1
|
Thomas J, Kim HR, Rahmatallah Y, Wiggins G, Yang Q, Singh R, Glazko G, Mukherjee A. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PLoS One 2019; 14:e0217309. [PMID: 31120967 PMCID: PMC6532919 DOI: 10.1371/journal.pone.0217309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Major non-legume crops can form beneficial associations with nitrogen-fixing bacteria like Azospirillum brasilense. Our current understanding of the molecular aspects and signaling that occur between important crops like rice and these nitrogen-fixing bacteria is limited. In this study, we used an experimental system where the bacteria could colonize the plant roots and promote plant growth in wild type rice and symbiotic mutants (dmi3 and pollux) in rice. Our data suggest that plant growth promotion and root penetration is not dependent on these genes. We then used this colonization model to identify regulation of gene expression at two different time points during this interaction: at 1day post inoculation (dpi), we identified 1622 differentially expressed genes (DEGs) in rice roots, and at 14dpi, we identified 1995 DEGs. We performed a comprehensive data mining to classify the DEGs into the categories of transcription factors (TFs), protein kinases (PKs), and transporters (TRs). Several of these DEGs encode proteins that are involved in the flavonoid biosynthetic pathway, defense, and hormone signaling pathways. We identified genes that are involved in nitrate and sugar transport and are also implicated to play a role in other plant-microbe interactions. Overall, findings from this study will serve as an excellent resource to characterize the host genetic pathway controlling the interactions between non-legumes and beneficial bacteria which can have long-term implications towards sustainably improving agriculture.
Collapse
Affiliation(s)
- Jacklyn Thomas
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Ha Ram Kim
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Yasir Rahmatallah
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Grant Wiggins
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Qinqing Yang
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Raj Singh
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| | - Galina Glazko
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Arijit Mukherjee
- Department of Biology, University of Central Arkansas, Conway, Arkansas, United States of America
| |
Collapse
|
2
|
Kashyap P, Deswal R. A novel class I Chitinase from Hippophae rhamnoides: Indications for participating in ICE-CBF cold stress signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 259:62-70. [PMID: 28483054 DOI: 10.1016/j.plantsci.2017.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 05/23/2023]
Abstract
Plant chitinases are the members of PR (Pathogenesis related) proteins family and protect plants from biotic and abiotic stress. A novel chitinase HrCHI1 (Accession number JQ289153) of 954bp ORF encoding 317 amino acids protein was cloned, expressed and characterized from seabuckthorn, a cold/freeze tolerant shrub. The 3D structure (predicted with I-TASSER server) showed highest homology with Oryza sativa class I chitinase (PDB 2dkvA). Putative promoter region (obtained by genome walking) showed GCC box, E-boxes, the binding site for bHLH proteins and DRE elements, the CBF (C-repeat binding factor) binding site besides TATA and CAAT boxes. The gel shift assay with the nuclear extract indicated that the HrCHI1 might be participating in CBF/ERF dependent cold stress signaling pathway. The quantitative transcript profiling supported this observation as cold induced expression of HrCBF peaked earlier (at 1h) while HrCHI1 peaked latter (after 3h) indicating HrCHI1 expression might be induced by HrCBF. Further, HrCHI1 expression was methyl jasmonate (MeJa) dependent and salicylic acid (SA) independent. HrCHI1 was expressed in E. coli and purified using chitin affinity chromatography. It showed 512U/mg chitinase hydrolytic activity and resolved as a 34kDa spot with a slightly basic pI (8.5) on a 2-D gel. The E. coli cells containing recombinant chitinase showed higher rate of growth in cold in comparison with the cells containing the empty vector. In conclusion, we have isolated and characterized a cold responsive basic class I chitinase which is regulated by MeJa and seems to be functioning via CBF/ERF dependent cold stress signaling pathway.
Collapse
Affiliation(s)
- Prakriti Kashyap
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India
| | - Renu Deswal
- Molecular Plant Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, India.
| |
Collapse
|
3
|
Industrial Applications of Fungal Chitinases: An Update. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
4
|
Cloning, overexpression and functional characterization of a class III chitinase from Casuarina glauca nodules. Symbiosis 2016. [DOI: 10.1007/s13199-016-0403-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
5
|
Demina IV, Persson T, Santos P, Plaszczyca M, Pawlowski K. Comparison of the nodule vs. root transcriptome of the actinorhizal plant Datisca glomerata: actinorhizal nodules contain a specific class of defensins. PLoS One 2013; 8:e72442. [PMID: 24009681 PMCID: PMC3756986 DOI: 10.1371/journal.pone.0072442] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/09/2013] [Indexed: 11/18/2022] Open
Abstract
Actinorhizal root nodule symbioses are very diverse, and the symbiosis of Datisca glomerata has previously been shown to have many unusual aspects. In order to gain molecular information on the infection mechanism, nodule development and nodule metabolism, we compared the transcriptomes of D. glomerata roots and nodules. Root and nodule libraries representing the 3′-ends of cDNAs were subjected to high-throughput parallel 454 sequencing. To identify the corresponding genes and to improve the assembly, Illumina sequencing of the nodule transcriptome was performed as well. The evaluation revealed 406 differentially regulated genes, 295 of which (72.7%) could be assigned a function based on homology. Analysis of the nodule transcriptome showed that genes encoding components of the common symbiosis signaling pathway were present in nodules of D. glomerata, which in combination with the previously established function of SymRK in D. glomerata nodulation suggests that this pathway is also active in actinorhizal Cucurbitales. Furthermore, comparison of the D. glomerata nodule transcriptome with nodule transcriptomes from actinorhizal Fagales revealed a new subgroup of nodule-specific defensins that might play a role specific to actinorhizal symbioses. The D. glomerata members of this defensin subgroup contain an acidic C-terminal domain that was never found in plant defensins before.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Tomas Persson
- Department of Botany, Stockholm University, Stockholm, Sweden
| | - Patricia Santos
- Department of Plant Pathology, Michigan State University, East Lansing, Michigan, United States of America
| | | | | |
Collapse
|
6
|
Pawlowski K, Bogusz D, Ribeiro A, Berry AM. Progress on research on actinorhizal plants. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:633-638. [PMID: 32480917 DOI: 10.1071/fp11066] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 05/10/2011] [Indexed: 06/11/2023]
Abstract
In recent years, our understanding of the plant side of actinorhizal symbioses has evolved rapidly. No homologues of the common nod genes from rhizobia were found in the three Frankia genomes published so far, which suggested that Nod factor-like molecules would not be used in the infection of actinorhizal plants by Frankia. However, work on chimeric transgenic plants indicated that Frankia Nod factor equivalents signal via the same transduction pathway as rhizobial Nod factors. The role of auxin in actinorhizal nodule formation differs from that in legume nodulation. Great progress has been made in the analysis of pathogenesis-related and stress-related gene expression in nodules. Research on nodule physiology has shown the structural and metabolic diversity of actinorhizal nodules from different phylogenetic branches. The onset of large-scale nodule transcriptome analysis in different actinorhizal systems will provide access to more information on the symbiosis and its evolution.
Collapse
Affiliation(s)
| | - Didier Bogusz
- Groupe Rhizogenèse, Unité Mixte de Recherche Diversité et Adaptation des Plantes Cultivées, Institut de Recherche pour le Développement, 911 avenue Agropolis, BP 5045, 34394 Montpellier Cedex 5, France
| | - Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - Alison M Berry
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| |
Collapse
|
7
|
Ribeiro A, Gra A IS, Pawlowski K, Santos PC. Actinorhizal plant defence-related genes in response to symbiotic Frankia. FUNCTIONAL PLANT BIOLOGY : FPB 2011; 38:639-644. [PMID: 32480918 DOI: 10.1071/fp11012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 05/10/2011] [Indexed: 05/15/2023]
Abstract
Actinorhizal plants have become increasingly important as climate changes threaten to remake the global landscape over the next decades. These plants are able to grow in nutrient-poor and disturbed soils, and are important elements in plant communities worldwide. Besides that, most actinorhizal plants are capable of high rates of nitrogen fixation due to their capacity to establish root nodule symbiosis with N2-fixing Frankia strains. Nodulation is a developmental process that requires a sequence of highly coordinated events. One of these mechanisms is the induction of defence-related events, whose precise role in a symbiotic interaction remains to be elucidated. This review summarises what is known about the induction of actinorhizal defence-related genes in response to symbiotic Frankia and their putative function during symbiosis.
Collapse
Affiliation(s)
- Ana Ribeiro
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | - In S Gra A
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| | | | - Patr Cia Santos
- ECO-BIO/Tropical Research Institute, Av. da República (EAN), Quinta do Marquês, 2784-505 Oeiras, Portugal
| |
Collapse
|
8
|
Tapia G, Morales-Quintana L, Inostroza L, Acuña H. Molecular characterisation of Ltchi7, a gene encoding a Class III endochitinase induced by drought stress in Lotus spp. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:69-77. [PMID: 21143727 DOI: 10.1111/j.1438-8677.2009.00311.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Chitinases are enzymes that digest chitin molecules, present principally in insects and fungi. In plants, these enzymes play an important role in defence against pathogen attack, although they have also been described as induced by mechanical damage, ozone, heavy metals, cold, salinity, etc. Using an annealing control primer, we isolated a gene fragment whose translated sequence has high homology with a class III endochitinase. The gene, named Ltchi7, consisted of one ORF of 1005 bp, which codes for a peptide of 334 amino acids, including a deduced signal peptide of 27 amino acid that directs protein to the extracellular space. Phylogenetic analysis suggests that Ltchi7 is within a cluster that includes Sesbania rostrata, Medicago sativa and Glycine max class III endochitinases. This group is differentiated from other species of endochitinases by the presence of an additional extension in carboxy-terminal region. Moreover, in comparison with the majority of chitinases, Ltchi7 has two additional cysteine residues, which, according to 3D modelling studies, are very close. Gene expression analysis showed enhanced transcript abundance of this gene during drought stress in Lotus tenuis and Lotus japonicus, compared with growth under normal conditions. Furthermore, its expression is restricted to nodules and roots. Expression of this gene was also induced by salt stress, hydrogen peroxide and weakly with abscisic acid.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Chillán, Chile.
| | | | | | | |
Collapse
|
9
|
Islam MA, Sturrock RN, Williams HL, Ekramoddoullah AKM. Identification, characterization, and expression analyses of class II and IV chitinase genes from Douglas-fir seedlings infected by Phellinus sulphurascens. PHYTOPATHOLOGY 2010; 100:356-366. [PMID: 20205539 DOI: 10.1094/phyto-100-4-0356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Laminated root rot (LRR) disease, caused by the fungus Phellinus sulphurascens, is a major threat to coastal Douglas-fir (DF) (Pseudotsuga menziesii) forests in western North America. Understanding host-pathogen interactions of this pathosystem is essential to manage this important conifer root disease. Our research objectives were to identify DF pathogenesis-related (PR) genes and analyze their expression patterns over the course of infection. We constructed a cDNA library of Phellinus sulphurascens-infected DF seedling roots and sequenced a total of 3,600 random cDNA clones from this library. One of the largest groups of identified genes (203 cDNA clones) matched with chitinase genes reported in other plant species. We identified at least three class II and six class IV chitinase genes from DF seedlings. Quantitative reverse-transcriptase polymerase chain reaction analyses showed significant differential expression patterns locally in root tissues and systemically in needle tissues after fungal invasion. Nonetheless, there was a common trend in gene expression patterns for most of the chitinase genes: an upregulation within 12 h of pathogen inoculation followed by down-regulation within 2 to 3 days postinoculation (dpi), and then further upregulation within 5 to 7 dpi. Western immunoblot data showed differential accumulation of class IV chitinases in Phellinus sulphurascens-infected DF seedlings. Further detailed functional analyses will help us to understand the specific role of DF chitinases in defense against Phellinus sulphurascens infection.
Collapse
Affiliation(s)
- M A Islam
- Canadian Forest Service, Pacific Forestry Centre, Victoria, Canada.
| | | | | | | |
Collapse
|
10
|
Mastronunzio JE, Benson DR. Wild nodules can be broken: proteomics of Frankia in field-collected root nodules. Symbiosis 2010. [DOI: 10.1007/s13199-009-0030-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Characterization of four defense-related genes up-regulated in root nodules of Casuarina glauca. Symbiosis 2009. [DOI: 10.1007/s13199-009-0031-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Frettinger P, Derory J, Herrmann S, Plomion C, Lapeyrie F, Oelmüller R, Martin F, Buscot F. Transcriptional changes in two types of pre-mycorrhizal roots and in ectomycorrhizas of oak microcuttings inoculated with Piloderma croceum. PLANTA 2007; 225:331-40. [PMID: 17016715 DOI: 10.1007/s00425-006-0355-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Accepted: 06/20/2006] [Indexed: 05/09/2023]
Abstract
The formation of the ectomycorrhiza implies an alteration in gene expression of both the plant and fungal partners, a process which starts before the formation of any symbiotic interface. However, little is known on the regulation pattern occurring in different parts of the root system. Our experimental system consisting of a micropropagated oak with a hierarchical root system was shown to exhibit symbiosis functional traits prior to any mycorrhizal tissue differentiation after the inoculation with the basidiomycete Piloderma croceum. Using a cDNA array, the plant gene regulation was analyzed in the pre-mycorrhizal phase. Seventy-five transcripts showed differential expression in pre-mycorrhizal lateral and principal roots, and both root types exhibited different sets of responsive genes. For transcripts selected according to a statistical analysis, the alteration in gene expression was confirmed by RT-PCR and quantitative real-time PCR. Genes regulated in pre-mycorrhizal lateral roots displayed an almost identical expression in mycorrhizas. In contrast, genes regulated in pre-mycorrhizal principal roots were often regulated differently in ectomycorrhizas. Down-regulation affected most of the regulated genes involved in metabolism, whereas most of the regulated genes related to cell rescue functions, water regulation and defence response were up-regulated. Regulation of such genes could explain the increase of global resistance observed in mycorrhizal plants.
Collapse
Affiliation(s)
- Patrick Frettinger
- Department of Terrestrial Ecology, University of Leipzig, Institute of Biology I, Johannisallee 21-23, 04103, Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Frettinger P, Herrmann S, Lapeyrie F, Oelmüller R, Buscot F. Differential expression of two class III chitinases in two types of roots of Quercus robur during pre-mycorrhizal interactions with Piloderma croceum. MYCORRHIZA 2006; 16:219-223. [PMID: 16523351 DOI: 10.1007/s00572-006-0036-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2005] [Accepted: 01/09/2006] [Indexed: 05/07/2023]
Abstract
Expression of two plant chitinase genes, representing members of class III chitinases, was studied in Quercus robur roots during interactions in a pre-mycorrhizal stage with the ectomycorrhizal fungus Piloderma croceum. Chitinase gene expression was compared in lateral roots destined to form ectomycorrhiza, and in principal roots that are not directly involved in mycorrhizal interactions. The transcript level of the first chitinase (QrchitIII-1) was upregulated in lateral roots, whereas no significant differential expression was observed in principal roots. The second chitinase (QrchitIII-2) was regulated neither in lateral nor in principal roots in presence of the fungus. Because P. croceum did not induce significant chitinase responses in principal roots, the enhanced expression of QrchitIII-1 in lateral roots after inoculation may be related to some steps in symbiosis ontogenesis.
Collapse
Affiliation(s)
- Patrick Frettinger
- Department of Terrestrial Ecology, Institute of Botany I, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
- "Tree-Microbe Interactions Unit", Institut National de la Recherche Agronomique, Champenoux, 54280, France
- Institute of General Botany and Plant Physiology, University of Jena, Dornburger Straβe 159, 07743, Jena, Germany
| | - Sylvie Herrmann
- Department of Terrestrial Ecology, Institute of Botany I, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
- Institute of Ecology, University of Jena, Dornburger Straβe 159, 07743, Jena, Germany
| | - Frédéric Lapeyrie
- "Tree-Microbe Interactions Unit", Institut National de la Recherche Agronomique, Champenoux, 54280, France
| | - Ralf Oelmüller
- Institute of General Botany and Plant Physiology, University of Jena, Dornburger Straβe 159, 07743, Jena, Germany
| | - François Buscot
- Department of Terrestrial Ecology, Institute of Botany I, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
- Center for Environmental Research (UFZ), Department for Soil Ecology, Theodor-Lieser-Straβe 4, 06120, Halle, Germany.
| |
Collapse
|
14
|
Svistoonoff S, Laplaze L, Auguy F, Runions J, Duponnois R, Haseloff J, Franche C, Bogusz D. cg12 expression is specifically linked to infection of root hairs and cortical cells during Casuarina glauca and Allocasuarina verticillata actinorhizal nodule development. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:600-607. [PMID: 12848425 DOI: 10.1094/mpmi.2003.16.7.600] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
cg12 is an early actinorhizal nodulin gene from Casuarina glauca encoding a subtilisin-like serine protease. Using transgenic Casuarinaceae plants carrying cg12-gus and cg12-gfp fusions, we have studied the expression pattern conferred by the cg12 promoter region after inoculation with Frankia. cg12 was found to be expressed in root hairs and in root and nodule cortical cells containing Frankia infection threads. cg12 expression was also monitored after inoculation with ineffective Frankia strains, during mycorrhizae formation, and after diverse hormonal treatments. None of these treatments was able to induce its expression, therefore suggesting that cg12 expression is linked to plant cell infection by Frankia strains. Possible roles of cg12 in actinorhizal symbiosis are discussed.
Collapse
Affiliation(s)
- Sergio Svistoonoff
- Equipe Rhizogenèse, UMR 1098, Institut de Recherche pour le Développement, BP 64501, 34394 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|