1
|
Buonaurio R, Moretti C, Catara V, Hulin MT, Sessa G, Sundin GW. Editorial: Molecular interactions between bacterial pathogens and plants: selected contributions to the 14th International Conference on Plant Pathogenic Bacteria (14th ICPPB). FRONTIERS IN PLANT SCIENCE 2023; 14:1345785. [PMID: 38146274 PMCID: PMC10749295 DOI: 10.3389/fpls.2023.1345785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/27/2023]
Affiliation(s)
- Roberto Buonaurio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Vittoria Catara
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Michelle T. Hulin
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Guido Sessa
- School of Plant Sciences and Food Security, Tel-Aviv University, Tel-Aviv, Israel
| | - George W. Sundin
- Department of Plant Soil & Microbial Sci, Michigan State University, E Lansing, MI, United States
| |
Collapse
|
2
|
Orfei B, Pothier JF, Fenske L, Blom J, Moretti C, Buonaurio R, Smits THM. Race-specific genotypes of Pseudomonas syringae pv. tomato are defined by the presence of mobile DNA elements within the genome. FRONTIERS IN PLANT SCIENCE 2023; 14:1197706. [PMID: 37476164 PMCID: PMC10354423 DOI: 10.3389/fpls.2023.1197706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Pseudomonas syringae pv. tomato is the causal agent of bacterial speck of tomato, an important disease that results in severe crop production losses worldwide. Currently, two races within phylogroup 01a (PG01a) are described for this pathogen. Race 0 strains have avirulence genes for the expression of type III system-associated effectors AvrPto1 and AvrPtoB, that are recognized and targeted by the effector-triggered immunity in tomato cultivars having the pto race-specific resistance gene. Race 1 strains instead lack the avrPto1 and avrPtoB genes and are therefore capable to aggressively attack all tomato cultivars. Here, we have performed the complete genome sequencing and the analysis of P. syringae pv. tomato strain DAPP-PG 215, which was described as a race 0 strain in 1996. Our analysis revealed that its genome comprises a 6.2 Mb circular chromosome and two plasmids (107 kb and 81 kb). The results indicate that the strain is phylogenetically closely related to strains Max13, K40, T1 and NYS-T1, all known race 1 strains. The chromosome of DAPP-PG 215 encodes race 1-associated genes like avrA and hopW1 and lacks race 0-associated genes like hopN1, giving it a race 1 genetic background. However, the genome harbors a complete ortholog of avrPto1, which allows the strain to display a race 0 phenotype. Comparative genomics with several PG01a genomes revealed that mobile DNA elements are rather involved in the evolution of the two different races.
Collapse
Affiliation(s)
- Benedetta Orfei
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| | - Linda Fenske
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Giessen, Germany
| | - Chiaraluce Moretti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Roberto Buonaurio
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali (DSA3), Università degli Studi di Perugia, Perugia, Italy
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences ZHAW, Wädenswil, Switzerland
| |
Collapse
|
3
|
Ruinelli M, Blom J, Smits THM, Pothier JF. Comparative Genomics of Prunus-Associated Members of the Pseudomonas syringae Species Complex Reveals Traits Supporting Co-evolution and Host Adaptation. Front Microbiol 2022; 13:804681. [PMID: 35592008 PMCID: PMC9111521 DOI: 10.3389/fmicb.2022.804681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Members of the Pseudomonas syringae species complex cause symptoms that are ranging from leaf spots to cankers on a multitude of plant species, including some of the genus Prunus. To date, a total of two species of the P. syringae species complex and six different pathovars have been associated with diseases on Prunus spp., which were shown to belong to different phylogenetic units (phylogroups, PG) based on sequence similarity of housekeeping genes or whole genomes, suggesting that virulence to Prunus spp. may be the result of convergent pathoadaptation. In this study, a comparative genomics approach was used to determine genes significantly associated with strains isolated from Prunus spp. across a phylogeny of 97 strains belonging to the P. syringae species complex. Our study revealed the presence of a set of orthologous proteins which were significantly associated with strains isolated from Prunus spp. than in strains isolated from other hosts or from non-agricultural environments. Among them, the type III effector HopAY predicted to encode for a C58 cysteine protease was found to be highly associated with strains isolated from Prunus spp. and revealed patterns supporting co-evolution and host adaptation.
Collapse
Affiliation(s)
- Michela Ruinelli
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Theo H. M. Smits
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resources Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| |
Collapse
|
4
|
Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, Maviane-Macia F, Lindeberg M, Saha S, Strickler SR, Feder A, Giovannoni JJ, Smart CD, Peeters N, Martin GB. The Ptr1 Locus of Solanum lycopersicoides Confers Resistance to Race 1 Strains of Pseudomonas syringae pv. tomato and to Ralstonia pseudosolanacearum by Recognizing the Type III Effectors AvrRpt2 and RipBN. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:949-960. [PMID: 30785360 DOI: 10.1094/mpmi-01-19-0018-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Race 1 strains of Pseudomonas syringae pv. tomato, which cause bacterial speck disease of tomato, are becoming increasingly common and no simply inherited genetic resistance to such strains is known. We discovered that a locus in Solanum lycopersicoides, termed Pseudomonas tomato race 1 (Ptr1), confers resistance to race 1 P. syringae pv. tomato strains by detecting the activity of type III effector AvrRpt2. In Arabidopsis, AvrRpt2 degrades the RIN4 protein, thereby activating RPS2-mediated immunity. Using site-directed mutagenesis of AvrRpt2, we found that, like RPS2, activation of Ptr1 requires AvrRpt2 proteolytic activity. Ptr1 also detected the activity of AvrRpt2 homologs from diverse bacteria, including one in Ralstonia pseudosolanacearum. The genome sequence of S. lycopersicoides revealed no RPS2 homolog in the Ptr1 region. Ptr1 could play an important role in controlling bacterial speck disease and its future cloning may shed light on an example of convergent evolution for recognition of a widespread type III effector.
Collapse
Affiliation(s)
- Carolina Mazo-Molina
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- 2Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Samantha Mainiero
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Sarah R Hind
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Christine M Kraus
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Mishi Vachev
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | | | - Magdalen Lindeberg
- 2Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Surya Saha
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Susan R Strickler
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - Ari Feder
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
| | - James J Giovannoni
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- 4Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY 14853, U.S.A
| | - Christine D Smart
- 2Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Nemo Peeters
- 3LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Gregory B Martin
- 1Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, U.S.A
- 2Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- 5Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
5
|
Kraus CM, Mazo-Molina C, Smart CD, Martin GB. Pseudomonas syringae pv. tomato Strains from New York Exhibit Virulence Attributes Intermediate Between Typical Race 0 and Race 1 Strains. PLANT DISEASE 2017; 101:1442-1448. [PMID: 30678591 DOI: 10.1094/pdis-03-17-0330-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial speck disease, caused by Pseudomonas syringae pv. tomato, is a persistent problem for fresh-market tomato growers in New York. Race 0 strains of this pathogen express either or both of the type III effectors AvrPto or AvrPtoB, which are recognized by tomato varieties expressing the Pto resistance gene. Pto encodes a protein kinase that activates the host immune system, thereby inhibiting bacterial multiplication and preventing disease development. Race 1 P. syringae pv. tomato strains do not express these effectors and are virulent on tomato whether or not the variety expresses Pto. Very few fresh-market tomato varieties have the Pto gene. We collected six P. syringae pv. tomato strains from naturally infected tomato plants across New York in 2015 and characterized them for their virulence and for the presence of specific effectors. In experiments conducted in the greenhouse, all strains reached population sizes in Pto-expressing tomato leaves that were intermediate between typical race 0 and race 1 strains. This phenotype has not been observed previously and suggests that the strains are recognized by Pto but such recognition is compromised by another P. syringae pv. tomato factor. The strains were found to encode avrPto, which is transcribed and translated. They also express avrPtoB although, as reported for other P. syringae pv. tomato strains, protein expression for this effector was not detectable. Deletion of avrPto from a representative New York strain allowed it to reach high populations in Pto-expressing tomato varieties, without compromising its virulence on susceptible tomato plants. Collectively, our data suggest that introgression of the Pto gene into fresh-market tomato varieties could enhance protection against extant P. syringae pv. tomato strains.
Collapse
Affiliation(s)
- Christine M Kraus
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Carolina Mazo-Molina
- Boyce Thompson Institute for Plant Research, Ithaca, NY 14853, and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, and Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University
| |
Collapse
|
6
|
Sundin GW, Wang N, Charkowski AO, Castiblanco LF, Jia H, Zhao Y. Perspectives on the Transition From Bacterial Phytopathogen Genomics Studies to Applications Enhancing Disease Management: From Promise to Practice. PHYTOPATHOLOGY 2016; 106:1071-1082. [PMID: 27183301 DOI: 10.1094/phyto-03-16-0117-fi] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The advent of genomics has advanced science into a new era, providing a plethora of "toys" for researchers in many related and disparate fields. Genomics has also spawned many new fields, including proteomics and metabolomics, furthering our ability to gain a more comprehensive view of individual organisms and of interacting organisms. Genomic information of both bacterial pathogens and their hosts has provided the critical starting point in understanding the molecular bases of how pathogens disrupt host cells to cause disease. In addition, knowledge of the complete genome sequence of the pathogen provides a potentially broad slate of targets for the development of novel virulence inhibitors that are desperately needed for disease management. Regarding plant bacterial pathogens and disease management, the potential for utilizing genomics resources in the development of durable resistance is enhanced because of developing technologies that enable targeted modification of the host. Here, we summarize the role of genomics studies in furthering efforts to manage bacterial plant diseases and highlight novel genomics-enabled strategies heading down this path.
Collapse
Affiliation(s)
- George W Sundin
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Nian Wang
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Amy O Charkowski
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Luisa F Castiblanco
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Hongge Jia
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| | - Youfu Zhao
- First and fourth authors: Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing; second and fifth authors: Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Science, University of Florida, Lake Alfred; third author: Department of Plant Pathology, University of Wisconsin-Madison; sixth author: Department of Crop Sciences, University of Illinois at Urbana-Champaign
| |
Collapse
|
7
|
Bull CT, Koike ST. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:157-80. [PMID: 26002289 DOI: 10.1146/annurev-phyto-080614-120122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management in agricultural systems. This knowledge is critical for growers, diagnosticians, extension agents, and others dealing with crops. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that are often not used by those who are diagnosing field problems. Modern molecular tools for fingerprinting and sequencing allow for pathogen identification in the absence of distinguishing or conveniently tested phenotypic characteristics. These methods are also useful in studying the etiology and epidemiology of phytopathogenic bacteria from epidemics, as was done in numerous studies conducted in California's Salinas Valley. Multilocus and whole-genome sequence analyses are becoming the cornerstones of studies of microbial diversity and bacterial taxonomy. Whole-genome sequence analysis needs to become adequately accessible, automated, and affordable in order to be used routinely for identification and epidemiology. The power of molecular tools in accurately identifying bacterial pathogenesis is therefore of value to the farmer, diagnostician, phytobacteriologist, and taxonomist.
Collapse
Affiliation(s)
- Carolee T Bull
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905;
| | | |
Collapse
|