1
|
Estêvão C, Rodrigues L, Rato AE, Garcia R, Cardoso H, Campos C. Applicability of metabolomics to improve sustainable grapevine production. Front Mol Biosci 2024; 11:1395677. [PMID: 39310375 PMCID: PMC11413592 DOI: 10.3389/fmolb.2024.1395677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Metabolites represent the end product of gene expression, protein interaction and other regulatory mechanisms. The metabolome reflects a biological system's response to genetic and environmental changes, providing a more accurate description of plants' phenotype than the transcriptome or the proteome. Grapevine (Vitis vinifera L.), established for the production of wine grapes, table grapes, and raisins, holds immense agronomical and economic significance not only in the Mediterranean region but worldwide. As all plants, grapevines face the adverse impact of biotic and abiotic stresses that negatively affect multiple stages of grape and wine industry, including plant and berry development pre- and post-harvest, fresh grapes processing and consequently wine quality. In the present review we highlight the applicability of metabolome analysis in the understanding of the mechanisms involved in grapevine response and acclimatization upon the main biotic and abiotic constrains. The metabolome of induced morphogenic processes such as adventitious rooting and somatic embryogenesis is also explored, as it adds knowledge on the physiological and molecular phenomena occurring in the explants used, and on the successfully propagation of grapevines with desired traits. Finally, the microbiome-induced metabolites in grapevine are discussed in view of beneficial applications derived from the plant symbioses.
Collapse
Affiliation(s)
- Catarina Estêvão
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lénia Rodrigues
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Ana Elisa Rato
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Raquel Garcia
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Fitotecnia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia, Escola de Ciências e Tecnologia, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| |
Collapse
|
2
|
Leal C, Trotel-Aziz P, Gramaje D, Armengol J, Fontaine F. Exploring Factors Conditioning the Expression of Botryosphaeria Dieback in Grapevine for Integrated Management of the Disease. PHYTOPATHOLOGY 2024; 114:21-34. [PMID: 37505093 DOI: 10.1094/phyto-04-23-0136-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Species from the Botryosphaeriaceae family are the causal agents of Botryosphaeria dieback (BD), a worldwide grapevine trunk disease. Because of their lifestyle and their adaptation to a wide range of temperatures, these fungi constitute a serious threat to vineyards and viticulture, especially in the actual context of climate change. Grapevine plants from both nurseries and vineyards are very susceptible to infections by botryosphaeriaceous fungi due to several cuts and wounds made during their propagation process and their entire life cycle, respectively. When decline becomes chronic or apoplectic, it reduces the longevity of the vineyard and affects the quality of the wine, leading to huge economic losses. Given the environmental impact of fungicides, and their short period of effectiveness in protecting pruning wounds, alternative strategies are being developed to fight BD fungal pathogens and limit their propagation. Among them, biological control has been recognized as a promising and sustainable alternative. However, there is still no effective strategy for combating this complex disease, conditioned by both fungal life traits and host tolerance traits, in relationships with the whole microbiome/microbiota. To provide sound guidance for an effective and sustainable integrated management of BD, by combining the limitation of infection risk, tolerant grapevine cultivars, and biological control, this review explores some of the factors conditioning the expression of BD in grapevine. Among them, the lifestyle of BD-associated pathogens, their pathogenicity factors, the cultivar traits of tolerance or susceptibility, and the biocontrol potential of Bacillus spp. and Trichoderma spp. are discussed.
Collapse
Affiliation(s)
- Catarina Leal
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Patricia Trotel-Aziz
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| | - David Gramaje
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de la Rioja-Gobierno de La Rioja, Ctra. LO-20 Salida 13, Finca La Grajera, 26071 Logroño, Spain
| | - Josep Armengol
- Instituto Agroforestal Mediterráneo, Universitat Politècnica de València, Camino de Vera S/N, 46022 Valencia, Spain
| | - Florence Fontaine
- University of Reims Champagne-Ardenne, Research Unit Résistance Induite et Bioprotection des Plantes RIBP EA 4707, INRAE USC 1488, SFR Condorcet FR CNRS 3417, Reims, France
| |
Collapse
|
3
|
Fernandez O, Lemaître-Guillier C, Songy A, Robert-Siegwald G, Lebrun MH, Schmitt-Kopplin P, Larignon P, Adrian M, Fontaine F. The Combination of Both Heat and Water Stresses May Worsen Botryosphaeria Dieback Symptoms in Grapevine. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040753. [PMID: 36840101 PMCID: PMC9961737 DOI: 10.3390/plants12040753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/12/2023]
Abstract
(1) Background: Grapevine trunk diseases (GTDs) have become a global threat to vineyards worldwide. These diseases share three main common features. First, they are caused by multiple pathogenic micro-organisms. Second, these pathogens often maintain a long latent phase, which makes any research in pathology and symptomatology challenging. Third, a consensus is raising to pinpoint combined abiotic stresses as a key factor contributing to disease symptom expression. (2) Methods: We analyzed the impact of combined abiotic stresses in grapevine cuttings artificially infected by two fungi involved in Botryosphaeria dieback (one of the major GTDs), Neofusicoccum parvum and Diplodia seriata. Fungal-infected and control plants were subjected to single or combined abiotic stresses (heat stress, drought stress or both). Disease intensity was monitored thanks to the measurement of necrosis area size. (3) Results and conclusions: Overall, our results suggest that combined stresses might have a stronger impact on disease intensity upon infection by the less virulent pathogen Diplodia seriata. This conclusion is discussed through the impact on plant physiology using metabolomic and transcriptomic analyses of leaves sampled for the different conditions.
Collapse
Affiliation(s)
- Olivier Fernandez
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Aurélie Songy
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | | | - Marc-Henri Lebrun
- Research Group Genomics of Plant-Pathogen Interactions, Research Unit Biologie et Gestion des Risques en Agriculture, UR 1290 BIOGER, Université Paris-Saclay, 78850 Thiverval-Grignon, France
| | - Philippe Schmitt-Kopplin
- Analytical BioGeoChemistry, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | | | - Marielle Adrian
- Agroécologie, Institut Agro Dijon, CNRS, INRAE, Université Bourgogne Franche-Comté, 21000 Dijon, France
| | - Florence Fontaine
- Unité Résistance Induite et Bioprotection des Plantes EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
4
|
Trouvelot S, Lemaitre-Guillier C, Vallet J, Jacquens L, Douillet A, Harir M, Larignon P, Roullier-Gall C, Schmitt-Kopplin P, Adrian M, Fontaine F. Sodium arsenite-induced changes in the wood of esca-diseased grapevine at cytological and metabolomic levels. FRONTIERS IN PLANT SCIENCE 2023; 14:1141700. [PMID: 37180397 PMCID: PMC10173745 DOI: 10.3389/fpls.2023.1141700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/16/2023]
Abstract
In the past, most grapevine trunk diseases (GTDs) have been controlled by treatments with sodium arsenite. For obvious reasons, sodium arsenite was banned in vineyards, and consequently, the management of GTDs is difficult due to the lack of methods with similar effectiveness. Sodium arsenite is known to have a fungicide effect and to affect the leaf physiology, but its effect on the woody tissues where the GTD pathogens are present is still poorly understood. This study thus focuses on the effect of sodium arsenite in woody tissues, particularly in the interaction area between asymptomatic wood and necrotic wood resulting from the GTD pathogens' activities. Metabolomics was used to obtain a metabolite fingerprint of sodium arsenite treatment and microscopy to visualize its effects at the histo-cytological level. The main results are that sodium arsenite impacts both metabolome and structural barriers in plant wood. We reported a stimulator effect on plant secondary metabolites in the wood, which add to its fungicide effect. Moreover, the pattern of some phytotoxins is affected, suggesting the possible effect of sodium arsenite in the pathogen metabolism and/or plant detoxification process. This study brings new elements to understanding the mode of action of sodium arsenite, which is useful in developing sustainable and eco-friendly strategies to better manage GTDs.
Collapse
Affiliation(s)
- Sophie Trouvelot
- Agroécologie, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Christelle Lemaitre-Guillier
- Agroécologie, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Julie Vallet
- Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes (RIBP) USC Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) 1488, Reims, France
| | - Lucile Jacquens
- Agroécologie, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Antonin Douillet
- Agroécologie, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Mourad Harir
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
- Chair Analyt Food Chem, Technical University Munich, Freising, Germany
| | - Philippe Larignon
- Institut Français de la Vigne et du Vin (IFV) Pôle Rhône-Méditerranée, Rodilhan, France
| | | | | | - Marielle Adrian
- Agroécologie, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut Agro Dijon, Univ. Bourgogne, Univ. Bourgogne Franche-Comté, Dijon, France
| | - Florence Fontaine
- Université de Reims Champagne-Ardenne, Unité de recherche Résistance Induite et Bioprotection des Plantes (RIBP) USC Institut National de Recherche pour l'agriculture, l'alimentation et l'environnement (INRAE) 1488, Reims, France
- *Correspondence: Florence Fontaine,
| |
Collapse
|
5
|
Chervin J, Romeo-Oliván A, Fournier S, Puech-Pages V, Dumas B, Jacques A, Marti G. Modification of Early Response of Vitis vinifera to Pathogens Relating to Esca Disease and Biocontrol Agent Vintec ® Revealed By Untargeted Metabolomics on Woody Tissues. Front Microbiol 2022; 13:835463. [PMID: 35308402 PMCID: PMC8924477 DOI: 10.3389/fmicb.2022.835463] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Esca disease is one of the most destructive grapevine trunk diseases. Phaeoacremonium minimum and Phaeomoniella chlamydospora are two of the known fungal pathogens associated with this disease. Today, biocontrol agents against Esca are mainly based on the use of the strain of the mycoparasite fungal genus Trichoderma such as the Vintec® product. The aim of this study was to investigate early response of woody tissues to Esca pathogens and identify metabolites that could be correlated with a biocontrol activity within a complex woody matrix. An untargeted liquid chromatography-high-resolution mass spectrometry metabolomic approach coupled to a spectral similarity network was used to highlight clusters of compounds associated with the plant response to pathogens and biocontrol. Dereplication highlighted the possible role of glycerophospholipids and polyphenol compounds, the latest mainly belonging to stilbenoids. Antifungal activity of some relevant biomarkers, evaluated in vitro on Phaeomoniella chlamydospora and Botrytis cinerea, suggests that some of these compounds can play a role to limit the development of Esca pathogens in planta.
Collapse
Affiliation(s)
- Justine Chervin
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Ana Romeo-Oliván
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Virginie Puech-Pages
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
| | - Alban Jacques
- Unité de Recherche Physiologie, Pathologie, et Génétique Végétales (PPGV), INP PURPAN, Université de Toulouse, Toulouse, France
| | - Guillaume Marti
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- Metatoul-AgromiX Platform, LRSV, Université de Toulouse, CNRS, UPS, Toulouse INP, Toulouse, France
- MetaboHUB-MetaToul, National Infrastructure of Metabolomics and Fluxomics, Toulouse, France
| |
Collapse
|
6
|
Assessment of a New Copper-Based Formulation to Control Esca Disease in Field and Study of Its Impact on the Vine Microbiome, Vine Physiology and Enological Parameters of the Juice. J Fungi (Basel) 2022; 8:jof8020151. [PMID: 35205905 PMCID: PMC8879249 DOI: 10.3390/jof8020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/07/2022] Open
Abstract
Copper-based preparations have been used for more than 100 years in viticulture to control downy mildew caused by Plasmopara viticola. LC2017, and a new low-copper-based formulation, has been developed to control grapevine trunk diseases (GTDs). Previous greenhouse studies showed the potential of LC2017 to control GTDs by both fungistatic and plant defense elicitor effects. Here, we further characterize the effects of LC2017 in the field determining its impact on: (i) incidence of Esca, (ii) the vine microbiome, (iii) the vine physiology and (iv) enological parameters of juices. We observed a progressive decrease of cumulate Esca incidence in treated vines over the years with annual fluctuation related to the known erratic emergence of GTD symptoms. Neither harmful effects of LC2017 on the vine microbiota, nor on vine physiology were observed (at both transcriptomic and metabolomic levels). Similarly, no impact of LC2017 was observed on the enological properties of berries except for sugar content in juice from esca-diseased vines. The most important result concerns the transcriptomic profiles: that of diseased and LC2017 treated vines differs from that of disease untreated ones, showing a treatment effect. Moreover, the transcriptomic profile of diseased and LC2017-treated vines is similar to that of untreated asymptomatic vines, suggesting control of the disease.
Collapse
|
7
|
Nicotinamide Effectively Suppresses Fusarium Head Blight in Wheat Plants. Int J Mol Sci 2021; 22:ijms22062968. [PMID: 33804001 PMCID: PMC8000930 DOI: 10.3390/ijms22062968] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 01/10/2023] Open
Abstract
Pyridine nucleotides such as a nicotinamide adenine dinucleotide (NAD) are known as plant defense activators. We previously reported that nicotinamide mononucleotide (NMN) enhanced disease resistance against fungal pathogen Fusarium graminearum in barley and Arabidopsis. In this study, we reveal that the pretreatment of nicotinamide (NIM), which does not contain nucleotides, effectively suppresses disease development of Fusarium Head Blight (FHB) in wheat plants. Correspondingly, deoxynivalenol (DON) mycotoxin accumulation was also significantly decreased by NIM pretreatment. A metabolome analysis showed that several antioxidant and antifungal compounds such as trigonelline were significantly accumulated in the NIM-pretreated spikes after inoculation of F. graminearum. In addition, some metabolites involved in the DNA hypomethylation were accumulated in the NIM-pretreated spikes. On the other hand, fungal metabolites DON and ergosterol peroxide were significantly reduced by the NIM pretreatment. Since NIM is relative stable and inexpensive compared with NMN and NAD, it may be more useful for the control of symptoms of FHB and DON accumulation in wheat and other crops.
Collapse
|