1
|
Pearce TL, Scott JB, Wilson CR, Gent DH. Evolution of the Genetic Structure of the Didymella tanaceti Population During Development of Succinate Dehydrogenase Inhibitor Resistance. PHYTOPATHOLOGY 2023; 113:1946-1958. [PMID: 37129263 DOI: 10.1094/phyto-10-22-0385-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Emergence of pathogens with decreased sensitivity to succinate dehydrogenase inhibitor fungicides is a global agronomical issue. Analysis of Didymella tanaceti isolates (n = 173), which cause tan spot of pyrethrum (Tanacetum cinerariifolium), collected prior to (2004 to 2005) and after (2009, 2010, 2012, and 2014) the commercial implementation of boscalid in Tasmanian pyrethrum fields identified that insensitivity developed over time and has become widespread. To evaluate temporal change, isolates were characterized for frequency of mutations in the succinate dehydrogenase (Sdh) B, C, and D subunits associated with boscalid resistance, mating type, and SSR genotype. All isolates from 2004 and 2005 exhibited wild-type (WT) Sdh alleles. Seven known Sdh substitutions were identified in isolates collected from 2009 to 2014. In 2009, 60.7% had Sdh substitutions associated with boscalid resistance in D. tanaceti. The frequency of WT isolates decreased over time, with no WT isolates identified in 2014. The frequency of the SdhB-H277Y genotype increased from 10.7 to 77.8% between 2009 and 2014. Genotypic evidence suggested that a shift in the population structure occurred between 2005 and 2009, with decreases in gene diversity (uh; 0.51 to 0.34), genotypic evenness (E5; 0.96 to 0.67), genotypic diversity (G; 9.3 to 6.8), and allele frequencies. No evidence was obtained to support the rapid spread of Sdh genotypes by clonal expansion of the population. Thus, insensitivity to boscalid has developed and become widespread within a diverse population within 4 years of usage. These results suggest that D. tanaceti can disperse insensitivity through repeated frequent mutation, sexual recombination, or a combination of both.
Collapse
Affiliation(s)
- Tamieka L Pearce
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Jason B Scott
- Tasmanian Institute of Agriculture, College of Sciences and Engineering, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, University of Tasmania, Sandy Bay, Tasmania 7005
| | - David H Gent
- U.S. Department of Agriculture-Agriculture Research Service, Forage Seed and Cereal Research Unit, Corvallis, OR 97331
| |
Collapse
|
2
|
Mattupalli C, Cuenca FP, Shiller JB, Watkins T, Hansen K, Garzon CD, Marek SM, Young CA. Genetic Diversity of Phymatotrichopsis omnivora Based on Mating Type and Microsatellite Markers Reveals Heterothallic Mating System. PLANT DISEASE 2022; 106:2105-2116. [PMID: 35156845 DOI: 10.1094/pdis-01-22-0013-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phymatotrichopsis omnivora is a member of Pezizomycetes and causes root rot disease on a broad range of dicotyledonous plants. Using recently generated draft genome sequence data from four P. omnivora isolates, we developed simple sequence repeat (SSR) markers and identified both mating type genes (MAT1-1-1 and MAT1-2-1) in this fungus. To understand the genetic diversity of P. omnivora isolates (n = 43) and spore mats (n = 29) collected from four locations (Oklahoma, Texas, Arizona, and Mexico) and four host crops (cotton, alfalfa, peach, and soybean), we applied 24 SSR markers and showed that of the 72 P. omnivora isolates and spore mats tested, 41 were distinct genotypes. Furthermore, the developed SSR markers did not show cross-transferability to other close relatives of P. omnivora in the class Pezizomycetes. A multiplex PCR detecting both mating type idiomorphs and a reference gene (TUB2) was developed to screen P. omnivora isolates. Based on the dataset we tested, P. omnivora is a heterothallic fungus with both mating types present in the United States in a ratio close to 1:1. We tested P. omnivora spore mats obtained from spatially distinct disease rings that developed in a center-pivot alfalfa field and showed that both mating types can be present not only in the same field but also within a single spore mat. This study shows that P. omnivora has the genetic toolkit for generating sexually diverse progeny, providing impetus for future studies that focus on identifying sexual morphs in nature.
Collapse
Affiliation(s)
- Chakradhar Mattupalli
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant Pathology, Washington State University, Mount Vernon NWREC, Mount Vernon, WA 98273, U.S.A
| | - Fernanda Proaño Cuenca
- Institute for Biosecurity and Microbial Forensics, Oklahoma State University, Stillwater, OK 74078, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Jason B Shiller
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Scion, Rotorua 3046, New Zealand
| | - Tara Watkins
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Plant, Soil and Microbial Science, Michigan State University, East Lansing, MI 48824, U.S.A
| | - Karen Hansen
- Department of Botany, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
| | - Carla D Garzon
- Department of Plant Science and Landscape Architecture, Delaware Valley University, Doylestown, PA 18901, U.S.A
| | - Stephen M Marek
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| | - Carolyn A Young
- Noble Research Institute, LLC, Ardmore, OK 73401, U.S.A
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK 74078, U.S.A
| |
Collapse
|
3
|
Bock CH, Young CA, Zhang M, Chen C, Brannen PM, Adaskaveg J, Charlton ND. Mating Type Idiomorphs, Heterothallism, and High Genetic Diversity in Venturia carpophila, Cause of Peach Scab. PHYTOPATHOLOGY 2021; 111:408-424. [PMID: 32748736 DOI: 10.1094/phyto-12-19-0485-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Scab (caused by Venturia carpophila) is a major disease affecting peach in the eastern United States. The aims of the study were to characterize the mating-type loci in V. carpophila, determine whether they are in equilibrium, and assess the population genetic diversity and structure of the pathogen. The mating-type gene MAT1-1-1 was identified in isolate JP3-5 in an available genome sequence, and the MAT1-2-1 gene was PCR amplified from isolate PS1-1, thus indicating a heterothallic structure. Mating-type loci structures were consistent with those of other Venturia spp. (V. effusa and V. inaequalis): the mating-type gene is positioned between APN2 encoding a DNA lyase and a gene encoding a Pleckstrin homology domain. Primers designed to each of the mating-type genes and a reference gene TUB2 were used as a multiplex PCR to screen a population (n = 81) of V. carpophila from various locations in the eastern United States. Mating types in five of the nine populations studied were in equilibrium. Among the 81 isolates, there were 69 multilocus genotypes. A population genetic analysis of the populations with >10 individuals (four populations) showed them to be genetically diverse. Linkage disequilibrium was found in five of nine populations with ≥4 isolates. A discriminant analysis of principal components indicated three genetic clusters, although extensive admixture was observed. Mating-type identification in V. carpophila provides a basis for understanding reproductive methods of the pathogen and can be a basis for further studies of the genetics of the peach scab pathogen.
Collapse
Affiliation(s)
- Clive H Bock
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Carolyn A Young
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401
| | - Minling Zhang
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Chunxian Chen
- United States Department of Agriculture-Agricultural Research Service-Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008
| | - Phillip M Brannen
- Department of Plant Pathology, University of Georgia, 2105 Miller Plant Sciences Building, Athens, GA 30602
| | - Jim Adaskaveg
- Department of Plant Pathology and Microbiology, University of California Riverside, Riverside, CA 92521
| | - Nikki D Charlton
- Noble Research Institute, LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401
| |
Collapse
|
4
|
Multiple mutations across the succinate dehydrogenase gene complex are associated with boscalid resistance in Didymella tanaceti in pyrethrum. PLoS One 2019; 14:e0218569. [PMID: 31220147 PMCID: PMC6586343 DOI: 10.1371/journal.pone.0218569] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/04/2019] [Indexed: 11/19/2022] Open
Abstract
Failures in control of tan spot of pyrethrum, caused by Didymella tanaceti, has been associated with decreased sensitivity within the pathogen population to the succinate dehydrogenase inhibitor (SDHI) fungicide boscalid. Sequencing the SdhB, SdhC, and SdhD subunits of isolates with resistant and sensitive phenotypes identified 15 mutations, resulting in three amino acid substitutions in the SdhB (H277Y/R, I279V), six in the SdhC (S73P, G79R, H134R, H134Q, S135R and combined H134Q/S135R), and two in the SdhD (D112E, H122R). In vitro testing of their boscalid response and estimation of resistance factors (RF) identified isolates with wild-type (WT) Sdh genotypes were sensitive to boscalid. Isolates with SdhB-I279V, SdhC-H134Q and SdhD-D112E exhibited moderate resistance phenotypes (10 ≥ RF < 100) and isolates with SdhC-H134R exhibited very high resistance phenotypes (RF ≥ 1000). All other substitutions were associated with high resistance phenotypes (100 ≥ RF < 1000). High-resolution melt assays were designed and used to estimate the frequencies of substitutions in four field populations (n = 774) collected in August (pre-boscalid application) and November (post-boscalid application) 2012. The SdhB-H277Y, SdhC-H134R and SdhB-H277R genotypes were most frequently observed across populations at 56.7, 19.0, and 10.3%, respectively. In August 92.9% of D. tanaceti contained a substitution associated with decreased sensitivity. Following boscalid application, this increased to 98.9%, with no WT isolates detected in three fields. Overlaying previously obtained microsatellite and mating-type data revealed that all ten recurrent substitutions were associated with multiple genotypes. Thus, boscalid insensitivity in D. tanaceti appears widespread and not associated with clonal spread of a limited pool of individuals.
Collapse
|
5
|
Pearce TL, Scott JB, Pilkington SJ, Pethybridge SJ, Hay FS. Evidence for Sexual Recombination in Didymella tanaceti Populations, and Their Evolution Over Spring Production in Australian Pyrethrum Fields. PHYTOPATHOLOGY 2019; 109:155-168. [PMID: 29989847 DOI: 10.1094/phyto-08-17-0280-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tan spot, caused by Didymella tanaceti, is one of the most important foliar diseases affecting pyrethrum in Tasmania, Australia. Population dynamics, including mating-type ratios and genetic diversity of D. tanaceti, was characterized within four geographically separated fields in both late winter and spring 2012. A set of 10 microsatellite markers was developed and used to genotype 774 D. tanaceti isolates. Isolates were genotypically diverse, with 123 multilocus genotypes (MLG) identified across the four fields. Fifty-eight MLG contained single isolates and Psex analysis estimated that, within many of the recurrent MLG, there were multiple clonal lineages derived from recombination. Isolates of both mating types were at a 1:1 ratio following clone correction in each field at each sampling period, which was suggestive of sexual recombination. No evidence of genetic divergence of isolates of each mating type was identified, indicating admixture within the population. Linkage equilibrium in two of the four field populations sampled in late winter could not be discounted following clone correction. Evaluation of temporal changes in gene and genotypic diversity identified that they were both similar for the two sampling periods despite an increased D. tanaceti isolation frequency in spring. Genetic differentiation was similar in populations sampled between the two sampling periods within fields or between fields. These results indicated that sexual reproduction may have contributed to tan spot epidemics within Australian pyrethrum fields and has contributed to a genetically diverse D. tanaceti population.
Collapse
Affiliation(s)
- Tamieka L Pearce
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Jason B Scott
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Sarah J Pethybridge
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Frank S Hay
- First, second, and third authors, Tasmanian Institute of Agriculture, University of Tasmania, Burnie, Tasmania 7320, Australia; fourth and fifth authors, Plant Pathology & Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell AgriTech at the New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
6
|
Young CA, Bock CH, Charlton ND, Mattupalli C, Krom N, Bowen JK, Templeton M, Plummer KM, Wood BW. Evidence for Sexual Reproduction: Identification, Frequency, and Spatial Distribution of Venturia effusa (Pecan Scab) Mating Type Idiomorphs. PHYTOPATHOLOGY 2018; 108:837-846. [PMID: 29381450 DOI: 10.1094/phyto-07-17-0233-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Venturia effusa (syn. Fusicladium effusum), causal agent of pecan scab, is the most prevalent pathogen of pecan (Carya illinoinensis), causing severe yield losses in the southeastern United States. V. effusa is currently known only by its asexual (conidial) stage. However, the degree and distribution of genetic diversity observed within and among populations of V. effusa are typical of a sexually reproducing fungal pathogen, and comparable with other dothideomycetes with a known sexual stage, including the closely related apple scab pathogen, V. inaequalis. Using the mating type (MAT) idiomorphs from V. inaequalis, we identified a single MAT gene, MAT1-1-1, in a draft genome of V. effusa. The MAT1-1-1 locus is flanked by two conserved genes encoding a DNA lyase (APN2) and a hypothetical protein. The MAT locus spanning the flanking genes was amplified and sequenced from a subset of 14 isolates, of which 7 contained MAT1-1-1 and the remaining samples contained MAT1-2-1. A multiplex polymerase chain reaction screen was developed to amplify MAT1-1-1, MAT1-2-1, and a conserved reference gene encoding β-tubulin, and used to screen 784 monoconidial isolates of V. effusa collected from 11 populations of pecan across the southeastern United States. A hierarchical sampling protocol representing region, orchard, and tree allowed for analysis of MAT structure at different spatial scales. Analysis of this collection revealed the frequency of the MAT idiomorphs is in a 1:1 equilibrium of MAT1-1:MAT1-2. The apparent equilibrium of the MAT idiomorphs provides impetus for a renewed effort to search for the sexual stage of V. effusa. [Formula: see text] Copyright © 2018 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license .
Collapse
Affiliation(s)
- Carolyn A Young
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Clive H Bock
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Nikki D Charlton
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Chakradhar Mattupalli
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Nick Krom
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Joanna K Bowen
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Matthew Templeton
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Kim M Plummer
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| | - Bruce W Wood
- First, third, fourth, and fifth authors: Noble Research Institute, LLC., Ardmore, OK 73401; second and ninth authors: United States Department of Agriculture-Agricultural Research Service Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008; sixth and seventh authors: The New Zealand Institute for Plant & Food Research, Auckland, New Zealand; seventh author: The School of Biological Sciences, University of Auckland, New Zealand; eighth author: Department of Animal, Plant and Soil Sciences, AgriBio, AgriBiosciences Research Centre, La Trobe University, 3086, Victoria, Australia
| |
Collapse
|
7
|
Scott JB, Gent DH, Pearce TL, Pethybridge SJ, Pilkington SJ, Hay FS. Mycoflora Associated With Pyrethrum Seed and the Integration of Seed Steam Treatment Into Foliar Disease Management Strategies. PLANT DISEASE 2017; 101:1874-1884. [PMID: 30677321 DOI: 10.1094/pdis-03-17-0309-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A complex of foliar diseases can affect pyrethrum in Australia, but those of greatest importance are ray blight, caused by Stagonosporopsis tanaceti, and tan spot, caused primarily by Didymella tanaceti. Isolation of fungi from pyrethrum seed lots produced over 15 years resulted in recovery of six known pathogens: S. tanaceti, D. tanaceti, Alternaria tenuissima, Colletotrichum tanaceti, Stemphylium botryosum, and Botrytis cinerea. The incidence of S. tanaceti and D. tanaceti isolated from seed varied between 0.9 and 19.5% (mean = 7.7%) and 0 and 24.1% (mean = 5.3%) among years, respectively. Commercial heat treatment of pyrethrum seed via steaming reduced the incidence of D. tanaceti from 10.9 to 0.06% and the incidence of S. tanaceti from 24.6% to nondetectable levels (<0.18%). In a second experiment, both species were reduced to nondetectable levels (<0.20%) from their initial incidences of 22.4 and 2.4%, respectively. In a field study in 2013, colonization of pyrethrum foliage by S. tanaceti was reduced from 21.1 to 14.3% in early winter when heat-treated seed was planted. However, isolation frequency of D. tanaceti was not affected significantly by seed treatment in this year. In a related experiment in 2015, the isolation frequency of D. tanaceti in plots planted from heat-treated seed depended on both prior application of an industry-standard fungicide program and proximity to another pyrethrum field in autumn. The fungus was recovered at a similar frequency in fungicide-treated and nontreated plots located near other pyrethrum fields (13.8 versus 16.3%, respectively), whereas recovery of the pathogen was reduced by fungicide applications in geographically remote pyrethrum fields (6.7 versus 1.4%, respectively). However, these differences in isolation frequency of D. tanaceti in autumn did not obviate the need for later fungicide applications to suppress foliar disease intensity in spring or flower yield in summer, independent of the proximity to other pyrethrum fields. This study suggests that steam treatment of seed can delay development of the foliar disease complex on pyrethrum, although an extremely low level of remaining infected seed or exogenous sources of inoculum necessitates the use of foliar fungicide applications in spring.
Collapse
Affiliation(s)
- Jason B Scott
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - David H Gent
- United States Department of Agriculture - Agricultural Research Services (USDA-ARS), Forage Seed and Cereal Research Unit, and Oregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331
| | - Tamieka L Pearce
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Sarah J Pethybridge
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| | - Stacey J Pilkington
- Tasmanian Institute of Agriculture, School of Land and Food, University of Tasmania, Burnie, Tasmania 7320, Australia
| | - Frank S Hay
- School of Integrative Plant Science, Section of Plant Pathology and Plant-Microbe Biology, Cornell University, Geneva, NY 14456
| |
Collapse
|