1
|
Sun B, Zhou R, Zhu G, Xie X, Chai A, Li L, Fan T, Zhang S, Li B, Shi Y. The mechanisms of target and non-target resistance to QoIs in Corynespora Cassiicola. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105760. [PMID: 38225067 DOI: 10.1016/j.pestbp.2023.105760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024]
Abstract
Corynespora leaf spot, caused by Corynespora cassiicola, is a foliar disease in cucumber. While the application of quinone outside inhibitors (QoIs) is an effective measure for disease control, it carries the risk of resistance development. In our monitoring of trifloxystrobin resistance from 2008 to 2020, C. cassiicola isolates were categorized into three populations: sensitive isolates (S, 0.01 < EC50 < 0.83 μg/mL), moderately resistant isolates (MR, 1.18 < EC50 < 55.67 μg/mL), and highly resistant isolates (HR, EC50 > 56.98 μg/mL). The resistance frequency reached up to 90% during this period, with an increasing trend observed in the annual average EC50 values of all the isolates. Analysis of the CcCytb gene revealed that both MR and HR populations carried the G143A mutation. Additionally, we identified mitochondrial heterogeneity, with three isolates carrying both G143 and A143 in MR and HR populations. Interestingly, isolates with the G143A mutation (G143A-MR and G143A-HR) displayed differential sensitivity to QoIs. Further experiments involving gene knockout and complementation demonstrated that the major facilitator superfamily (MFS) transporter (CcMfs1) may contribute to the disparity in sensitivity to QoIs between the G143A-MR and G143A-HR populations. However, the difference in sensitivity caused by the CcMfs1 transporter is significantly lower than the differences observed between the two populations. This suggests additional mechanisms contributing to the variation in resistance levels among C. cassiicola isolates. Our study highlights the alarming level of trifloxystrobin resistance in C. cassiicola in China, emphasizing the need for strict prohibition of QoIs use. Furthermore, our findings shed light on the occurrence of both target and non-target resistance mechanisms associated with QoIs in C. cassiicola.
Collapse
Affiliation(s)
- Bingxue Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Rongjia Zhou
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Guangxue Zhu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Xuewen Xie
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Ali Chai
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Lei Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Tengfei Fan
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Shengping Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China
| | - Baoju Li
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
| | - Yanxia Shi
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100086, China.
| |
Collapse
|
2
|
Shrestha BK, Ward BM, Allen TW, da Silva ET, Zulli H, Dunford W, Doyle V, Bradley CA, Buckley B, Chen P, Clubb M, Kelly H, Koebernick J, Padgett B, Rupe JC, Sikora EJ, Spurlock TN, Thomas-Sharma S, Tolbert A, Zhou XG, Price PP. Characterization of QoI-Fungicide Resistance in Cercospora Isolates Associated with Cercospora Leaf Blight of Soybean from the Southern United States. PLANT DISEASE 2024; 108:149-161. [PMID: 37578368 DOI: 10.1094/pdis-03-23-0588-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Cercospora leaf blight (CLB) of soybean, caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is an economically important disease in the southern United States. Cultivar resistance to CLB is inconsistent; therefore, fungicides in the quinone outside inhibitor (QoI) class have been relied on to manage the disease. Approximately 620 isolates from plants exhibiting CLB were collected between 2018 and 2021 from 19 locations in eight southern states. A novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on two genes, calmodulin and histone h3, was developed to differentiate between the dominant species of Cercospora, C. cf. flagellaris, and C. cf. sigesbeckiae. A multilocus phylogenetic analysis of actin, calmodulin, histone h3, ITS rDNA, and transcription elongation factor 1-α was used to confirm PCR-RFLP results and identify remaining isolates. Approximately 80% of the isolates collected were identified as C. cf. flagellaris, while 15% classified as C. cf. sigesbeckiae, 2% as C. kikuchii, and 3% as previously unreported Cercospora species associated with CLB in the United States. PCR-RFLP of cytochrome b (cytb) identified QoI-resistance conferred by the G143A substitution. Approximately 64 to 83% of isolates were determined to be QoI-resistant, and all contained the G143A substitution. Results of discriminatory dose assays using azoxystrobin (1 ppm) were 100% consistent with PCR-RFLP results. To our knowledge, this constitutes the first report of QoI resistance in CLB pathogen populations from Alabama, Arkansas, Kentucky, Mississippi, Missouri, Tennessee, and Texas. In areas where high frequencies of resistance have been identified, QoI fungicides should be avoided, and fungicide products with alternative modes-of-action should be utilized in the absence of CLB-resistant soybean cultivars.
Collapse
Affiliation(s)
| | - Brian M Ward
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA
| | - Tom W Allen
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS
| | - Ernesto T da Silva
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA
| | - Hannah Zulli
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA
| | - Will Dunford
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA
| | - Vinson Doyle
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY
| | - Blair Buckley
- Red River Research Station, LSU AgCenter, Bossier, LA
| | - Pengyin Chen
- Fisher Delta Research Center, University of Missouri, Portageville, MO
| | - Michael Clubb
- Fisher Delta Research Center, University of Missouri, Portageville, MO
| | - Heather Kelly
- West Tennessee Research and Education Center, University of Tennessee, Jackson, TN
| | - Jenny Koebernick
- Department of Crop, Soil, and Environmental Science, Auburn University, Auburn, AL
| | - Boyd Padgett
- Dean Lee Research and Extension Center, LSU AgCenter, Alexandria, LA
| | - John C Rupe
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR
| | - Ed J Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL
| | - Terry N Spurlock
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR
| | - Sara Thomas-Sharma
- Department of Plant Pathology and Crop Physiology, LSU AgCenter, Baton Rouge, LA
| | - Amanda Tolbert
- Department of Crop, Soil, and Environmental Science, University of Arkansas, Fayetteville, AR
| | - Xin-Gen Zhou
- Research and Extension Center, Texas A&M University, Beaumont, TX
| | - Paul P Price
- Macon Ridge Research Station, LSU AgCenter, Winnsboro, LA
| |
Collapse
|
3
|
Deng Y, Wang T, Zhao P, Du Y, Zhang L, Qi Z, Ji M. Sensitivity to 12 Fungicides and Resistance Mechanism to Trifloxystrobin, Carbendazim, and Succinate Dehydrogenase Inhibitors in Cucumber Corynespora Leaf Spot ( Corynespora cassiicola). PLANT DISEASE 2023; 107:3783-3791. [PMID: 37189041 DOI: 10.1094/pdis-04-23-0615-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Corynespora cassiicola is the causal agent of cucumber Corynespora leaf spot, which affects many economically important plant species. Chemical control of this disease is hampered by the common development of fungicide resistance. In this study, 100 isolates from Liaoning Province were collected, and their sensitivity to 12 fungicides was determined. All the isolates (100%) were resistant to trifloxystrobin and carbendazim, and 98% were resistant to fluopyram, boscalid, pydiflumetofen, isopyrazam, and fluxapyroxad. However, none were resistant to propiconazole, prochloraz, tebuconazole, difenoconazole, and fludioxonil. The Cytb gene of trifloxystrobin-resistant isolates encoded the G143A mutation, whereas the β-tubulin gene of carbendazim-resistant isolates encoded the E198A and E198A and M163I mutations. Mutations in SdhB-I280V, SdhC-S73P, SdhC-H134R, SdhD-D95E, and SdhD-G109V were associated with resistance to the succinate dehydrogenase inhibitors (SDHIs). Trifloxystrobin, carbendazim, and fluopyram were barely effective on the resistant isolates, whereas fludioxonil and prochloraz were effective on the isolates that were resistant to the quinone outside inhibitors (QoIs), SDHIs, and benzimidazoles. Ultimately, this study demonstrates that fungicide resistance seriously threatens the effective control of Corynespora leaf spot.
Collapse
Affiliation(s)
- Yunyan Deng
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Tao Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Ping Zhao
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
- State Key Laboratory of the Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang 110021, China
| | - Ying Du
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - LuLu Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhiqui Qi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingshan Ji
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
4
|
Poti T, Thitla T, Imaiam N, Arunothayanan H, Doungsa-Ard C, Kongtragoul P, Nalumpang S, Akimitsu K. Isolates of Colletotrichum truncatum with Resistance to Multiple Fungicides from Soybean in Northern Thailand. PLANT DISEASE 2023; 107:2736-2750. [PMID: 36691275 DOI: 10.1094/pdis-08-22-1882-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In Thailand, four systemic fungicides-carbendazim (Car), azoxystrobin (Azo), difenoconazole (Dif), and penthiopyrad (Pen)-are commonly used to control soybean anthracnose caused by Colletotrichum truncatum; however, the pathogen has developed resistance. From 2019 to 2020, fungicide resistance in C. truncatum from fields in Chiang Rai and Chiang Mai was monitored. In tests of 85 C. truncatum isolates for resistance to multiple fungicides, 15.3% were CarRAzoR, 34.1% were triple resistant (CarRAzoRDifR or CarRAzoRPenR), and 50.6% were CarRAzoRDifRPenR. Surprisingly, all isolates tested had lost their sensitivity to one or more of the fungicides tested. The carbendazim-resistant isolates carried a point mutation in the β-tubulin gene at codon 198 (E198A) or 200 (F200Y), and all azoxystrobin-resistant isolates had a mutation in the cytochrome b gene at codon 143 (G143A) or 129 (F129L). Moreover, a novel mutation at codon 208 (S208Y) in the gene encoding succinate dehydrogenase subunit B was detected in all of the isolates highly resistant to penthiopyrad. No mutation linked with difenoconazole resistance was detected in the genes encoding cytochrome P450 sterol 14α-demethylase. To the best of our knowledge, this is the first report of C. truncatum isolates resistant to multiple fungicides and serves as a warning to take measures to prevent the occurrence and distribution of these multiple-fungicide-resistant populations in soybean fields.
Collapse
Affiliation(s)
- Teeranai Poti
- Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- The United Graduated School of Agricultural Sciences, Ehime University, Ehime 790-8577, Japan
| | - Tanapol Thitla
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Naphatsawan Imaiam
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Chanintorn Doungsa-Ard
- Department of Agriculture, Plant Pathology Research Group, Plant Protection Research and Development Office, Bangkok 10900, Thailand
| | - Pornprapa Kongtragoul
- Department of Agricultural Technology, King Mongkut's Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon 86160, Thailand
| | - Sarunya Nalumpang
- Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kazuya Akimitsu
- Faculty of Agriculture, Kagawa University, Kagawa 761-0795, Japan
- The United Graduated School of Agricultural Sciences, Ehime University, Ehime 790-8577, Japan
| |
Collapse
|
5
|
Li H, Barlow W, Dixon E, Amsden BF, Hirsch RL, Pfeufer EE. Molecular Identification of Mutations Conferring Resistance to Azoxystrobin in Cercospora nicotianae. PLANT DISEASE 2021; 105:1272-1280. [PMID: 32954981 DOI: 10.1094/pdis-02-20-0441-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cercospora nicotianae, the causal agent of frogeye leaf spot (FLS) of tobacco, has been exposed to quinone outside inhibitor (QoI) fungicides for more than a decade through azoxystrobin applications targeting other major foliar diseases. From 2016 to 2018, a total of 124 isolates were collected from tobacco fields throughout Kentucky. Sensitivity of these isolates to azoxystrobin was previously characterized by determining the effective concentration to inhibit 50% conidial germination (EC50). Based on azoxystrobin EC50, isolates were categorized into three discrete groups: high sensitivity (<0.08 µg/ml), moderate sensitivity (0.14 to 0.64 µg/ml), and low sensitivity (>1.18 µg/ml). Variability in sensitivity in a limited number of C. nicotianae isolates was previously shown to be a result of resistance mutations in the fungicide target gene. To improve understanding of C. nicotianae cytochrome b (cytb) structure, the gene was cloned from three isolates representing each EC50 group, and sequences were compared. Our analysis showed that cytb gene in C. nicotianae consists of 1,161 nucleotides encoding 386 amino acids. The cytb sequence among the cloned isolates was identical with the exception of the F129L and G143A point mutations. To more rapidly determine the resistance status of C. nicotianae isolates to azoxystrobin, a polymerase chain reaction (PCR) assay was developed to screen for mutations. According to this assay, 80% (n = 99) of tested C. nicotianae isolates carried an F129L mutation and were moderately resistant to azoxystrobin, and 7% (n = 9) carried the G143A mutation and were highly resistant. A receiver operating characteristic curve analysis suggested the PCR assay was a robust diagnostic tool to identify C. nicotianae isolates with different sensitivity to azoxystrobin in Kentucky tobacco production. The prevalence of both the F129L and G143A mutations in C. nicotianae from Kentucky differs from that of other pathosystems where resistance to QoI fungicides has been identified, in which the majority of sampled isolates of the pathogen species have a broadly occurring cytb mutation.
Collapse
Affiliation(s)
- Hua Li
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - William Barlow
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Edward Dixon
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | | | - R Louis Hirsch
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| | - Emily E Pfeufer
- Department of Plant Pathology, University of Kentucky, Lexington, KY 40546
| |
Collapse
|
6
|
Matsuzaki Y, Uda Y, Kurahashi M, Iwahashi F. Microtiter plate test using liquid medium is an alternative method for monitoring metyltetraprole sensitivity in Cercospora beticola. PEST MANAGEMENT SCIENCE 2021; 77:1226-1234. [PMID: 33051963 PMCID: PMC7894156 DOI: 10.1002/ps.6133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/14/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Metyltetraprole is a new quinone outside inhibitor (QoI) fungicide showing potent activity against QoI-resistant fungi that possess the G143A cytochrome b mutation, which confers resistance to existing QoIs such as trifloxystrobin. For its sustainable use, monitoring of metyltetraprole sensitivity is necessary and the establishment of appropriate methodology is important in each pathogen species. RESULTS In Cercospora beticola, the causal agent of sugar beet leaf spot, some isolates were less sensitive to metyltetraprole (EC50 > 1 mg L-1 , higher than the saturated concentration) using the common agar plate method, even with 100 mg L-1 salicylhydroxamic acid, an alternative oxidase inhibitor. However, microtiter tests (EC50 < 0.01 mg L-1 ), conidial germination tests (EC50 < 0.01 mg L-1 ) and in planta tests (>80% control at 75 mg L-1 run-off spraying) confirmed that all tested isolates were highly sensitive to metyltetraprole. For trifloxystrobin, G143A mutants were clearly resistant upon microtiter plate tests (median EC50 > 2 mg L-1 ) and distinct from wild-type isolates (median EC50 < 0.01 mg L-1 ). Notably, mycelium fragments were usable for the microtiter plate tests and the test was applicable for isolates that do not form sufficient conidia. Our monitoring study by microtiter plate tests did not indicate the presence of metyltetraprole-resistant C. beticola isolates in populations in Hokkaido, Japan. CONCLUSION The microtiter tests were revealed to be useful for monitoring the sensitivity of C. beticola to metyltetraprole and trifloxystrobin. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuichi Matsuzaki
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Yukie Uda
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| | - Makoto Kurahashi
- Makabe Experimental FarmSumitomo Chemical Co., LtdSakuragawaJapan
| | - Fukumatsu Iwahashi
- Health and Crop Sciences Research LaboratorySumitomo Chemical Co., LtdTakarazukaJapan
| |
Collapse
|