durand P, Agier N, Marisa L, Vaubert D, Delacroix H, Duc G, Ratet P, Aggerbeck L, Kondorosi E, Mergaert P. Differentiation of symbiotic cells and endosymbionts in Medicago truncatula nodulation are coupled to two transcriptome-switches. PLoS One 2010; 5:e9519. [PMID: 20209049 PMCID: PMC2832008 DOI: 10.1371/journal.pone.0009519] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 02/12/2010] [Indexed: 12/16/2022] Open
Abstract
The legume plant Medicago truncatula establishes a symbiosis with the nitrogen-fixing bacterium Sinorhizobium meliloti which takes place in root nodules. The formation of nodules employs a complex developmental program involving organogenesis, specific cellular differentiation of the host cells and the endosymbiotic bacteria, called bacteroids, as well as the specific activation of a large number of plant genes. By using a collection of plant and bacterial mutants inducing non-functional, Fix(-) nodules, we studied the differentiation processes of the symbiotic partners together with the nodule transcriptome, with the aim of unravelling links between cell differentiation and transcriptome activation. Two waves of transcriptional reprogramming involving the repression and the massive induction of hundreds of genes were observed during wild-type nodule formation. The dominant features of this "nodule-specific transcriptome" were the repression of plant defense-related genes, the transient activation of cell cycle and protein synthesis genes at the early stage of nodule development and the activation of the secretory pathway along with a large number of transmembrane and secretory proteins or peptides throughout organogenesis. The fifteen plant and bacterial mutants that were analyzed fell into four major categories. Members of the first category of mutants formed non-functional nodules although they had differentiated nodule cells and bacteroids. This group passed the two transcriptome switch-points similarly to the wild type. The second category, which formed nodules in which the plant cells were differentiated and infected but the bacteroids did not differentiate, passed the first transcriptome switch but not the second one. Nodules in the third category contained infection threads but were devoid of differentiated symbiotic cells and displayed a root-like transcriptome. Nodules in the fourth category were free of bacteria, devoid of differentiated symbiotic cells and also displayed a root-like transcriptome. A correlation thus exists between the differentiation of symbiotic nodule cells and the first wave of nodule specific gene activation and between differentiation of rhizobia to bacteroids and the second transcriptome wave in nodules. The differentiation of symbiotic cells and of bacteroids may therefore constitute signals for the execution of these transcriptome-switches.
Collapse
Affiliation(s)
- Nicolas Maunoury
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Miguel Redondo-Nieto
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Marie Bourcy
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Willem Van de Velde
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Benoit Alunni
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Philippe Laporte
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Patricia Durand
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Nicolas Agier
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Laetitia Marisa
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Danièle Vaubert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Hervé Delacroix
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
- Université Paris-Sud 11, Orsay, France
| | - Gérard Duc
- Génétique et Ecophysiologie des Légumineuses à Graines, Institut National de la Recherche Agronomique, Dijon, France
| | - Pascal Ratet
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| | - Lawrence Aggerbeck
- Centre de Génétique Moléculaire, Centre National de la Recherche Scientifique, Formation de Recherche en Evolution 3144 and Gif/Orsay DNA MicroArray Platform (GODMAP), Gif-sur-Yvette, France
| | - Eva Kondorosi
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
- Bay Zoltan Foundation for Applied Research, Institute of Plant Genomics, Human Biotechnology and Bioenergy, Szeged, Hungary
| | - Peter Mergaert
- Institut des Sciences du Végétal, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2355, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Lafuente A, Pajuelo E, Caviedes MA, Rodríguez-Llorente ID. Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:286-291. [PMID: 19879664 DOI: 10.1016/j.jplph.2009.09.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/15/2009] [Accepted: 09/18/2009] [Indexed: 05/28/2023]
Abstract
Arsenic (As) reduces legume nodulation by affecting the first stages of the symbiotic interaction, which causes a 90% decrease in rhizobial infections. In this paper, we examine molecular mechanisms underlying this toxic effect, using the model system Medicago sativa-Sinorhizobium. In the presence and absence of As, the expression patterns of seven nodulin genes, markers for the different events leading to nodule formation, were analyzed by RT-PCR and by real-time RT-PCR. A significant decrease was observed, especially from days 1-5 after the inoculation, in the expression of four early nodulins: the genes coding the Nod factor receptor (nork), the transcription factor NIN and the markers for infection progression (N6) and nodule organogenesis (Enod2). On the contrary, the expression of markers for primordium initiation (Enod40) and differentiation (ccs52) was not significantly altered. Finally, the expression of a marker for nitrogen fixation (Legbrc) was also reduced, probably due to the reduction in nodule number induced by As. These results suggest that As affects the expression of nodulation genes that have been associated with processes that take place in the epidermis and the outer cortical cells, and that the expression of genes associated with events that take place in the inner cortical cells is less affected. This is the first report showing changes in the expression of nodulin genes induced by the presence of any toxic metal(loid).
Collapse
Affiliation(s)
- Alejandro Lafuente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
18
|
Yano K, Shibata S, Chen WL, Sato S, Kaneko T, Jurkiewicz A, Sandal N, Banba M, Imaizumi-Anraku H, Kojima T, Ohtomo R, Szczyglowski K, Stougaard J, Tabata S, Hayashi M, Kouchi H, Umehara Y. CERBERUS, a novel U-box protein containing WD-40 repeats, is required for formation of the infection thread and nodule development in the legume-Rhizobium symbiosis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:168-80. [PMID: 19508425 DOI: 10.1111/j.1365-313x.2009.03943.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Endosymbiotic infection of legume plants by Rhizobium bacteria is initiated through infection threads (ITs) which are initiated within and penetrate from root hairs and deliver the endosymbionts into nodule cells. Despite recent progress in understanding the mutual recognition and early symbiotic signaling cascades in host legumes, the molecular mechanisms underlying bacterial infection processes and successive nodule organogenesis are still poorly understood. We isolated a novel symbiotic mutant of Lotus japonicus, cerberus, which shows defects in IT formation and nodule organogenesis. Map-based cloning of the causal gene allowed us to identify the CERBERUS gene, which encodes a novel protein containing a U-box domain and WD-40 repeats. CERBERUS expression was detected in the roots and nodules, and was enhanced after inoculation of Mesorhizobium loti. Strong expression was detected in developing nodule primordia and the infected zone of mature nodules. In cerberus mutants, Rhizobium colonized curled root hair tips, but hardly penetrated into root hair cells. The occasional ITs that were formed inside the root hair cells were mostly arrested within the epidermal cell layer. Nodule organogenesis was aborted prematurely, resulting in the formation of a large number of small bumps which contained no endosymbiotic bacteria. These phenotypic and genetic analyses, together with comparisons with other legume mutants with defects in IT formation, indicate that CERBERUS plays a critical role in the very early steps of IT formation as well as in growth and differentiation of nodules.
Collapse
Affiliation(s)
- Koji Yano
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Vernié T, Moreau S, de Billy F, Plet J, Combier JP, Rogers C, Oldroyd G, Frugier F, Niebel A, Gamas P. EFD Is an ERF transcription factor involved in the control of nodule number and differentiation in Medicago truncatula. THE PLANT CELL 2008; 20:2696-713. [PMID: 18978033 PMCID: PMC2590733 DOI: 10.1105/tpc.108.059857] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 09/22/2008] [Accepted: 10/16/2008] [Indexed: 05/20/2023]
Abstract
Mechanisms regulating legume root nodule development are still poorly understood, and very few regulatory genes have been cloned and characterized. Here, we describe EFD (for ethylene response factor required for nodule differentiation), a gene that is upregulated during nodulation in Medicago truncatula. The EFD transcription factor belongs to the ethylene response factor (ERF) group V, which contains ERN1, 2, and 3, three ERFs involved in Nod factor signaling. The role of EFD in the regulation of nodulation was examined through the characterization of a null deletion mutant (efd-1), RNA interference, and overexpression studies. These studies revealed that EFD is a negative regulator of root nodulation and infection by Rhizobium and that EFD is required for the formation of functional nitrogen-fixing nodules. EFD appears to be involved in the plant and bacteroid differentiation processes taking place beneath the nodule meristem. We also showed that EFD activated Mt RR4, a cytokinin primary response gene that encodes a type-A response regulator. We propose that EFD induction of Mt RR4 leads to the inhibition of cytokinin signaling, with two consequences: the suppression of new nodule initiation and the activation of differentiation as cells leave the nodule meristem. Our work thus reveals a key regulator linking early and late stages of nodulation and suggests that the regulation of the cytokinin pathway is important both for nodule initiation and development.
Collapse
Affiliation(s)
- Tatiana Vernié
- Laboratoire des Interactions Plantes Micro-Organismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F- 31320 Castanet Tolosan, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Teillet A, Garcia J, de Billy F, Gherardi M, Huguet T, Barker DG, de Carvalho-Niebel F, Journet EP. api, A novel Medicago truncatula symbiotic mutant impaired in nodule primordium invasion. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:535-46. [PMID: 18393613 DOI: 10.1094/mpmi-21-5-0535] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Genetic approaches have proved to be extremely useful in dissecting the complex nitrogen-fixing Rhizobium-legume endosymbiotic association. Here we describe a novel Medicago truncatula mutant called api, whose primary phenotype is the blockage of rhizobial infection just prior to nodule primordium invasion, leading to the formation of large infection pockets within the cortex of noninvaded root outgrowths. The mutant api originally was identified as a double symbiotic mutant associated with a new allele (nip-3) of the NIP/LATD gene, following the screening of an ethylmethane sulphonate-mutagenized population. Detailed characterization of the segregating single api mutant showed that rhizobial infection is also defective at the earlier stage of infection thread (IT) initiation in root hairs, as well as later during IT growth in the small percentage of nodules which overcome the primordium invasion block. Neither modulating ethylene biosynthesis (with L-alpha-(2-aminoethoxyvinylglycine or 1-aminocyclopropane-1-carboxylic acid) nor reducing ethylene sensitivity in a skl genetic background alters the basic api phenotype, suggesting that API function is not closely linked to ethylene metabolism or signaling. Genetic mapping places the API gene on the upper arm of the M. truncatula linkage group 4, and epistasis analyses show that API functions downstream of BIT1/ERN1 and LIN and upstream of NIP/LATD and the DNF genes.
Collapse
Affiliation(s)
- Alice Teillet
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR CNRS-INRA 2594/441, F-31320 Castanet-Tolosan, France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 2007; 189:8741-5. [PMID: 17921312 DOI: 10.1128/jb.01130-07] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The symbiotic interaction between Medicago sativa and Sinorhizobium meliloti RmkatB(++) overexpressing the housekeeping catalase katB is delayed, and this delay is combined with an enlargement of infection threads. This result provides evidence that H(2)O(2) is required for optimal progression of infection threads through the root hairs and plant cell layers.
Collapse
|
22
|
Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J. LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 2007; 26:3923-35. [PMID: 17690687 PMCID: PMC1994126 DOI: 10.1038/sj.emboj.7601826] [Citation(s) in RCA: 246] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2007] [Accepted: 07/18/2007] [Indexed: 11/08/2022] Open
Abstract
Legume-Rhizobium symbiosis is an example of selective cell recognition controlled by host/non-host determinants. Individual bacterial strains have a distinct host range enabling nodulation of a limited set of legume species and vice versa. We show here that expression of Lotus japonicus Nfr1 and Nfr5 Nod-factor receptor genes in Medicago truncatula and L. filicaulis, extends their host range to include bacterial strains, Mesorhizobium loti or DZL, normally infecting L. japonicus. As a result, the symbiotic program is induced, nodules develop and infection threads are formed. Using L. japonicus mutants and domain swaps between L. japonicus and L. filicaulis NFR1 and NFR5, we further demonstrate that LysM domains of the NFR1 and NFR5 receptors mediate perception of the bacterial Nod-factor signal and that recognition depends on the structure of the lipochitin-oligosaccharide Nod-factor. We show that a single amino-acid variation in the LysM2 domain of NFR5 changes recognition of the Nod-factor synthesized by the DZL strain and suggests a possible binding site for bacterial lipochitin-oligosaccharide signal molecules.
Collapse
Affiliation(s)
- Simona Radutoiu
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Lene H Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben B Madsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anna Jurkiewicz
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Eigo Fukai
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Esben M H Quistgaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Anita S Albrektsen
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Euan K James
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Søren Thirup
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
| | - Jens Stougaard
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Aarhus, Denmark
- Laboratory of Gene Expression, Department of Molecular Biology, University of Aarhus, Gustav Wieds Vej 10, 8000 Aarhus C, Denmark. Tel.: +45 89 42 50 11; Fax: +45 86 20 12 22; E-mail:
| |
Collapse
|
23
|
Capoen W, Den Herder J, Rombauts S, De Gussem J, De Keyser A, Holsters M, Goormachtig S. Comparative transcriptome analysis reveals common and specific tags for root hair and crack-entry invasion in Sesbania rostrata. PLANT PHYSIOLOGY 2007; 144:1878-89. [PMID: 17600136 PMCID: PMC1949896 DOI: 10.1104/pp.107.102178] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The tropical legume Sesbania rostrata provides its microsymbiont Azorhizobium caulinodans with versatile invasion strategies to allow nodule formation in temporarily flooded habitats. In aerated soils, the bacteria enter via the root hair curling mechanism. Submergence prevents this epidermal invasion by accumulation of inhibiting concentrations of ethylene and, under these conditions, the bacterial colonization occurs via intercellular cortical infection at lateral root bases. The transcriptome of both invasion ways was compared by cDNA-amplified fragment length polymorphism analysis. Clusters of gene tags were identified that were specific for either epidermal or cortical invasion or were shared by both. The data provide insight into mechanisms that control infection and illustrate that entry via the epidermis adds a layer of complexity to rhizobial invasion.
Collapse
Affiliation(s)
- Ward Capoen
- Department of Plant Systems Biology, Flanders Institute for Biotechnology, Ghent University, B-9052 Ghent, Belgium
| | | | | | | | | | | | | |
Collapse
|
24
|
Yu JH, Mah JH, Seo JA. Growth and developmental control in the model and pathogenic aspergilli. EUKARYOTIC CELL 2006; 5:1577-84. [PMID: 17030989 PMCID: PMC1595332 DOI: 10.1128/ec.00193-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Jae-Hyuk Yu
- Department of Food Microbiology and Toxicology and Food Research Institute, University of Wisconsin, Madison, Madison, WI 53706, USA.
| | | | | |
Collapse
|
25
|
Seo JA, Guan Y, Yu JH. FluG-dependent asexual development in Aspergillus nidulans occurs via derepression. Genetics 2006; 172:1535-44. [PMID: 16387865 PMCID: PMC1456305 DOI: 10.1534/genetics.105.052258] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022] Open
Abstract
The asexual spore is one of the most crucial factors contributing to the fecundity and fitness of filamentous fungi. Although the developmental activator FluG was shown to be necessary for activation of asexual sporulation (conidiation) and production of the carcinogenic mycotoxin sterigmatocystin (ST) in the model filamentous fungus Aspergillus nidulans, the molecular mechanisms underlying the developmental switch have remained elusive. In this study, we report that the FluG-mediated conidiation in A. nidulans occurs via derepression. Suppressor analyses of fluG led to the identification of the sfgA gene encoding a novel protein with the Gal4-type Zn(II)2Cys6 binuclear cluster DNA-binding motif at the N terminus. Deletion (delta) and 31 other loss-of-function sfgA mutations bypassed the need for fluG in conidiation and production of ST. Moreover, both delta sfgA and delta sfgA delta fluG mutations resulted in identical phenotypes in growth, conidiation, and ST production, indicating that the primary role of FluG is to remove repressive effects imposed by SfgA. In accordance with the proposed regulatory role of SfgA, overexpression of sfgA inhibited conidiation and delayed/reduced expression of conidiation- and ST-specific genes. Genetic analyses demonstrated that SfgA functions downstream of FluG but upstream of transcriptional activators (FlbD, FlbC, FlbB, and BrlA) necessary for normal conidiation.
Collapse
Affiliation(s)
- Jeong-Ah Seo
- Department of Food Microbiology and Toxicology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
26
|
Bersoult A, Camut S, Perhald A, Kereszt A, Kiss GB, Cullimore JV. Expression of the Medicago truncatula DM12 gene suggests roles of the symbiotic nodulation receptor kinase in nodules and during early nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:869-76. [PMID: 16134899 DOI: 10.1094/mpmi-18-0869] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Medicago truncatula DMI2 gene encodes a receptorlike kinase required for establishing root endosymbioses. The DMI2 gene was shown to be expressed much more highly in roots and nodules than in leaves and stems. In roots, its expression was not altered by nitrogen starvation or treatment with lipochitooligosaccharidic Nod factors. Moreover, the DMI2 mRNA abundance in roots of the nfp, dmil, dmi3, nsp1, nsp2, and hcl symbiotic mutants was similar to the wild type, whereas lower levels in some dmi2 mutants could be explained by regulation by the nonsense-mediated decay, RNA surveillance mechanism. Using pDMI2::GUS fusions, the expression of DMI2 in roots appeared to be localized primarily in the cortical and epidermal cells of the younger, lateral roots and was not observed in the root apices. Following inoculation with Sinorhizobium meliloti, the DMI2 gene was induced in the nodule primordia, before penetration by the infection threads. No increased expression was seen in lateral-root primordia. In nodules, expression was observed primarily in a few cell layers of the pre-infection zone. These results are consistent with the DMI2 gene mediating Nod factor perception and transduction leading to rhizobial infection, not only in root epidermal cells but also during nodule development.
Collapse
Affiliation(s)
- Anne Bersoult
- Laboratoire des Interactions Plantes-Microorganismes, CNRS-INRA, BP52627, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | |
Collapse
|
27
|
Kuppusamy KT, Endre G, Prabhu R, Penmetsa RV, Veereshlingam H, Cook DR, Dickstein R, Vandenbosch KA. LIN, a Medicago truncatula gene required for nodule differentiation and persistence of rhizobial infections. PLANT PHYSIOLOGY 2004; 136:3682-91. [PMID: 15516512 PMCID: PMC527166 DOI: 10.1104/pp.104.045575] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/26/2004] [Accepted: 08/07/2004] [Indexed: 05/18/2023]
Abstract
Ethyl methanesulfonate mutagenesis of the model legume Medicago truncatula has previously identified several genes required for early steps in nodulation. Here, we describe a new mutant that is defective in intermediate steps of nodule differentiation. The lin (lumpy infections) mutant is characterized by a 4-fold reduction in the number of infections, all of which arrest in the root epidermis, and by nodule primordia that initiate normally but fail to mature. Genetic analyses indicate that the symbiotic phenotype is conferred by a single gene that maps to the lower arm of linkage group 1. Transcriptional markers for early Nod factor responses (RIP1 and ENOD40) are induced in lin, as is another early nodulin, ENOD20, a gene expressed during the differentiation of nodule primordia. By contrast, other markers correlated with primordium differentiation (CCS52A), infection progression (MtN6), or nodule morphogenesis (ENOD2 and ENOD8) show reduced or no induction in homozygous lin individuals. Taken together, these results suggest that LIN functions in maintenance of rhizobial infections and differentiation of nodules from nodule primordia.
Collapse
Affiliation(s)
- Kavitha T Kuppusamy
- Department of Plant Biology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Brewin NJ. Plant Cell Wall Remodelling in the Rhizobium–Legume Symbiosis. CRITICAL REVIEWS IN PLANT SCIENCES 2004; 23:293-316. [PMID: 0 DOI: 10.1080/07352680490480734] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
|
29
|
Patriarca EJ, Tatè R, Ferraioli S, Iaccarino M. Organogenesis of legume root nodules. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 234:201-62. [PMID: 15066376 DOI: 10.1016/s0074-7696(04)34005-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The N(2)-fixing nodules elicited by rhizobia on legume roots represent a useful model for studying plant development. Nodule formation implies a complex progression of temporally and spatially regulated events of cell differentiation/dedifferentiation involving several root tissues. In this review we describe the morphogenetic events leading to the development of these histologically well-structured organs. These events include (1) root hair deformation, (2) development and growth of infection threads, (3) induction of the nodule primordium, and (4) induction, activity, and persistence of the nodular meristem and/or of foci of meristematic activities. Particular attention is given to specific aspects of the symbiosis, such as the early stages of intracellular invasion and to differentiation of the intracellular form of rhizobia, called symbiosomes. These developmental aspects were correlated with (1) the regulatory signals exchanged, (2) the plant genes expressed in specific cell types, and (3) the staining procedures that allow the recognition of some cell types. When strictly linked with morphogenesis, the nodulation phenotypes of plant and bacterial mutants such as the developmental consequence of the treatment with metabolic inhibitors, metabolic intermediates, or the variation of physical parameters are described. Finally, some aspects of nodule senescence and of regulation of nodulation are discussed.
Collapse
Affiliation(s)
- Eduardo J Patriarca
- Institute of Genetics and Biophysics Adriano Buzzati-Traverso, Consiglio Nazionale delle Ricerche, 80125 Naples, Italy
| | | | | | | |
Collapse
|
30
|
Journet EP, van Tuinen D, Gouzy J, Crespeau H, Carreau V, Farmer MJ, Niebel A, Schiex T, Jaillon O, Chatagnier O, Godiard L, Micheli F, Kahn D, Gianinazzi-Pearson V, Gamas P. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis. Nucleic Acids Res 2002; 30:5579-92. [PMID: 12490726 PMCID: PMC140066 DOI: 10.1093/nar/gkf685] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2002] [Revised: 10/18/2002] [Accepted: 10/18/2002] [Indexed: 11/13/2022] Open
Abstract
We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.
Collapse
Affiliation(s)
- Etienne-Pascal Journet
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, CNRS-INRA, Laboratoire de Biométrie et Intelligence Artificielle, INRA, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
De Carvalho-Niebel F, Timmers ACJ, Chabaud M, Defaux-Petras A, Barker DG. The Nod factor-elicited annexin MtAnn1 is preferentially localised at the nuclear periphery in symbiotically activated root tissues of Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2002; 32:343-52. [PMID: 12410812 DOI: 10.1046/j.1365-313x.2002.01429.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Medicago truncatula MtAnn1 gene, encoding a putative annexin, is transcriptionally activated in root tissues in response to rhizobial Nod factors. To gain further insight into MtAnn1 function during the early stages of nodulation, we have examined in detail both spatio-temporal gene expression patterns and MtAnn1 activity and localisation in root tissues. Analysis of transgenic Medicago plants expressing a pMtAnn1-GUS fusion has revealed a novel pattern of transcription in both outer and inner cell layers of the root following either Nod factor-treatment or rhizobial inoculation. The highest gene expression levels were observed in the endodermis and outer cortex. These transgenic plants also revealed that MtAnn1 expression is associated with lateral root development and cell differentiation in the root apex independent of nodulation. By purifying recombinant MtAnn1 we were able to demonstrate that this plant annexin indeed possesses the calcium-dependent binding to acidic phospholipids typical of the annexin family. Antisera against recombinant MtAnn1 were then used to show that tissue-specific localisation of the MtAnn1 protein in Medicago roots matches the pMtAnn1-GUS expression pattern. Finally, both immunolabelling and in vivo studies using MtAnn1-GFP reporter fusions have revealed that MtAnn1 is cytosolic and in particular localises to the nuclear periphery in cortical cells activated during the early stages of nodulation. In the light of our findings, we discuss the possible role of this annexin in root tissues responding to symbiotic rhizobial signals.
Collapse
Affiliation(s)
- Fernanda De Carvalho-Niebel
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, INRA-CNRS UMR 215, BP 27, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | | | |
Collapse
|
32
|
Trevaskis B, Wandrey M, Colebatch G, Udvardi MK. The soybean GmN6L gene encodes a late nodulin expressed in the infected zone of nitrogen-fixing nodules. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:630-6. [PMID: 12118878 DOI: 10.1094/mpmi.2002.15.7.630] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Previously, we determined the N-terminal amino acid sequences of a number of putative peribacteroid membrane proteins from soybean. Here, we report the cloning of a gene, GmN6L, that encodes one of these proteins. The protein encoded by GmN6L is similar in sequence to MtN6, an early nodulin expressed in Medicago truncatula roots in response to infection by Sinorhizobium meliloti. The GmN6L gene was strongly expressed in mature nodules but not in other plant organs. GmN6L protein was first detected 2 weeks after inoculation with Bradyrhizobium japonicum and was limited to the infected zone of nodules. GmN6L protein was found in symbiosomes isolated from mature soybean nodules, both as a soluble protein and as a peripheral membrane protein bound to the peribacteroid membrane. These data indicate that GmN6L is a late nodulin, which is not involved in the infection process. Homology between GmN6L and FluG, a protein involved in signaling in Aspergillus nidulans, suggests that GmN6L may play a role in communication between the host and microsymbionts during symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Ben Trevaskis
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | | | | | | |
Collapse
|
33
|
D'Haeze W, Holsters M. Nod factor structures, responses, and perception during initiation of nodule development. Glycobiology 2002; 12:79R-105R. [PMID: 12107077 DOI: 10.1093/glycob/12.6.79r] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The onset of nodule development, the result of rhizobia-legume symbioses, is determined by the exchange of chemical compounds between microsymbiont and leguminous host plant. Lipo-chitooligosaccharidic nodulation (Nod) factors, secreted by rhizobia, belong to these signal molecules. Nod factors consist of an acylated chitin oligomeric backbone with various substitutions at the (non)reducing-terminal and/or nonterminal residues. They induce the formation and deformation of root hairs, intra- and extracellular alkalinization, membrane potential depolarization, changes in ion fluxes, early nodulin gene expression, and formation of nodule primordia. Nod factors play a key role during nodule initiation and act at nano- to picomolar concentrations. A correct chemical structure is required for induction of a particular plant response, suggesting that Nod factor-receptor interaction(s) precede(s) a Nod factor-induced signal transduction cascade. Current data on Nod factor structures and Nod factor-induced responses are highlighted as well as recent advances in the characterization of proteins, possibly involved in recognition of Nod factors by the host plant.
Collapse
Affiliation(s)
- Wim D'Haeze
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Gent, Belgium
| | | |
Collapse
|
34
|
D'Souza CA, Lee BN, Adams TH. Characterization of the role of the FluG protein in asexual development of Aspergillus nidulans. Genetics 2001; 158:1027-36. [PMID: 11454752 PMCID: PMC1461723 DOI: 10.1093/genetics/158.3.1027] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We showed previously that a DeltafluG mutation results in a block in Aspergillus nidulans asexual sporulation and that overexpression of fluG activates sporulation in liquid-submerged culture, a condition that does not normally support sporulation of wild-type strains. Here we demonstrate that the entire N-terminal region of FluG ( approximately 400 amino acids) can be deleted without affecting sporulation, indicating that FluG activity resides in the C-terminal half of the protein, which bears significant similarity with GSI-type glutamine synthetases. While FluG has no apparent role in glutamine biosynthesis, we propose that it has an enzymatic role in sporulation factor production. We also describe the isolation of dominant suppressors of DeltafluG(dsg) that should identify components acting downstream of FluG and thereby define the function of FluG in sporulation. The dsgA1 mutation also suppresses the developmental defects resulting from DeltaflbA and dominant activating fadA mutations, which both cause constitutive induction of the mycelial proliferation pathway. However, dsgA1 does not suppress the negative influence of these mutations on production of the aflatoxin precursor, sterigmatocystin, indicating that dsgA1 is specific for asexual development. Taken together, our studies define dsgA as a novel component of the asexual sporulation pathway.
Collapse
Affiliation(s)
- C A D'Souza
- Department of Biology, Texas A&M University, College Station, Texas 77843, USA.
| | | | | |
Collapse
|
35
|
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV. Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2001; 14:267-277. [PMID: 11277424 DOI: 10.1094/mpmi.2001.14.3.267] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Medicago truncatula contains a family of at least five genes related to AUX1 of Arabidopsis thaliana (termed MtLAX genes for Medicago truncatula-like AUX1 genes). The high sequence similarity between the encoded proteins and AUX1 implies that the MtLAX genes encode auxin import carriers. The MtLAX genes are expressed in roots and other organs, suggesting that they play pleiotropic roles related to auxin uptake. In primary roots, the MtLAX genes are expressed preferentially in the root tips, particularly in the provascular bundles and root caps. During lateral root and nodule development, the genes are expressed in the primordia, particularly in cells that were probably derived from the pericycle. At slightly later stages, the genes are expressed in the regions of the developing organs where the vasculature arises (central position for lateral roots and peripheral region for nodules). These results are consistent with MtLAX being involved in local auxin transport and suggest that auxin is required at two common stages of lateral root and nodule development: development of the primordia and differentiation of the vasculature.
Collapse
Affiliation(s)
- F de Billy
- Laboratoire de Biologie Moléculaire des Relations Plantes MIcroorganismes, INRA-CNRS, Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|