1
|
Li Y, Ye Y, Huan W, Ji J, Ma J, Sheng Q, Lei J. Comparative transcriptome analysis and candidate gene mining for fire blight of Pear resistance in Korla fragrant Pear (Pyrus sinkiangensis Yü). Sci Rep 2025; 15:15073. [PMID: 40301391 PMCID: PMC12041199 DOI: 10.1038/s41598-025-00009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025] Open
Abstract
Fire blight of pear is caused by Erwinia amylovora, which can cause devastating damage to pear trees and other pome fruit trees worldwide. Fire blight has resulted in a reduction in the production of Korla fragrant pears in Xinjiang, China, as well as a decrease in their quality and taste, causing severe economic losses. To this end, a comparative transcriptome analysis of common Korla fragrant pear (KFP, susceptible) and a bud mutation line (1910, resistant) at three inoculation periods was conducted. Clustering and principal component analysis (PCA) of the RNA-seq data revealed that the differences between lines were greater than those within lines. A total of 7271 DEGs were identified in the bud mutation line, while 11,937 DEGs were identified in KFP. Between KFP and the resistant material bud mutation line, 11,937 DEGs were identified, which were significantly enriched in the pathways of photosynthesis, jasmonic acid metabolic process, flavonoid biosynthesis, and starch and sucrose metabolism. A total of 8 clusters were identified for all (17,354) DEGs via k-means, and KEGG pathway annotations were performed for each individual cluster. In addition, the 1027 differentially expressed transcription factors (TFs) were clustered into five clusters, and the TFs with the largest fold change in each cluster were identified. A gene coexpression network was further constructed through weighted correlation network analysis (WGCNA), and 15 key genes that determine the fire blight resistance of Korla fragrant pear were identified. These research results provide a theoretical basis for a deeper understanding of the molecular mechanism of Korla fragrant pear resistance to fire blight and provide new genetic resources for the study of Korla fragrant pear resistance to fire blight.
Collapse
Affiliation(s)
- Yue Li
- College of Life Sciences, Xinjiang Agricultural University, Nongda East Road, Urumqi, 830052, China
| | - Yuanrong Ye
- Academy of Agricultural Sciences of Bayinguoleng Mongolian Autonomous Prefecture, Yinxia Road, Korla, 84100, China
| | - Wei Huan
- Academy of Agricultural Sciences of Bayinguoleng Mongolian Autonomous Prefecture, Yinxia Road, Korla, 84100, China
| | - Juan Ji
- Academy of Agricultural Sciences of Bayinguoleng Mongolian Autonomous Prefecture, Yinxia Road, Korla, 84100, China
| | - Jieyun Ma
- Academy of Agricultural Sciences of Bayinguoleng Mongolian Autonomous Prefecture, Yinxia Road, Korla, 84100, China
| | - Qiang Sheng
- Academy of Agricultural Sciences of Bayinguoleng Mongolian Autonomous Prefecture, Yinxia Road, Korla, 84100, China.
| | - Jianfeng Lei
- College of Agriculture, Xinjiang Agricultural University, Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
2
|
Gabay G, Flaishman MA. Genetic and molecular regulation of chilling requirements in pear: breeding for climate change resilience. FRONTIERS IN PLANT SCIENCE 2024; 15:1347527. [PMID: 38736438 PMCID: PMC11082341 DOI: 10.3389/fpls.2024.1347527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
Pear (Pyrus spp.) is a deciduous fruit tree that requires exposure to sufficient chilling hours during the winter to establish dormancy, followed by favorable heat conditions during the spring for normal vegetative and floral budbreak. In contrast to most temperate woody species, apples and pears of the Rosaceae family are insensitive to photoperiod, and low temperature is the major factor that induces growth cessation and dormancy. Most European pear (Pyrus Communis L.) cultivars need to be grown in regions with high chilling unit (CU) accumulation to ensure early vegetative budbreak. Adequate vegetative budbreak time will ensure suitable metabolite accumulation, such as sugars, to support fruit set and vegetative development, providing the necessary metabolites for optimal fruit set and development. Many regions that were suitable for pear production suffer from a reduction in CU accumulation. According to climate prediction models, many temperate regions currently suitable for pear cultivation will experience a similar accumulation of CUs as observed in Mediterranean regions. Consequently, the Mediterranean region can serve as a suitable location for conducting pear breeding trials aimed at developing cultivars that will thrive in temperate regions in the decades to come. Due to recent climatic changes, bud dormancy attracts more attention, and several studies have been carried out aiming to discover the genetic and physiological factors associated with dormancy in deciduous fruit trees, including pears, along with their related biosynthetic pathways. In this review, current knowledge of the genetic mechanisms associated with bud dormancy in European pear and other Pyrus species is summarized, along with metabolites and physiological factors affecting dormancy establishment and release and chilling requirement determination. The genetic and physiological insights gained into the factors regulating pear dormancy phase transition and determining chilling requirements can accelerate the development of new pear cultivars better suited to both current and predicted future climatic conditions.
Collapse
Affiliation(s)
- Gilad Gabay
- French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boker, Israel
| | - Moshe A. Flaishman
- Institute of Plant Sciences, Volcani Research Center, Rishon Lezion, Israel
| |
Collapse
|
3
|
Montanari S, Deng C, Koot E, Bassil NV, Zurn JD, Morrison-Whittle P, Worthington ML, Aryal R, Ashrafi H, Pradelles J, Wellenreuther M, Chagné D. A multiplexed plant-animal SNP array for selective breeding and species conservation applications. G3 (BETHESDA, MD.) 2023; 13:jkad170. [PMID: 37565490 PMCID: PMC10542201 DOI: 10.1093/g3journal/jkad170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/15/2023] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Reliable and high-throughput genotyping platforms are of immense importance for identifying and dissecting genomic regions controlling important phenotypes, supporting selection processes in breeding programs, and managing wild populations and germplasm collections. Amongst available genotyping tools, single nucleotide polymorphism arrays have been shown to be comparatively easy to use and generate highly accurate genotypic data. Single-species arrays are the most commonly used type so far; however, some multi-species arrays have been developed for closely related species that share single nucleotide polymorphism markers, exploiting inter-species cross-amplification. In this study, the suitability of a multiplexed plant-animal single nucleotide polymorphism array, including both closely and distantly related species, was explored. The performance of the single nucleotide polymorphism array across species for diverse applications, ranging from intra-species diversity assessments to parentage analysis, was assessed. Moreover, the value of genotyping pooled DNA of distantly related species on the single nucleotide polymorphism array as a technique to further reduce costs was evaluated. Single nucleotide polymorphism performance was generally high, and species-specific single nucleotide polymorphisms proved suitable for diverse applications. The multi-species single nucleotide polymorphism array approach reported here could be transferred to other species to achieve cost savings resulting from the increased throughput when several projects use the same array, and the pooling technique adds another highly promising advancement to additionally decrease genotyping costs by half.
Collapse
Affiliation(s)
- Sara Montanari
- The New Zealand Institute for Plant and Food Research Ltd, Motueka 7198, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland 1025, New Zealand
| | - Emily Koot
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| | - Nahla V Bassil
- USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Jason D Zurn
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | | | - Maren Wellenreuther
- The New Zealand Institute for Plant and Food Research Ltd, Nelson 7010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Ltd, Palmerston North 4410, New Zealand
| |
Collapse
|
4
|
Sabri M, El Handi K, Valentini F, De Stradis A, Achbani EH, Benkirane R, Resch G, Elbeaino T. Identification and Characterization of Erwinia Phage IT22: A New Bacteriophage-Based Biocontrol against Erwinia amylovora. Viruses 2022; 14:v14112455. [PMID: 36366553 PMCID: PMC9698647 DOI: 10.3390/v14112455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/03/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Erwinia amylovora is a quarantine phytopathogenic bacterium that is the causal agent of fire blight, a destructive disease responsible for killing millions of fruit-bearing plants worldwide, including apple, pear, quince, and raspberry. Efficient and sustainable control strategies for this serious bacterial disease are still lacking, and traditional methods are limited to the use of antibiotics and some basic agricultural practices. This study aimed to contribute to the development of a sustainable control strategy through the identification, characterization, and application of bacteriophages (phages) able to control fire blight on pears. Phages isolated from wastewater collected in the Apulia region (southern Italy) were characterized and evaluated as antibacterial agents to treat experimental fire blight caused by E. amylovora. Transmission electron microscopy (TEM) conducted on purified phages (named EP-IT22 for Erwinia phage IT22) showed particles with icosahedral heads of ca. 90 ± 5 nm in length and long contractile tails of 100 ± 10 nm, typical of the Myoviridae family. Whole genome sequencing (WGS), assembly, and analysis of the phage DNA generated a single contig of 174.346 bp representing a complete circular genome composed of 310 open reading frames (ORFs). EP-IT22 was found to be 98.48% identical to the Straboviridae Erwinia phage Cronus (EPC) (GenBank Acc. n° NC_055743) at the nucleotide level. EP-IT22 was found to be resistant to high temperatures (up to 60 °C) and pH values between 4 and 11, and was able to accomplish a complete lytic cycle within one hour. Furthermore, the viability-qPCR and turbidity assays showed that EP-IT22 (MOI = 1) lysed 94% of E. amylovora cells in 20 h. The antibacterial activity of EP-IT22 in planta was evaluated in E. amylovora-inoculated pear plants that remained asymptomatic 40 days post inoculation, similarly to those treated with streptomycin sulphate. This is the first description of the morphological, biological, and molecular features of EP-IT22, highlighting its promising potential for biocontrol of E. amylovora against fire blight disease.
Collapse
Affiliation(s)
- Miloud Sabri
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
| | - Kaoutar El Handi
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
- Laboratory of Plant Biotechnology and Valorisation of Bio-Resources, Faculty of Sciences, Moulay Ismail University, Meknes 11201, Morocco
| | - Franco Valentini
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
| | - Angelo De Stradis
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection (IPSP), University of Bari, Via Amendola 165/A, 70126 Bari, Italy
| | - El Hassan Achbani
- Phytobacteriology and Biological Control Laboratory, Regional Center of Agricultural Research of Meknes, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principal, Rabat 10090, Morocco
| | - Rachid Benkirane
- Productions Végétales, Animales et Agro-Industrie, Faculté des Sciences, Ibn Tofail University, Kenitra 14000, Morocco
| | - Grégory Resch
- Center for Research and Innovation in Clinical Pharmaceutical Sciences (CRISP), Lausanne University Hospital (CHUV), 1011 Lausanne, Switzerland
| | - Toufic Elbeaino
- International Center for Advanced Mediterranean Agronomic Studies (CIHEAM of Bari), Via Ceglie 9, 70010 Valenzano, Italy
- Correspondence: ; Tel.: +39-080-46-06-352
| |
Collapse
|
5
|
Khan A, Korban SS. Breeding and genetics of disease resistance in temperate fruit trees: challenges and new opportunities. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3961-3985. [PMID: 35441862 DOI: 10.1007/s00122-022-04093-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Climate change, large monocultures of disease-susceptible cultivars, overuse of pesticides, and the emergence of new pathogens or pathogenic strains causing economic losses are all major threats to our environment, health, food, and nutritional supply. Temperate tree fruit crops belonging to the Rosaceae family are the most economically important and widely grown fruit crops. These long-lived crops are under attack from many different pathogens, incurring major economic losses. Multiple chemical sprays to control various diseases annually is a common practice, resulting in significant input costs, as well as environmental and health concerns. Breeding for disease resistance has been undertaken primarily in pome fruit crops (apples and pears) for a few fungal and bacterial diseases, and to a lesser extent in some stone fruit crops. These breeding efforts have taken multiple decades due to the biological constraints and complex genetics of these tree fruit crops. Over the past couple of decades, major advances have been made in genetic and physical mapping, genomics, biotechnology, genome sequencing, and phenomics, along with accumulation of large germplasm collections in repositories. These valuable resources offer opportunities to make significant advances in greatly reducing the time needed to either develop new cultivars or modify existing economic cultivars for enhanced resistance to multiple diseases. This review will cover current knowledge, challenges, and opportunities in breeding for disease resistance in temperate tree fruit crops.
Collapse
Affiliation(s)
- Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA.
| | - Schuyler S Korban
- Department of Natural Sciences and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
6
|
Li J, Zhang M, Li X, Khan A, Kumar S, Allan AC, Lin-Wang K, Espley RV, Wang C, Wang R, Xue C, Yao G, Qin M, Sun M, Tegtmeier R, Liu H, Wei W, Ming M, Zhang S, Zhao K, Song B, Ni J, An J, Korban SS, Wu J. Pear genetics: Recent advances, new prospects, and a roadmap for the future. HORTICULTURE RESEARCH 2022; 9:uhab040. [PMID: 35031796 PMCID: PMC8778596 DOI: 10.1093/hr/uhab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/14/2023]
Abstract
Pear, belonging to the genus Pyrus, is one of the most economically important temperate fruit crops. Pyrus is an important genus of the Rosaceae family, subfamily Maloideae, and has at least 22 different species with over 5000 accessions maintained or identified worldwide. With the release of draft whole-genome sequences for Pyrus, opportunities for pursuing studies on the evolution, domestication, and molecular breeding of pear, as well as for conducting comparative genomics analyses within the Rosaceae family, have been greatly expanded. In this review, we highlight key advances in pear genetics, genomics, and breeding driven by the availability of whole-genome sequences, including whole-genome resequencing efforts, pear domestication, and evolution. We cover updates on new resources for undertaking gene identification and molecular breeding, as well as for pursuing functional validation of genes associated with desirable economic traits. We also explore future directions for "pear-omics".
Collapse
Affiliation(s)
- Jiaming Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingyue Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xiaolong Li
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Awais Khan
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Satish Kumar
- Hawke’s Bay Research Centre, The New Zealand Institute for Plant and Food Research Limited, Havelock North 4157, New Zealand
| | - Andrew Charles Allan
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Richard Victor Espley
- The New Zealand Institute for Plant and Food Research Limited, Auckland 1142, New Zealand
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Runze Wang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Xue
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, 230009 Hefei, China
| | - Mengfan Qin
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Manyi Sun
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Richard Tegtmeier
- Plant Pathology & Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Hainan Liu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Weilin Wei
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Meiling Ming
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Shaoling Zhang
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Kejiao Zhao
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Bobo Song
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiangping Ni
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianping An
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Schuyler S Korban
- Department of Natural Resources & Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jun Wu
- Center of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
7
|
Iezzoni AF, McFerson J, Luby J, Gasic K, Whitaker V, Bassil N, Yue C, Gallardo K, McCracken V, Coe M, Hardner C, Zurn JD, Hokanson S, van de Weg E, Jung S, Main D, da Silva Linge C, Vanderzande S, Davis TM, Mahoney LL, Finn C, Peace C. RosBREED: bridging the chasm between discovery and application to enable DNA-informed breeding in rosaceous crops. HORTICULTURE RESEARCH 2020; 7:177. [PMID: 33328430 PMCID: PMC7603521 DOI: 10.1038/s41438-020-00398-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 08/30/2020] [Indexed: 05/05/2023]
Abstract
The Rosaceae crop family (including almond, apple, apricot, blackberry, peach, pear, plum, raspberry, rose, strawberry, sweet cherry, and sour cherry) provides vital contributions to human well-being and is economically significant across the U.S. In 2003, industry stakeholder initiatives prioritized the utilization of genomics, genetics, and breeding to develop new cultivars exhibiting both disease resistance and superior horticultural quality. However, rosaceous crop breeders lacked certain knowledge and tools to fully implement DNA-informed breeding-a "chasm" existed between existing genomics and genetic information and the application of this knowledge in breeding. The RosBREED project ("Ros" signifying a Rosaceae genomics, genetics, and breeding community initiative, and "BREED", indicating the core focus on breeding programs), addressed this challenge through a comprehensive and coordinated 10-year effort funded by the USDA-NIFA Specialty Crop Research Initiative. RosBREED was designed to enable the routine application of modern genomics and genetics technologies in U.S. rosaceous crop breeding programs, thereby enhancing their efficiency and effectiveness in delivering cultivars with producer-required disease resistances and market-essential horticultural quality. This review presents a synopsis of the approach, deliverables, and impacts of RosBREED, highlighting synergistic global collaborations and future needs. Enabling technologies and tools developed are described, including genome-wide scanning platforms and DNA diagnostic tests. Examples of DNA-informed breeding use by project participants are presented for all breeding stages, including pre-breeding for disease resistance, parental and seedling selection, and elite selection advancement. The chasm is now bridged, accelerating rosaceous crop genetic improvement.
Collapse
Affiliation(s)
- Amy F Iezzoni
- Michigan State University, East Lansing, MI, 48824, USA.
| | - Jim McFerson
- Washington State University, Wenatchee, WA, 98801, USA
| | - James Luby
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | | | - Chengyan Yue
- University of Minnesota, St. Paul, MN, 55108, USA
| | | | | | - Michael Coe
- Cedar Lake Research Group, Portland, OR, 97215, USA
| | | | | | | | - Eric van de Weg
- Wageningen University and Research, 6700 AA, Wageningen, The Netherlands
| | - Sook Jung
- Washington State University, Pullman, WA, 99164, USA
| | - Dorrie Main
- Washington State University, Pullman, WA, 99164, USA
| | | | | | | | | | | | - Cameron Peace
- Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
8
|
Reconstruction of the Largest Pedigree Network for Pear Cultivars and Evaluation of the Genetic Diversity of the USDA-ARS National Pyrus Collection. G3-GENES GENOMES GENETICS 2020; 10:3285-3297. [PMID: 32675069 PMCID: PMC7466967 DOI: 10.1534/g3.120.401327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The USDA-ARS National Clonal Germplasm Repository (NCGR) in Corvallis, Oregon, maintains one of the world's largest and most diverse living Pyrus collection. A thorough genetic characterization of this germplasm will provide relevant information to optimize the conservation strategy of pear biodiversity, support the use of this germplasm in breeding, and increase our knowledge of Pyrus taxonomy, evolution, and domestication. In the last two decades simple sequence repeat (SSR) markers have been used at the NCGR for cultivar identification and small population structure analysis. However, the recent development of the Applied Biosystems Axiom Pear 70K Genotyping Array has allowed high-density single nucleotide polymorphism (SNP)-based genotyping of almost the entire collection. In this study, we have analyzed this rich dataset to discover new synonyms and mutants, identify putative labeling errors in the collection, reconstruct the largest pear cultivar pedigree and further elucidate the genetic diversity of Pyrus.
Collapse
|