1
|
Ayala FM, Hernández-Sánchez IE, Chodasiewicz M, Wulff BBH, Svačina R. Engineering a One Health Super Wheat. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:193-215. [PMID: 38857542 DOI: 10.1146/annurev-phyto-121423-042128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Wheat is the predominant crop worldwide, contributing approximately 20% of protein and calories to the human diet. However, the yield potential of wheat faces limitations due to pests, diseases, and abiotic stresses. Although conventional breeding has improved desirable traits, the use of modern transgenesis technologies has been limited in wheat in comparison to other crops such as maize and soybean. Recent advances in wheat gene cloning and transformation technology now enable the development of a super wheat consistent with the One Health goals of sustainability, food security, and environmental stewardship. This variety combines traits to enhance pest and disease resistance, elevate grain nutritional value, and improve resilience to climate change. In this review, we explore ways to leverage current technologies to combine and transform useful traits into wheat. We also address the requirements of breeders and legal considerations such as patents and regulatory issues.
Collapse
Affiliation(s)
- Francisco M Ayala
- Bioceres Crop Solutions, Rosario, Santa Fe, Argentina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Itzell Eurídice Hernández-Sánchez
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Monika Chodasiewicz
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Brande B H Wulff
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| | - Radim Svačina
- Plant Science Program, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia; ,
| |
Collapse
|
2
|
Cai L, Dang M, Yang Y, Mei R, Li F, Tao X, Palukaitis P, Beckett R, Miller WA, Gray SM, Xu Y. Naturally occurring substitution of an amino acid in a plant virus gene-silencing suppressor enhances viral adaptation to increasing thermal stress. PLoS Pathog 2023; 19:e1011301. [PMID: 37011127 PMCID: PMC10101640 DOI: 10.1371/journal.ppat.1011301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/13/2023] [Accepted: 03/16/2023] [Indexed: 04/05/2023] Open
Abstract
Cereal yellow dwarf virus (CYDV-RPV) encodes a P0 protein that functions as a viral suppressor of RNA silencing (VSR). The strength of silencing suppression is highly variable among CYDV-RPV isolates. In this study, comparison of the P0 sequences of CYDV-RPV isolates and mutational analysis identified a single C-terminal amino acid that influenced P0 RNA-silencing suppressor activity. A serine at position 247 was associated with strong suppressor activity, whereas a proline at position 247 was associated with weak suppressor activity. Amino acid changes at position 247 did not affect the interaction of P0 with SKP1 proteins from Hordeum vulgare (barley) or Nicotiana benthamiana. Subsequent studies found P0 proteins containing a P247 residue were less stable than the P0 proteins containing an S247 residue. Higher temperatures contributed to the lower stability and in planta and the P247 P0 proteins were subject to degradation via the autophagy-mediated pathway. A P247S amino acid residue substitution in P0 increased CYDV-RPV replication after expression in agroinfiltrated plant leaves and increased viral pathogenicity of P0 generated from the heterologous Potato virus X expression vector system. Moreover, an S247 CYDV-RPV could outcompete the P247 CYDV-RPV in a mixed infection in natural host at higher temperature. These traits contributed to increased transmission by aphid vectors and could play a significant role in virus competition in warming climates. Our findings underscore the capacity of a plant RNA virus to adapt to climate warming through minor genetic changes in gene-silencing suppressor, resulting in the potential for disease persistence and prevalence.
Collapse
Affiliation(s)
- Lina Cai
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | - Mingqing Dang
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | - Yawen Yang
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | - Ruoxin Mei
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | - Fan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Nowon-gu, Seoul, Republic of Korea
| | - Randy Beckett
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - W Allen Miller
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, Iowa, United States of America
| | - Stewart M Gray
- Plant Pathology and Plant-Microbe Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, New York, United States of America
- Emerging Pests and Pathogens Research Unit, USDA, ARS, Ithaca, New York, United States of America
| | - Yi Xu
- Department of Plant Pathology, Nanjing Agricultural University, Jiangsu Province, China
| |
Collapse
|
3
|
López AC, Giorgio EM, Vereschuk ML, Zapata PD, Luna MF, Alvarenga AE. Ilex paraguariensis Hosts Root-Trichoderma spp. with Plant-Growth-Promoting Traits: Characterization as Biological Control Agents and Biofertilizers. Curr Microbiol 2023; 80:120. [PMID: 36856863 DOI: 10.1007/s00284-023-03231-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/14/2023] [Indexed: 03/02/2023]
Abstract
In this study, the effect of native plant-growth-promoting microorganisms (PGPM) as bio-inoculants was assessed as an alternative to improve Ilex paraguariensis Saint Hilaire growth in the nursery. Fourteen Trichoderma strains isolated from yerba mate roots were evaluated in vitro for their potential as biological control agents (BCA) and PGPM. The PGPM properties were evaluated through the strain's antagonistic activity against three fungal pathogens (Alternaria sp., F. oxysporum, and F. solani) plus the production of extracellular cell-wall-degrading enzymes such as chitinase, β-1,3-glucanase, and cellulase. These results were used to calculate different PGPM indices to select the strains with the optimal properties. Four Trichoderma strains: T. asperelloides LBM193, LBM204, LBM206, and Trichoderma sp. LBM202, were selected based on their indirect and direct PGPM properties used in an inoculation assay on yerba mate plants in greenhouse conditions. A highly significant positive effect of bio-inoculation with these Trichoderma strains was observed in one-year-old yerba mate seedlings. Inoculated plants exhibited a greater height, chlorophyll content, and dry weight than un-inoculated plants; those treated with LBM193 manifested the best results. Yerba mate plants treated with LBM202 exhibited a healthy appearance and were more vigorous, showing potential for biocontrol agent. In conclusion, yerba mate seedlings in the Misiones region were found to have a reservoir of Trichoderma species that increases the yield of this crop in the nursery and protects them from adverse biotic and abiotic agents.
Collapse
Affiliation(s)
- Ana C López
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina.
- CONICET, Godoy Cruz 2290, CABA, Argentina.
| | - Ernesto M Giorgio
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
| | - Manuela L Vereschuk
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - Pedro D Zapata
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| | - María F Luna
- Centro de Investigación Y Desarrollo en Fermentaciones Industriales (CINDEFI), CCT-La Plata CONICET, CIC-PBA, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 Y 50 N° 227, C.P. 1900, Buenos Aires, Argentina
| | - Adriana E Alvarenga
- Universidad Nacional de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", Laboratorio de Biotecnología Molecular, Ruta Nacional 12 Km 7, 5, Misiones, C.P. 3300, Argentina
- CONICET, Godoy Cruz 2290, CABA, Argentina
| |
Collapse
|
4
|
Jones RAC, Sharman M, Trębicki P, Maina S, Congdon BS. Virus Diseases of Cereal and Oilseed Crops in Australia: Current Position and Future Challenges. Viruses 2021; 13:2051. [PMID: 34696481 PMCID: PMC8539440 DOI: 10.3390/v13102051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/03/2021] [Indexed: 12/22/2022] Open
Abstract
This review summarizes research on virus diseases of cereals and oilseeds in Australia since the 1950s. All viruses known to infect the diverse range of cereal and oilseed crops grown in the continent's temperate, Mediterranean, subtropical and tropical cropping regions are included. Viruses that occur commonly and have potential to cause the greatest seed yield and quality losses are described in detail, focusing on their biology, epidemiology and management. These are: barley yellow dwarf virus, cereal yellow dwarf virus and wheat streak mosaic virus in wheat, barley, oats, triticale and rye; Johnsongrass mosaic virus in sorghum, maize, sweet corn and pearl millet; turnip yellows virus and turnip mosaic virus in canola and Indian mustard; tobacco streak virus in sunflower; and cotton bunchy top virus in cotton. The currently less important viruses covered number nine infecting nine cereal crops and 14 infecting eight oilseed crops (none recorded for rice or linseed). Brief background information on the scope of the Australian cereal and oilseed industries, virus epidemiology and management and yield loss quantification is provided. Major future threats to managing virus diseases effectively include damaging viruses and virus vector species spreading from elsewhere, the increasing spectrum of insecticide resistance in insect and mite vectors, resistance-breaking virus strains, changes in epidemiology, virus and vectors impacts arising from climate instability and extreme weather events, and insufficient industry awareness of virus diseases. The pressing need for more resources to focus on addressing these threats is emphasized and recommendations over future research priorities provided.
Collapse
Affiliation(s)
- Roger A. C. Jones
- UWA Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Murray Sharman
- Queensland Department of Agriculture and Fisheries, Ecosciences Precinct, P.O. Box 267, Brisbane, QLD 4001, Australia;
| | - Piotr Trębicki
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Solomon Maina
- Grains Innovation Park, Agriculture Victoria, Department of Jobs, Precincts and Regions, Horsham, VIC 3400, Australia; (P.T.); (S.M.)
| | - Benjamin S. Congdon
- Department of Primary Industries and Regional Development, South Perth, WA 6151, Australia;
| |
Collapse
|
5
|
Aradottir GI, Crespo-Herrera L. Host plant resistance in wheat to barley yellow dwarf viruses and their aphid vectors: a review. CURRENT OPINION IN INSECT SCIENCE 2021; 45:59-68. [PMID: 33545435 DOI: 10.1016/j.cois.2021.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/07/2021] [Accepted: 01/18/2021] [Indexed: 05/24/2023]
Abstract
Cereal aphids are vectors of at least 11 species of Barley Yellow Dwarf Viruses (BYDV) in wheat that alone and/or in combination can cause between 5%-80% grain yield losses. They establish complex virus-vector interactions, with variations in specificity and transmission efficiency that need to be considered for control purposes. In general, these viruses and vectors have a global distribution, however, BYDV-PAV is the most prevalent and abundant virus species worldwide, likely due to its vectoring efficiency and the wide distribution of its primary vector Rhopalosiphum padi. Host plant resistance (HPR) is an environmentally friendly, efficient and cost-effective tool to reduce crop losses to biotic stressors such as aphids and viruses. Finding resistance sources is paramount to breed for HPR. Currently, most of the resistance identified for aphids and BYDV derives from wheat related and wild relative species. However, breeding for HPR to BYDV and its vectors has additional challenges besides the source identification, for example, the lack of selection tools for certain aphid species, which likely prevents the development of elite wheat germplasm carrying resistance to these constraints. Nonetheless, modern technologies such as high-throughput phenotyping, genomic and advanced statistical tools can contribute to make HPR to aphids and BYDV more efficient. In the present review we describe the main sources of resistance, discuss the challenges and opportunities for incorporating the resistance in wheat breeding programs and present a workflow to breed for BYDV and its vectors in wheat.
Collapse
Affiliation(s)
| | - Leonardo Crespo-Herrera
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico DF, Mexico
| |
Collapse
|
6
|
Yield Losses Caused by Barley Yellow Dwarf Virus-PAV Infection in Wheat and Barley: A Three-Year Field Study in South-Eastern Australia. Microorganisms 2021; 9:microorganisms9030645. [PMID: 33808907 PMCID: PMC8003756 DOI: 10.3390/microorganisms9030645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/25/2023] Open
Abstract
Barley yellow dwarf virus (BYDV) is transmitted by aphids and significantly reduces the yield and quality of cereals worldwide. Four experiments investigating the effects of barley yellow dwarf virus-PAV (BYDV-PAV) infection on either wheat or barley were conducted over three years (2015, 2017, and 2018) under typical field conditions in South-Eastern Australia. Plants inoculated with BYDV-PAV using viruliferous aphids (Rhopalosiphum padi) were harvested at maturity then grain yield and yield components were measured. Compared to the non-inoculated control, virus infection severely reduced grain yield by up to 84% (1358 kg/ha) in wheat and 64% (1456 kg/ha) in barley. The yield component most affected by virus infection was grain number, which accounted for a large proportion of the yield loss. There were no significant differences between early (seedling stage) and later (early-tillering stage) infection for any of the parameters measured (plant height, biomass, yield, grain number, 1000-grain weight or grain size) for either wheat or barley. Additionally, this study provides an estimated yield loss value, or impact factor, of 0.91% (72 kg/ha) for each one percent increase in natural BYDV-PAV background infection. Yield losses varied considerably between experiments, demonstrating the important role of cultivar and environmental factors in BYDV epidemiology and highlighting the importance of conducting these experiments under varying conditions for specific cultivar–vector–virus combinations.
Collapse
|
7
|
Moreno-Delafuente A, Morales I, Garzo E, Fereres A, Viñuela E, Medina P. Changes in melon plant phytochemistry impair Aphis gossypii growth and weight under elevated CO 2. Sci Rep 2021; 11:2186. [PMID: 33500456 PMCID: PMC7838277 DOI: 10.1038/s41598-021-81167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Elevated CO2 (eCO2) modifies plant primary and secondary metabolism that subsequently impacts herbivore insect performance due to changes in its nutritional requirements. This laboratory study evaluated interactions between Aphis gossypii Glover (Hemiptera: Aphididae) and melon (Cucumis melo L., Cucurbitaceae), previously acclimated two or six weeks to different CO2 levels, eCO2 (700 ppm) or ambient CO2 (400 ppm). Under eCO2, melon plants decreased nitrogen foliar concentration and increased carbon to nitrogen ratio, independently of acclimation period, significantly reducing the content of some amino acids (alanine, asparagine, glycine, isoleucine, lysine, serine, threonine, and valine) and increasing the carbohydrate (sucrose) content in melon leaves. The dilution in some essential amino acids for aphid nutrition could have aggravated the reduction in A. gossypii population growth reared on melon previously acclimated two weeks to eCO2, as well as the loss of aphid body mass from two successive generations of A. gossypii reared under eCO2 on plants previously acclimated two or six weeks to eCO2. The response to eCO2 of phloem feeders, such as aphids, is actually variable, but this study highlights a negative response of A. gossypii to this climate change driver. Potential implications on control of this pest in a global change scenario are discussed.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Ignacio Morales
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Elisa Garzo
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Alberto Fereres
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Pilar Medina
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain.
| |
Collapse
|
8
|
Moreno-Delafuente A, Viñuela E, Fereres A, Medina P, Trębicki P. Simultaneous Increase in CO 2 and Temperature Alters Wheat Growth and Aphid Performance Differently Depending on Virus Infection. INSECTS 2020; 11:E459. [PMID: 32707938 PMCID: PMC7469198 DOI: 10.3390/insects11080459] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/16/2020] [Accepted: 07/20/2020] [Indexed: 01/15/2023]
Abstract
Climate change impacts crop production, pest and disease pressure, yield stability, and, therefore, food security. In order to understand how climate and atmospheric change factors affect trophic interactions in agriculture, we evaluated the combined effect of elevated carbon dioxide (CO2) and temperature on the interactions among wheat (Triticum aestivum L.), Barley yellow dwarf virus species PAV (BYDV-PAV) and its vector, the bird cherry-oat aphid (Rhopalosiphum padi L.). Plant traits and aphid biological parameters were examined under two climate and atmospheric scenarios, current (ambient CO2 and temperature = 400 ppm and 20 °C), and future predicted (elevated CO2 and temperature = 800 ppm and 22 °C), on non-infected and BYDV-PAV-infected plants. Our results show that combined elevated CO2 and temperature increased plant growth, biomass, and carbon to nitrogen (C:N) ratio, which in turn significantly decreased aphid fecundity and development time. However, virus infection reduced chlorophyll content, biomass, wheat growth and C:N ratio, significantly increased R. padi fecundity and development time. Regardless of virus infection, aphid growth rates remained unchanged under simulated future conditions. Therefore, as R. padi is currently a principal pest in temperate cereal crops worldwide, mainly due to its role as a plant virus vector, it will likely continue to have significant economic importance. Furthermore, an earlier and more distinct virus symptomatology was highlighted under the future predicted scenario, with consequences on virus transmission, disease epidemiology and, thus, wheat yield and quality. These research findings emphasize the complexity of plant-vector-virus interactions expected under future climate and their implications for plant disease and pest incidence in food crops.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| | - Elisa Viñuela
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Alberto Fereres
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), C/Serrano 115 dpdo., 28006 Madrid, Spain;
| | - Pilar Medina
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (ETSIAAB-UPM), Avd. Puerta de Hierro 2-4, 28040 Madrid, Spain; (A.M.-D.); (E.V.); (P.M.)
- Associate Unit IVAS (CSIC-UPM): Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, 28006 Madrid, Spain
| | - Piotr Trębicki
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, 110 Natimuk Rd, Horsham, VIC 3400, Australia
| |
Collapse
|
9
|
Trebicki P. Climate change and plant virus epidemiology. Virus Res 2020; 286:198059. [PMID: 32561376 DOI: 10.1016/j.virusres.2020.198059] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/20/2020] [Accepted: 06/10/2020] [Indexed: 10/24/2022]
Abstract
Changes in global climate driven by anthropogenic activities, especially the burning of fossil fuels and deforestation, have been progressively increasing and are projected to intensify. Increasing concentrations of atmospheric carbon dioxide and temperature will have significant consequences for future food production, quality, distribution and security. The epidemiology of plant viruses will be altered in the future as a result of climate change. Elevated atmospheric carbon dioxide, increased temperature, changes to water availability and more frequent extreme weather events will have direct and indirect effects on plant viruses through changes in hosts and vectors. Predicted climatic changes will affect the distribution and survival of plant viruses and their vectors, which are expected to increase in many geographic regions. Furthermore, climate change can affect the virulence and pathogenicity of plant viruses, consequently increasing the frequency and scale of disease outbreaks. Thus, greater understanding of plant virus epidemiology is needed to better anticipate challenges ahead and to develop effective and robust control strategies that will aid in securing global food production for the future.
Collapse
Affiliation(s)
- Piotr Trebicki
- Agriculture Victoria, 110 Natimuk Rd, Horsham, Victoria, 3400, Australia.
| |
Collapse
|