1
|
Górzyńska K, Olejniczak P, Węgrzyn E. The fungus Clonostachys epichloë alters the influence of the Epichloë endophyte on seed germination and the biomass of Puccinellia distans grass. Front Microbiol 2023; 14:1146061. [PMID: 37434716 PMCID: PMC10330949 DOI: 10.3389/fmicb.2023.1146061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 06/08/2023] [Indexed: 07/13/2023] Open
Abstract
The fungal grass endophyte Epichloë typhina (Pers.) Tul. & C. Tul. (Ascomycota: Clavicipitaceae) grows intercellulary in aerial plant parts and reproduces asexually by invading host seeds. In this phase, it enhances seed production and germination, which accelerates its vertical spread. This relationship may be distorted by other seed-born fungi, whose spread is not so directly dependent on the success of the grass. Recently, the fungus Clonostachys epichloë Schroers has been observed on Puccinellia distans (Jacq.) Parl seeds originating from grass clumps infested with stromata, sexual structures of Epichloë typhina that are formed in spring on some host culms, preventing flower and seed development ('choke disease'). C. epichloë shows mycoparasitic activity toward Epichloë stromata by reducing the production of ascospores, which are responsible for horizontal transmission of the fungus. The aim of this study was to investigate the effect of seed-borne C. epichloë on seed germination, as well as the size and weight of P. distans seedlings and to examine whether C. epichloë alters the influence of Epichloë in the early developmental stages of P. distans. The results showed that if C. epichloë acts on seeds together with E. typhina endophytes, the seeds were negatively affected due to the elimination of the positive effect of the latter in terms of both seed germination rate and seedling length. At the same time, C. epichloë increased the proportion of E. typhina-untreated germinated seeds. Additionally, only the joint action of the two fungi, E. typhina and C. epichloë, effectively stimulated seedling dry mass; the presence of E. typhina alone was not sufficient to noticeably affect seedling size. Based on the increasing commonality of C. epichloë on Epichloë stromata, as well as its potential to be used in biocontrol of 'choke disease', we should take a closer look at this fungus, not only in terms of its mycoparasitic ability, but also in terms of its cumulative impact on the whole Epichloë-grass system.
Collapse
Affiliation(s)
- Karolina Górzyńska
- Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| | - Paweł Olejniczak
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Ewa Węgrzyn
- Department of Systematic and Environmental Botany, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
2
|
Li B, Zheng Y, Cai Y, Liu J, Wang R, Cui G, Li Y, Meng L. Identification and Assessment of a Biocontrol Agent, Ochrobactrum intermedium I-5, for Management of Alfalfa Root Rot Caused by Fusarium tricinctum. PHYTOPATHOLOGY 2021; 111:1927-1934. [PMID: 33851861 DOI: 10.1094/phyto-12-20-0549-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Alfalfa root rot caused by Fusarium tricinctum is one of the most important soilborne diseases, resulting in significant losses to alfalfa agriculture worldwide. Fungicides used in management of the disease affect the environment and human health. In this study, a strain of Ochrobactrum intermedium (I-5), isolated from alfalfa rhizosphere soil, exhibited strong antifungal activity against a number of causative pathogens of alfalfa root rot and showed the strongest antagonistic activity against F. tricinctum (a longest radius/shortest radius ratio of 3.09). When applied at 10%, a filtrate of the strain liquid culture significantly reduced the spore production and germination and mycelial growth of F. tricinctum, and the inhibition rates were 76.67, 78.93, and 55.77%, respectively. Furthermore, a filtrate and suspension of the strain, when applied at 10%, reduced alfalfa root rot by >73% in repeated experiments. The strain clearly promoted the activities of invertase, urease, cellulose, and neutral phosphatase in alfalfa rhizosphere soil and significantly reduced the damage to rhizosphere soil quality attributable to alfalfa root rot. Moreover, the strain clearly promoted the growth of alfalfa without causing any evident damage to plants. The active substance produced by the strain was insensitive to heat and ultraviolet irradiation and displayed optimal efficacy at pH 8. To the best of our knowledge, this is the first study describing the use of O. intermedium for the biological control of alfalfa root rot. O. intermedium (I-5) has potential for application in the control of alfalfa root rot and improvement of the quality of cultivated alfalfa.
Collapse
Affiliation(s)
- Bing Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yanyan Zheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Yanan Cai
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Jinxin Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Ruiting Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggang Li
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lu Meng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
3
|
Hu J, Zheng M, Dang S, Shi M, Zhang J, Li Y. Biocontrol Potential of Bacillus amyloliquefaciens LYZ69 Against Anthracnose of Alfalfa ( Medicago sativa). PHYTOPATHOLOGY 2021; 111:1338-1348. [PMID: 33325723 DOI: 10.1094/phyto-09-20-0385-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose is a destructive disease of alfalfa (Medicago sativa) that causes severe yield losses. Biological control can be an effective and eco-friendly approach to control this alfalfa disease. In the present study, Bacillus amyloliquefaciens LYZ69, previously isolated from healthy alfalfa roots, showed a strong in vitro antifungal activity against Colletotrichum truncatum, an important causal agent of anthracnose of alfalfa. The strain LYZ69 protected alfalfa plants (biocontrol efficacy of 82.59%) from anthracnose under greenhouse conditions. The cell-free culture (CFC) of LYZ69 (20%, vol/vol) caused 60 and 100% inhibition of mycelial growth and conidial germination, respectively. High-performance liquid chromatography tandem mass spectrometry separated and identified cyclic lipopeptides (LPs) such as bacillomycin D and fengycin in the CFC of LYZ69. Light microscopy and scanning electron microscopy revealed that the mixture of cyclic LPs produced by LYZ69 caused drastic changes in mycelial morphology. Fluorescence microscopy showed that the LPs induced reactive oxygen species accumulation and caused apoptosis-like cell death in C. truncatum hyphae. In summary, our findings provide evidence to support B. amyloliquefaciens LYZ69 as a promising candidate for the biological control of anthracnose in alfalfa.
Collapse
Affiliation(s)
- Jinling Hu
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Mingzhu Zheng
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Shuzhong Dang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Min Shi
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Jinlin Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730020, China
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
- Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou University, Lanzhou 730020, China
- Engineering Research Center of Grassland Industry, Ministry of Education, Lanzhou University, Lanzhou 730020, China
- Gansu Tech Innovation Center of Western China Grassland Industry, Lanzhou University, Lanzhou 730020, China
- National Demonstration Center for Experimental Grassland Science Education, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
4
|
Kamou NN, Cazorla F, Kandylas G, Lagopodi AL. Induction of defense-related genes in tomato plants after treatments with the biocontrol agents Pseudomonas chlororaphis ToZa7 and Clonostachys rosea IK726. Arch Microbiol 2019; 202:257-267. [DOI: 10.1007/s00203-019-01739-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 09/04/2019] [Accepted: 09/27/2019] [Indexed: 01/08/2023]
|
5
|
Górzyńska K, Ślachetka M, Ryszka P, Turnau K, Płachno BJ, Lembicz M. Incidence, Identification, and Mycoparasitic Activity of Clonostachys epichloë, a Hyperparasite of the Fungal Endophyte Epichloë typhina. PLANT DISEASE 2018; 102:1973-1980. [PMID: 30088789 DOI: 10.1094/pdis-02-18-0320-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Fungi of the genus Epichloë (Clavicipitaceae, Ascomycota) cause choke disease in many grass species. The disease manifests itself as fungal stromata that form around developing inflorescences, thereby suppressing their maturation. Economic losses in agricultural production due to choke have long been known in the U.S.A. and France, but attempts to control choke disease have not been successful. The interaction between Epichloë typhina (Pers.) Tul. & C. Tul. and its naturally occurring fungal hyperparasite, Clonostachys epichloë (Speg.) Schroers (sexual morph Bionectria epichloë) was investigated in populations of the grass Puccinellia distans (L.) Parl. Fungal hyperparasites occur widely in nature, and many are successfully used commercially as biological control agents against plant pathogenic fungi. Microscopy of Epichloë stromata infected with C. epichloë revealed a lack of asci with ascospores in perithecia and damage to mycelia at sites colonized by C. epichloë. The ability of C. epichloë to colonize E. typhina was confirmed via two in vitro experiments. The percent inhibition of growth of E. typhina strains by C. epichloë varied from 18.40 to 46.50%, and the mycoparasite colonized up to 100% of Epichloë mycelia in a precolonization experiment. We discuss the possibility of using C. epichloë to control choke disease caused by E. typhina in grass populations.
Collapse
Affiliation(s)
- Karolina Górzyńska
- Department of Plant Taxonomy, Adam Mickiewicz University in Poznań, Poland
| | | | - Przemysław Ryszka
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Poland
| | - Katarzyna Turnau
- Institute of Environmental Sciences, Jagiellonian University in Kraków, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Kraków, Poland; and
| | - Marlena Lembicz
- Department of Plant Taxonomy, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
6
|
Kamou NN, Dubey M, Tzelepis G, Menexes G, Papadakis EN, Karlsson M, Lagopodi AL, Jensen DF. Investigating the compatibility of the biocontrol agent Clonostachys rosea IK726 with prodigiosin-producing Serratia rubidaea S55 and phenazine-producing Pseudomonas chlororaphis ToZa7. Arch Microbiol 2016; 198:369-77. [PMID: 26860841 DOI: 10.1007/s00203-016-1198-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/07/2016] [Accepted: 01/28/2016] [Indexed: 01/06/2023]
Abstract
This study was carried out to assess the compatibility of the biocontrol fungus Clonostachys rosea IK726 with the phenazine-producing Pseudomonas chlororaphis ToZa7 or with the prodigiosin-producing Serratia rubidaea S55 against Fusarium oxysporum f. sp. radicis-lycopersici. The pathogen was inhibited by both strains in vitro, whereas C. rosea displayed high tolerance to S. rubidaea but not to P. chlororaphis. We hypothesized that this could be attributed to the ATP-binding cassette (ABC) proteins. The results of the reverse transcription quantitative PCR showed an induction of seven genes (abcB1, abcB20, abcB26, abcC12, abcC12, abcG8 and abcG25) from subfamilies B, C and G. In planta experiments showed a significant reduction in foot and root rot on tomato plants inoculated with C. rosea and P. chlororaphis. This study demonstrates the potential for combining different biocontrol agents and suggests an involvement of ABC transporters in secondary metabolite tolerance in C. rosea.
Collapse
Affiliation(s)
- Nathalie N Kamou
- Laboratory of Plant Pathology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece.
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Georgios Tzelepis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden.,Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007, Uppsala, Sweden
| | - Georgios Menexes
- Laboratory of Agronomy, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece
| | - Emmanouil N Papadakis
- Laboratory of Pesticide Science, Department of Agriculture, Aristotle University of Thessaloniki, P.O. Box 1678, 540 06, Thessaloniki, Greece
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| | - Anastasia L Lagopodi
- Laboratory of Plant Pathology, School of Agriculture, Aristotle University of Thessaloniki, P.O. Box 269, 541 24, Thessaloniki, Greece
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Box 7026, 75007, Uppsala, Sweden
| |
Collapse
|
7
|
Dubey MK, Jensen DF, Karlsson M. An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:725-732. [PMID: 24654977 DOI: 10.1094/mpmi-12-13-0365-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
ATP-binding cassette (ABC) transporters mediate active efflux of natural and synthetic toxicants and are considered to be important for drug tolerance in microorganisms. In biological control agents (BCA), ABC transporters can play important roles in antagonism by providing protection against toxins derived from the fungal prey and by mediating the secretion of endogenous toxins. In the present study, we generated deletion and complementation strains of the ABC transporter abcG5 in the fungal BCA Clonostachys rosea to study its role in xenobiotic tolerance and antagonism. Gene expression analysis shows induced expression of abcG5 in the presence of the Fusarium mycotoxin zearalenone (ZEA), secreted metabolites of F. graminearum, and different classes of fungicides. Phenotypic analysis of abcG5 deletion and complementation strains showed that the deletion strains were more sensitive towards F. graminearum culture filtrates, ZEA, and iprodione- and mefenoxam-based fungicides, thus suggesting the involvement of abcG5 in cell protection. The ΔabcG5 strains displayed reduced antagonism towards F. graminearum in a plate confrontation assay. Furthermore, the ΔabcG5 strains failed to protect barley seedlings from F. graminearium foot rot disease. These data show that the abcG5 ABC transporter is important for xenobiotic tolerance and biocontrol traits in C. rosea.
Collapse
|
8
|
Dubey MK, Jensen DF, Karlsson M. Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol 2014; 14:18. [PMID: 24483277 PMCID: PMC3922079 DOI: 10.1186/1471-2180-14-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/27/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Filamentous fungi produce small cysteine rich surface active amphiphilic hydrophobins on the outer surface of cell walls that mediate interactions between the fungus and the environment. The role of hydrophobins in surface hydrophobicity, sporulation, fruit body formation, recognition and adhesion to host surface and virulence have been reported. The aim of the present study was to characterize the biological function of hydrophobins in the fungal biocontrol agent Clonostachys rosea in order to understand their potential roles in biocontrol mechanisms. RESULTS Based on the presence of hydrophobin domains, cysteine spacing patterns and hydropathy plots, we identified three class II hydrophobin genes in C. rosea. Gene expression analysis showed basal expression of Hyd1, Hyd2 and Hyd3 in all conditions tested with the exception of induced Hyd1 expression in conidiating mycelium. Interestingly, up-regulation of Hyd1, Hyd2 and Hyd3 was found during C. rosea self interaction compared to interactions with the fungal plant pathogens Botrytis cinerea or Fusarium graminearum in dual culture assays. Phenotypic analysis of C. rosea deletion and complementation strains showed that Hyd1 and Hyd3 are jointly required for conidial hydrophobicity, although no difference in mycelia hydrophobicity was found between wild type (WT) and mutant strains. Interestingly, mutant strains showed increased growth rates, conidiation and enhanced tolerances of conidia to abiotic stresses. Antagonism tests using in vitro dual culture and detached leaf assays showed that the mutant strains were more aggressive towards B. cinerea, F. graminearum or Rhizoctonia solani, and that aggression was partly related to earlier conidial germination and enhanced tolerance of mutant strains to secreted fungal metabolites. Furthermore, in vitro Arabidopsis thaliana root colonization assays revealed reduced root colonization ability of the ΔHyd3 strain, but not for the ΔHyd1 strain. Furthermore, enhanced root colonization ability for the ΔHyd1ΔHyd3 strain was found in comparison to WT. CONCLUSIONS These results show a role for hydrophobins in conidial hydrophobicity, control of conidial germination under stress conditions, and in root colonization in C. rosea. However, functional studies of Hyd2 remains to be performed in order to fully assess the role of hydrophobins in C. rosea.
Collapse
Affiliation(s)
- Mukesh K Dubey
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Dan Funck Jensen
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| | - Magnus Karlsson
- Uppsala BioCenter, Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Box 7026, 75007 Uppsala, Sweden
| |
Collapse
|
9
|
Exopolysaccharide from surface-liquid culture of Clonostachys rosea originates from autolysis of the biomass. Arch Microbiol 2009; 191:369-78. [DOI: 10.1007/s00203-009-0464-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 01/25/2009] [Accepted: 02/02/2009] [Indexed: 10/21/2022]
|
10
|
Mamarabadi M, Jensen B, Lübeck M. Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr Genet 2008; 54:57-70. [PMID: 18574585 DOI: 10.1007/s00294-008-0199-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 05/22/2008] [Accepted: 06/03/2008] [Indexed: 11/30/2022]
Abstract
Three endochitinase-encoding genes, cr-ech58, cr-ech42 and cr-ech37 were identified and characterised from the mycoparasitic C. rosea strain IK726. The endochitinase activity was specifically induced in media containing chitin or Fusarium culmorum cell walls as sole carbon sources. RT-PCR analysis showed that the three genes were differentially expressed. The expression of the cr-ech42 and cr-ech37 genes was triggered by F. culmorum cell walls and chitin whereas glucose repressed their expression. In contrast, the expression of cr-ech58 was not triggered by F. culmorum cell walls and chitin, suggesting a different role for this endochitinase. Phylogenetically, the cr-ech42 and cr-ech37 genes showed to be orthologous to endochitinase 42 and 37 kDa encoding genes from other mycoparasitic fungi, while no orthologous gene for the cr-ech58 gene was found. Three genetically modified mutants of C. rosea were made by disruption of the endochitinase genes via Agrobacterium-mediated transformation and their biocontrol activity was evaluated. While in planta bioassays showed no significant difference in biocontrol efficacy between the disruptants and the wildtype, the real time RT-PCR analysis showed that disruption of each endochitinase gene affected the activity of C. rosea during interaction with F. culmorum in liquid cultures.
Collapse
Affiliation(s)
- Mojtaba Mamarabadi
- Plant Pathology Section, Department of Plant Biology, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | | | | |
Collapse
|
11
|
Abstract
Although the number of biocontrol products is increasing, these products still represent only about 1% of agricultural chemical sales. Yet these are important contributions because biocontrol agents offer disease management alternatives with different mechanisms of action than chemical pesticides. Trends in research include the increased use of biorational screening processes to identify microorganisms with potential for biocontrol, increased testing under semicommercial and commercial production conditions, increased emphasis on combining biocontrol strains with each other and with other control methods, integrating biocontrol into an overall system.
Collapse
Affiliation(s)
- D R Fravel
- Vegetable Laboratory, USDA-ARS, BARC-West, Beltsville, Maryland 20705, USA.
| |
Collapse
|