1
|
Ramsey JS, Chin EL, Chavez JD, Saha S, Mischuk D, Mahoney J, Mohr J, Robison FM, Mitrovic E, Xu Y, Strickler SR, Fernandez N, Zhong X, Polek M, Godfrey KE, Giovannoni JJ, Mueller LA, Slupsky CM, Bruce JE, Heck M. Longitudinal Transcriptomic, Proteomic, and Metabolomic Analysis of Citrus limon Response to Graft Inoculation by Candidatus Liberibacter asiaticus. J Proteome Res 2020; 19:2247-2263. [PMID: 32338516 PMCID: PMC7970439 DOI: 10.1021/acs.jproteome.9b00802] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Presymptomatic detection of citrus trees infected with Candidatus Liberibacter asiaticus (CLas), the bacterial pathogen associated with Huanglongbing (HLB; citrus greening disease), is critical to controlling the spread of the disease. To test whether infected citrus trees produce systemic signals that may be used for indirect disease detection, lemon (Citrus limon) plants were graft-inoculated with either CLas-infected or control (CLas-) budwood, and leaf samples were longitudinally collected over 46 weeks and analyzed for plant changes associated with CLas infection. RNA, protein, and metabolite samples extracted from leaves were analyzed using RNA-Seq, mass spectrometry, and 1H NMR spectroscopy, respectively. Significant differences in specific transcripts, proteins, and metabolites were observed between CLas-infected and control plants as early as 2 weeks post graft (wpg). The most dramatic differences between the transcriptome and proteome of CLas-infected and control plants were observed at 10 wpg, including coordinated increases in transcripts and proteins of citrus orthologs of known plant defense genes. This integrated approach to quantifying plant molecular changes in leaves of CLas-infected plants supports the development of diagnostic technology for presymptomatic or early disease detection as part of efforts to control the spread of HLB into uninfected citrus groves.
Collapse
Affiliation(s)
- John S Ramsey
- USDA Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Elizabeth L Chin
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - Juan D Chavez
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Surya Saha
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Darya Mischuk
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - Jaclyn Mahoney
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Jared Mohr
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Faith M Robison
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Elizabeth Mitrovic
- Contained Research Facility, University of California, 555 Hopkins Road, Davis, California 95616, United States
| | - Yimin Xu
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Noe Fernandez
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Xuefei Zhong
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - MaryLou Polek
- Citrus Research Board, 217 N Encina Street, Visalia, California 93291, United States
- National Clonal Germplasm Repository for Citrus, 1060 Martin Luther King Blvd., Riverside, California 92507, United States
| | - Kris E Godfrey
- Contained Research Facility, University of California, 555 Hopkins Road, Davis, California 95616, United States
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- USDA Plant, Soil, and Nutrition Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Plant Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
| | - Carolyn M Slupsky
- Department of Food Science and Technology, University of California, 392 Old Davis Road, Davis, California 95616, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, William H. Foege Hall, 3720 15th Avenue NE, Seattle, Washington 98195, United States
| | - Michelle Heck
- USDA Emerging Pests and Pathogens Research Unit, Robert W. Holley Center for Agriculture and Health, 538 Tower Road, Ithaca, New York 14853, United States
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, New York 14853, United States
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, 236 Tower Road, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Gupta A, Hisano H, Hojo Y, Matsuura T, Ikeda Y, Mori IC, Senthil-Kumar M. Global profiling of phytohormone dynamics during combined drought and pathogen stress in Arabidopsis thaliana reveals ABA and JA as major regulators. Sci Rep 2017; 7:4017. [PMID: 28638069 PMCID: PMC5479852 DOI: 10.1038/s41598-017-03907-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022] Open
Abstract
Global transcriptome studies demonstrated the existence of unique plant responses under combined stress which are otherwise not seen during individual stresses. In order to combat combined stress plants use signaling pathways and 'cross talk' mediated by hormones involved in stress and growth related processes. However, interactions among hormones' pathways in combined stressed plants are not yet known. Here we studied dynamics of different hormones under individual and combined drought and pathogen infection in Arabidopsis thaliana by liquid chromatography-mass spectrometry (LC-MS) based profiling. Our results revealed abscisic acid (ABA) and salicylic acid (SA) as key regulators under individual drought and pathogen stress respectively. Under combined drought and host pathogen stress (DH) we observed non-induced levels of ABA with an upsurge in SA and jasmonic acid (JA) concentrations, underscoring their role in basal tolerance against host pathogen. Under a non-host pathogen interaction with drought (DNH) stressed plants, ABA, SA and JA profiles were similar to those under DH or non-host pathogen alone. We propose that plants use SA/JA dependent signaling during DH stress which antagonize ABA biosynthesis and signaling pathways during early stage of stress. The study provides insights into hormone modulation at different time points during combined stress.
Collapse
Affiliation(s)
- Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India
| | - Hiroshi Hisano
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yuko Hojo
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources, Okayama University, Kurashiki, 710-0046, Japan
| | - Muthappa Senthil-Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, JNU campus, New Delhi, 110067, India.
| |
Collapse
|
3
|
Baldi P, La Porta N. Xylella fastidiosa: Host Range and Advance in Molecular Identification Techniques. FRONTIERS IN PLANT SCIENCE 2017; 8:944. [PMID: 28642764 PMCID: PMC5462928 DOI: 10.3389/fpls.2017.00944] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 05/22/2017] [Indexed: 05/05/2023]
Abstract
In the never ending struggle against plant pathogenic bacteria, a major goal is the early identification and classification of infecting microorganisms. Xylella fastidiosa, a Gram-negative bacterium belonging to the family Xanthmonadaceae, is no exception as this pathogen showed a broad range of vectors and host plants, many of which may carry the pathogen for a long time without showing any symptom. Till the last years, most of the diseases caused by X. fastidiosa have been reported from North and South America, but recently a widespread infection of olive quick decline syndrome caused by this fastidious pathogen appeared in Apulia (south-eastern Italy), and several cases of X. fastidiosa infection have been reported in other European Countries. At least five different subspecies of X. fastidiosa have been reported and classified: fastidiosa, multiplex, pauca, sandyi, and tashke. A sixth subspecies (morus) has been recently proposed. Therefore, it is vital to develop fast and reliable methods that allow the pathogen detection during the very early stages of infection, in order to prevent further spreading of this dangerous bacterium. To this purpose, the classical immunological methods such as ELISA and immunofluorescence are not always sensitive enough. However, PCR-based methods exploiting specific primers for the amplification of target regions of genomic DNA have been developed and are becoming a powerful tool for the detection and identification of many species of bacteria. The aim of this review is to illustrate the application of the most commonly used PCR approaches to X. fastidiosa study, ranging from classical PCR, to several PCR-based detection methods: random amplified polymorphic DNA (RAPD), quantitative real-time PCR (qRT-PCR), nested-PCR (N-PCR), immunocapture PCR (IC-PCR), short sequence repeats (SSRs, also called VNTR), single nucleotide polymorphisms (SNPs) and multilocus sequence typing (MLST). Amplification and sequence analysis of specific targets is also mentioned. The fast progresses achieved during the last years in the DNA-based classification of this pathogen are described and discussed and specific primers designed for the different methods are listed, in order to provide a concise and useful tool to all the researchers working in the field.
Collapse
Affiliation(s)
- Paolo Baldi
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
| | - Nicola La Porta
- IASMA Research and Innovation Centre, Fondazione Edmund MachTrento, Italy
- MOUNTFOR Project Centre, European Forest InstituteTrento, Italy
| |
Collapse
|
4
|
Navarrete F, De La Fuente L. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions. Appl Environ Microbiol 2014; 80:1097-107. [PMID: 24271184 PMCID: PMC3911211 DOI: 10.1128/aem.02998-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/20/2013] [Indexed: 12/30/2022] Open
Abstract
The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.
Collapse
Affiliation(s)
- Fernando Navarrete
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, USA
| | | |
Collapse
|
5
|
Choi HK, Iandolino A, da Silva FG, Cook DR. Water deficit modulates the response of Vitis vinifera to the Pierce's disease pathogen Xylella fastidiosa. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:643-57. [PMID: 23425100 DOI: 10.1094/mpmi-09-12-0217-r] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pierce's disease, caused by the bacterium Xylella fastidiosa, is one of the most devastating diseases of cultivated grape, currently restricted to the Americas. To test the long-standing hypothesis that Pierce's disease results from pathogen-induced drought stress, we used the Affymetrix Vitis GeneChip to compare the transcriptional response of Vitis vinifera to Xylella infection, water deficit, or a combination of the two stresses. The results reveal a redirection of gene transcription involving 822 genes with a minimum twofold change (P < 0.05), including the upregulation of transcripts for phenylpropanoid and flavonoid biosynthesis, pathogenesis-related proteins, abscisic acid- and jasmonic acid-responsive biosynthesis, and downregulation of transcripts related to photosynthesis, growth, and nutrition. Although the transcriptional response of plants to Xylella infection was largely distinct from the response of healthy plants to water stress, we find that 138 of the pathogen-induced genes exhibited a significantly stronger transcriptional response when plants were simultaneously exposed to infection and drought stress, suggesting a strong interaction between disease and water deficit. This interaction between drought stress and disease was mirrored in planta at the physiological level for aspects of water relations and photosynthesis and in terms of the severity of disease symptoms and the extent of pathogen colonization, providing a molecular correlate of the classical concept of the disease triangle in which environment impacts disease severity.
Collapse
Affiliation(s)
- Hong-Kyu Choi
- Department of Genetic Engineering, Dong-A University, Bussan, Republic of Korea
| | | | | | | |
Collapse
|