1
|
Osdaghi E, Abachi H, Jacques M. Clavibacter michiganensis Reframed: The Story of How the Genomics Era Made a New Face for an Old Enemy. MOLECULAR PLANT PATHOLOGY 2025; 26:e70093. [PMID: 40391582 PMCID: PMC12089995 DOI: 10.1111/mpp.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/22/2025]
Abstract
OBJECTIVE Bacterial wilt and canker of tomato caused by the gram-positive corynebacterial species Clavibacter michiganensis is an economically important disease threatening the tomato industry in both open-air and greenhouse productions around the world. The disease occurs in many countries, with a particular importance in regions characterised by high temperature and water scarcity. Management of bacterial canker has been a major problem since its original description in 1909. This is due in part to the seedborne nature of the pathogen, allowing the bacterium to be transmitted over long distances via infected seeds, as well as a lack of effective treatment to clean seeds. Detection of the pathogen from seeds is difficult due to high competition on culture media with diverse members of the seed-associated microbiota. Identification of the pathogen can also be difficult owing to the presence of different colony variants on culture media. In this review, we provide a historical perspective and an updated overview on the aetiology, epidemiology and management strategies of the bacterial canker disease. We also gathered recent molecular findings in the pathogenicity mechanisms and bioecology of C. michiganensis to boost management of the bacterial canker disease in the 21st century tomato industry. TAXONOMY Class: Actinobacteria; Order: Micrococcales; Family: Microbacteriaceae; Genus: Clavibacter; Species: Clavibacter michiganensis. DISEASE SYMPTOMS Interveinal leaf chlorosis leading to necrotic areas. Canker on stems and lateral branches of the plant. Discolouration of vascular and pith tissues to dark yellow or brown. Small and early ripened fruits or discolouration of the placenta from white to yellow in the interior part of the ripening fruits. HOST RANGE Tomato (Solanum lycopersicum) is the main host of the pathogen while natural infection has also been reported on eggplant, pepper and wild nightshade plants. SYNONYMS (HISTORICAL/NON-PREFERRED SCIENTIFIC NAMES) Aplanobacter michiganensis; Pseudomonas michiganense; Pseudomonas michiganensis; Bacterium michiganense; Phytomonas michiganensis; Mycobacterium michiganense; Erwinia michiganensis (=michiganense); Corynebacterium michiganense; Corynebacterium michiganense pv. michiganense; Corynebacterium michiganense subsp. michiganense; Clavibacter michiganensis subsp. michiganensis. MICROBIOLOGICAL PROPERTIES The bacterium produces domed, round and shiny mucoid colonies on general culture media. Colonies are usually yellow-pigmented, while pink-pigmented strains are occasionally observed. Cells are gram-positive, aerobic, non-motile, non-spore-producing curved rods (coryneform). DISTRIBUTION Present in all continents. PHYTOSANITARY CATEGORIZATION EPPO A2 List no. 50, EU 2019/2072 RNQP Annex IV. See EPPO (https://gd.eppo.int/taxon/CORBMI/categorization) and CABI (https://www.cabidigitallibrary.org/doi/10.1079/cabicompendium.15338) databases for further country-specific categorisations. EPPO code: CORBMI.
Collapse
Affiliation(s)
- Ebrahim Osdaghi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Hamid Abachi
- Department of Plant Protection, College of AgricultureUniversity of TehranKarajIran
| | - Marie‐Agnes Jacques
- Institut Agro, INRAE, IRHS, SFR QUASAV, CIRM‐CFBPUniversité d'AngersAngersFrance
| |
Collapse
|
2
|
Julius L, Saeed MM, Kuijpers T, Sandu S, Henihan G, Dreo T, Schoen CD, Mishra R, Dunne NJ, Carthy E, Ducrée J, Kinahan DJ. Low-High-Low Rotationally Pulse-Actuated Serial Dissolvable Film Valves Applied to Solid Phase Extraction and LAMP Isothermal Amplification for Plant Pathogen Detection on a Lab-on-a-Disc. ACS OMEGA 2024; 9:3262-3275. [PMID: 38284094 PMCID: PMC10809376 DOI: 10.1021/acsomega.3c05117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
The ability of the centrifugal Lab-on-a-Disc (LoaD) platform to closely mimic the "on bench" liquid handling steps (laboratory unit operations (LUOs)) such as metering, mixing, and aliquoting supports on-disc automation of bioassay without the need for extensive biological optimization. Thus, well-established bioassays, normally conducted manually using pipettes or using liquid handling robots, can be relatively easily automated in self-contained microfluidic chips suitable for use in point-of-care or point-of-use settings. The LoaD's ease of automation is largely dependent on valves that can control liquid movement on the rotating disc. The optimum valving strategy for a true low-cost and portable device is rotationally actuated valves, which are actuated by changes in the disc spin-speed. However, due to tolerances in disc manufacturing and variations in reagent properties, most of these valving technologies have inherent variation in their actuation spin-speed. Most valves are actuated through stepped increases in disc spin-speed until the motor reaches its maximum speed (rarely more than 6000 rpm). These manufacturing tolerances combined with this "analogue" mechanism of valve actuation limits the number of LUOs that can be placed on-disc. In this work, we present a novel valving mechanism called low-high-low serial dissolvable film (DF) valves. In these valves, a DF membrane is placed in a dead-end pneumatic chamber. Below an actuation spin-speed, the trapped air prevents liquid wetting and dissolving the membrane. Above this spin-speed, the liquid will enter and wet the DF and open the valve. However, as DFs take ∼40 s to dissolve, the membrane can be wetted, and the disc spin-speed reduced before the film opens. Thus, by placing valves in a series, we can govern on which "digital pulse" in spin-speeding a reagent is released; a reservoir with one serial valve will open on the first pulse, a reservoir with two serial valves on the second, and so on. This "digital" flow control mechanism allows the automation of complex assays with high reliability. In this work, we first describe the operation of the valves, outline the theoretical basis for their operation, and support this analysis with an experiment. Next, we demonstrate how these valves can be used to automate the solid-phase extraction of DNA on on-disc LAMP amplification for applications in plant pathogen detection. The disc was successfully used to extract and detect, from a sample lysed off-disc, DNA indicating the presence of thermally inactivated Clavibacter michiganensis ssp. michiganensis (Cmm), a bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Lourdes
AN Julius
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Muhammad Mubashar Saeed
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- SFI Centre
for Research Training in Machine Learning (ML-Laboratories), Dublin City University, Dublin D09 V209, Ireland
| | - Tim Kuijpers
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Sergei Sandu
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Tanja Dreo
- National
Institute of Biology, 1000 Ljubljana, Slovenia
| | - Cor D Schoen
- Wageningen
University and Research, 6708 PB Wageningen, The Netherlands
| | - Rohit Mishra
- Fraunhofer
Project Centre at Dublin City University, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
| | - Nicholas J Dunne
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Eadaoin Carthy
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| | - Jens Ducrée
- School
of Physical Sciences, Dublin City University, Dublin D09 V209, Ireland
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
| | - David J Kinahan
- National
Centre for Sensor Research (NCSR), Dublin
City University, Dublin D09 V209, Ireland
- Biodesign
Europe, Dublin City University, Dublin D09 V209, Ireland
- School
of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin D09 V209, Dublin, Ireland
| |
Collapse
|
3
|
Mishra R, Julius LA, Condon J, Pavelskopfa P, Early PL, Dorrian M, Mrvova K, Henihan G, Mangwanya F, Dreo T, Ducrée J, Macdonald NP, Schoen C, Kinahan DJ. Plant pathogen detection on a lab-on-a-disc using solid-phase extraction and isothermal nucleic acid amplification enabled by digital pulse-actuated dissolvable film valves. Anal Chim Acta 2023; 1258:341070. [PMID: 37087288 DOI: 10.1016/j.aca.2023.341070] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/21/2023]
Abstract
By virtue of its ruggedness, portability, rapid processing times, and ease-of-use, academic and commercial interest in centrifugal microfluidic systems has soared over the last decade. A key advantage of the LoaD platform is the ability to automate laboratory unit operations (LUOs) (mixing, metering, washing etc.) to support direct translation of 'on-bench' assays to 'on-chip'. Additionally, the LoaD requires just a low-cost spindle motor rather than specialized and expensive microfluidic pumps. Furthermore, when flow control (valves) is implemented through purely rotational changes in this same spindle motor (rather than using additional support instrumentation), the LoaD offers the potential to be a truly portable, low-cost and accessible platform. Current rotationally controlled valves are typically opened by sequentially increasing the disc spin-rate to a specific opening frequency. However, due lack of manufacturing fidelity these specific opening frequencies are better described as spin frequency 'bands'. With low-cost motors typically having a maximum spin-rate of 6000 rpm (100 Hz), using this 'analogue' approach places a limitation on the number of valves, which can be serially actuated thus limiting the number of LUOs that can be automated. In this work, a novel flow control scheme is presented where the sequence of valve actuation is determined by architecture of the disc while its timing is governed by freely programmable 'digital' pulses in its spin profile. This paradigm shift to 'digital' flow control enables automation of multi-step assays with high reliability, with full temporal control, and with the number of LUOs theoretically only limited by available space on the disc. We first describe the operational principle of these valves followed by a demonstration of the capability of these valves to automate complex assays by screening tomato leaf samples against plant pathogens. Reagents and lysed sample are loaded on-disc and then, in a fully autonomous fashion using only spindle-motor control, the complete assay is automated. Amplification and fluorescent acquisition take place on a custom spin-stand enabling the generation of real-time LAMP amplification curves using custom software. To prevent environmental contamination, the entire discs are sealed from atmosphere following loading with internal venting channels permitting easy movement of liquids about the disc. The disc was successfully used to detect the presence of thermally inactivated Clavibacter michiganensis. Michiganensis (CMM) bacterial pathogen on tomato leaf samples.
Collapse
Affiliation(s)
- Rohit Mishra
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland.
| | - Lourdes An Julius
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Jack Condon
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Patricija Pavelskopfa
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Philip L Early
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; School of Physical Sciences, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland
| | - Matthew Dorrian
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Katarina Mrvova
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Grace Henihan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Faith Mangwanya
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Tanya Dreo
- National Institute of Biology, Ljubljana, Slovenia
| | - Jens Ducrée
- School of Physical Sciences, Dublin City University, Dublin, Ireland
| | - Niall P Macdonald
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland
| | - Cor Schoen
- Wageningen University Research, Wageningen, the Netherlands
| | - David J Kinahan
- Fraunhofer Project Centre at Dublin City University, Dublin City University, Glasnevin, Dublin, Ireland; National Centre for Sensor Research (NCSR), Dublin City University, Dublin, Ireland; Biodesign Europe, Dublin City University, Dublin, Ireland; School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin, Ireland.
| |
Collapse
|
4
|
Ramachandran S, Dobhal S, Alvarez AM, Arif M. Improved multiplex TaqMan qPCR assay with universal internal control offers reliable and accurate detection of Clavibacter michiganensis. J Appl Microbiol 2021; 131:1405-1416. [PMID: 33484618 DOI: 10.1111/jam.15017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/16/2020] [Accepted: 01/21/2021] [Indexed: 11/27/2022]
Abstract
AIM Clavibacter michiganensis (Cm) is a seed-borne plant pathogen that significantly reduces tomato production worldwide. Due to repeated outbreaks and rapid spread of the disease, seeds/transplants need to be certified free of the pathogen before planting. To this end, we developed a multiplex TaqMan qPCR assay that can accurately detect Cm in infected samples. METHODS AND RESULTS A specific region of Cm (clvG gene) was selected for primer design using comparative genomics approach. A fully synthetic universal internal control (UIC) was also designed to detect PCR inhibitors and false-negative results in qPCRs. The Cm primers can be used alone or in a triplex TaqMan qPCR assay with UIC and previously described Clavibacter primers. The assay was specific for Cm and detected up to 10 fg of Cm DNA in sensitivity and spiked assays. Addition of the UIC did not change the specificity or sensitivity of the multiplex TaqMan qPCR assay. CONCLUSION The triplex TaqMan qPCR provides a specific and sensitive diagnostic assay for Cm. SIGNIFICANCE AND IMPACT OF THE STUDY This assay can be used for biosecurity surveillance, routine diagnostics, estimating bacterial titres in infected material and for epidemiological studies. The UIC is fully synthetic, efficiently amplified and multiplex compatible with any other qPCR assay.
Collapse
Affiliation(s)
- S Ramachandran
- Foreign Disease and Weed Science Research Unit, USDA-ARS, Fort Detrick, MD, USA.,ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - S Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Larrea-Sarmiento A, Alvarez AM, Stack JP, Arif M. Synergetic effect of non-complementary 5' AT-rich sequences on the development of a multiplex TaqMan real-time PCR for specific and robust detection of Clavibacter michiganensis and C. michiganensis subsp. nebraskensis. PLoS One 2019; 14:e0218530. [PMID: 31295263 PMCID: PMC6622472 DOI: 10.1371/journal.pone.0218530] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 05/22/2019] [Indexed: 11/25/2022] Open
Abstract
Clavibacter is an agriculturally important genus comprising a single species, Clavibacter michiganensis, and multiple subspecies, including, C. michiganensis subsp. nebraskensis which causes Goss's wilt/blight of corn, accounts for high yield losses and is listed among the five most significant diseases of corn in the United States of America. Our research objective was to develop a robust and rapid multiplex TaqMan real-time PCR (qPCR) to detect C. michiganensis in general and C. michiganensis subsp. nebraskensis with enhanced reliability and accuracy by adding non-complementary AT sequences to the 5’ end of the forward and reverse primers. Comparative genomic analyses were performed to identify unique and conserved gene regions for primer and probe design. The unique genomic regions, ABC transporter ATP-binding protein CDS/ABC-transporter permease and MFS transporter were determined for specific detection of C. michiganensis and C. m. subsp. nebraskensis, respectively. The AT-rich sequences at the 5’ position of the primers enhanced the reaction efficiency and sensitivity of rapid qPCR cycling; the reliability, accuracy and high efficiency of the developed assay was confirmed after testing with 59 strains from inclusivity and exclusivity panels–no false positives or false negatives were detected. The assays were also validated through naturally and artificially infected corn plant samples; all samples were detected for C. michiganensis and C. m. subsp. nebraskensis with 100% accuracy. The assay with 5’ AT-rich sequences detected up to 10- and 100-fg of C. michiganensis and C. michiganensis subsp. nebraskensis genome targets, respectively. No adverse effect was observed when sensitivity assays were spiked with host genomic DNA. Addition of 5’ AT-rich sequences enhanced the qPCR reaction efficiency from 0.82 (M = -3.83) and 0.91 (M = -3.54) to 1.04 (with optimum slope value; M = -3.23) for both C. michiganensis and C. michiganensis subsp. nebraskensis, respectively; an increase of 10-fold sensitivity was also obtained with C. michiganensis primer set. The methodology proposed here can be used to optimize reaction efficiency and to harmonize diagnostic protocols which have prodigious applications in routine diagnostics, biosecurity and microbial forensics.
Collapse
Affiliation(s)
- Adriana Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - James P. Stack
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas, United States of America
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
6
|
Okiro LA, Tancos MA, Nyanjom SG, Smart CD, Parker ML. Comparative Evaluation of LAMP, qPCR, Conventional PCR, and ELISA to Detect Ralstonia solanacearum in Kenyan Potato Fields. PLANT DISEASE 2019; 103:959-965. [PMID: 30895864 PMCID: PMC7779969 DOI: 10.1094/pdis-03-18-0489-re] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/04/2018] [Indexed: 05/25/2023]
Abstract
Bacterial wilt caused by Ralstonia solanacearum is considered among the most damaging diseases of potato in Sub-Saharan Africa and the most significant biotic constraint of potato production alongside late blight. Unlike late blight, which can be managed by chemical means, R. solanacearum can only be managed through cultural methods and clean seed. Laboratory testing to certify seed before planting is required to confirm the absence of the pathogen in Kenya. A loop-mediated isothermal amplification (LAMP) assay was developed using the UDP-(3-O-acyl)-N-acetylglucosamine deacetylase gene (IpxC) to screen seed potato for R. solanacearum strains. The assay was assessed using DNA extracted from R. solanacearum and other soil and potato pathogens to demonstrate specificity and sensitivity. The LAMP assay was validated using field samples from different potato growing regions of Kenya collected over two growing seasons and compared with established nucleic acid and protein-based assays. The IpxC LAMP assay was found to be specific and sensitive to R. solanacearum, detecting as low as 2.5 pg/µl of R. solanacearum DNA. Of the 47 potentially infected field samples collected, both IpxC LAMP and quantitative polymerase chain reaction (PCR) detected R. solanacearum DNA in 90% of the samples, followed by conventional PCR (86%) and ELISA (75%). This IpxC LAMP assay is a promising diagnostic tool to rapidly screen for R. solanacearum in seed potato with high sensitivity in Kenya. Copyright © 2019 The Author(s). This is an open access article distributed under the CC BY 4.0 International license .
Collapse
Affiliation(s)
- Lilian A. Okiro
- Department of Biochemistry and Molecular Biology, Egerton University, Njoro Campus, PO Box, 536 – 20115, Egerton, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
- Biosciences Eastern and Central Africa–International Livestock Research Institute (BecA-ILRI) Hub, Nairobi, 00100, Kenya
| | - Matthew A. Tancos
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, U.S.A.; and
| | - Steven G. Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Christine D. Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, U.S.A.; and
| | - Monica L. Parker
- CGIAR Research Program on Roots, Tubers and Bananas, International Potato Center, Nairobi, Kenya
| |
Collapse
|
7
|
Strayer-Scherer A, Jones JB, Paret ML. Recombinase Polymerase Amplification Assay for Field Detection of Tomato Bacterial Spot Pathogens. PHYTOPATHOLOGY 2019; 109:690-700. [PMID: 30211633 DOI: 10.1094/phyto-03-18-0101-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Bacterial spot of tomato is caused by Xanthomonas gardneri, X. euvesicatoria, X. perforans, and X. vesicatoria. Current diagnostic methods for the pathogens are not in-field assays. Recombinase polymerase amplification (RPA) is ideal for in-field detection assays, because it is an isothermal technique that is rapid and more tolerant to inhibitors compared with polymerase chain reaction. Hence, novel RPA probes and primers were designed to amplify regions of the hrcN gene of X. gardneri, X. euvesicatoria, and X. perforans. The X. gardneri RPA is specific to X. gardneri with a detection limit of 106 CFU/ml and detected X. gardneri in lesions from naturally (n = 6) or artificially (n = 18) infected plants. The X. euvesicatoria RPA detects both X. euvesicatoria and X. perforans with a detection limit of 106 CFU/ml and detected both pathogens in plants artificially infected (n = 36) or naturally infected (n = 85) with either X. euvesicatoria or X. perforans. The X. perforans RPA is specific to X. perforans with a detection limit of 107 CFU/ml. Although the X. perforans RPA assay was unable to detect X. perforans from lesions, the X. euvesicatoria RPA was successfully used in field to detect X. perforans from symptomatic field samples (n = 31). The X. perforans RPA was then used to confirm the pathogen in the laboratory. The X. euvesicatoria and X. gardneri RPA is promising for rapid, real-time in-field detection of bacterial spot and one of the first developed among plant pathogenic bacteria.
Collapse
Affiliation(s)
- A Strayer-Scherer
- 1 Department of Plant Pathology, University of Florida, Gainesville 32611; and
| | - J B Jones
- 1 Department of Plant Pathology, University of Florida, Gainesville 32611; and
| | - M L Paret
- 2 Department of Plant Pathology, North Florida Research and Education Center, University of Florida, Quincy 32351
| |
Collapse
|
8
|
Dobhal S, Larrea-Sarmiento A, Alvarez AM, Arif M. Development of a loop-mediated isothermal amplification assay for specific detection of all known subspecies of Clavibacter michiganensis. J Appl Microbiol 2018; 126:388-401. [PMID: 30307676 DOI: 10.1111/jam.14128] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 01/02/2023]
Abstract
AIMS Clavibacter michiganensis is an important bacterial plant pathogen that causes vast destruction to agriculturally important crops worldwide. Early detection is critical to evaluate disease progression and to implement efficient control measures to avoid serious epidemics. In this study, we developed a sensitive, specific and robust loop-mediated isothermal amplification (LAMP) assay for detection of all known subspecies of C. michiganensis. METHODS AND RESULTS Whole genome comparative genomics approach was taken to identify a unique and conserved region within all known subspecies of C. michiganensis. Primer specificity was evaluated in silico and with 64 bacterial strains included in inclusivity and exclusivity panels; no false positives or false negatives were detected. Both the sensitivity and spiked assay of the developed LAMP assay was 1 fg of the pathogen DNA per reaction. A 100% accuracy was observed when tested with infected plant samples. CONCLUSIONS The developed LAMP assay is simple, sensitive, robust and easy to perform using different detection platforms and chemistries. SIGNIFICANCE AND IMPACT OF THE STUDY The developed LAMP assay can detect all known subspecies of C. michiganensis. The LAMP process can be performed isothermally at 65°C and results can be visually assessed, which makes this technology a promising tool for monitoring the disease progression and for accurate pathogen detection at point-of-care.
Collapse
Affiliation(s)
- S Dobhal
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A Larrea-Sarmiento
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - A M Alvarez
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - M Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
9
|
Han S, Jiang N, Lv Q, Kan Y, Hao J, Li J, Luo L. Detection of Clavibacter michiganensis subsp. michiganensis in viable but nonculturable state from tomato seed using improved qPCR. PLoS One 2018; 13:e0196525. [PMID: 29723290 PMCID: PMC5933903 DOI: 10.1371/journal.pone.0196525] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/13/2018] [Indexed: 12/02/2022] Open
Abstract
Clavibacter michiganensis subsp. michiganensis (Cmm) is a seed-borne pathogen that causes bacterial canker disease of tomato. Cmm is typically detected in tomato seeds using quantitative real-time polymerase chain reaction (qPCR) combined with culture-based isolation. The viable but nonculturable (VBNC) state of Cmm may result in the underestimation or false negative detection of the pathogen. In the present study, propidium monoazide (PMA) and its improved structure PMAxx were used to pretreat Cmm prior to DNA extraction, followed by qPCR. Both PMA and PMAxx could bind to the chromosomal DNA of dead bacterial cells and therefore block DNA amplification by PCR. This effect, however, does not occur in living bacterial cells, as the chemicals cannot penetrate through the undamaged cell membrane. Both viable and dead Cmm cells were treated with PMA and PMAxx at various concentrations. With this treatment, the range of the cell population was determined for effective detection. PMAxx showed a better discrimination effect than PMA on the viable and dead cells of Cmm and was therefore used throughout the present study. VBNC cells of Cmm (108 CFU mL-1) was induced by 50 μM copper sulfate, which was detected at different sampling times up to a month by using both PMAxx-qPCR and flow cytometry assays. The optimal PMAxx concentration was 20 μM for detecting membrane-intact Cmm cells. High specificity and sensitivity were obtained at Cmm concentrations ranging from 103 to 107 CFU mL-1. The accurate and robust results of PMAxx-qPCR were confirmed by flow cytometry method to detect viable Cmm cells. Furthermore, the PMAxx-qPCR assay was successfully used in detecting VBNC Cmm cells in tomato seeds with as few as 10 seeds per set.
Collapse
Affiliation(s)
- Sining Han
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Qingyang Lv
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Yumin Kan
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Jianjun Hao
- School of Food and Agriculture, The University of Maine, Orono, Maine, United States of America
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, P. R. China
- Beijing Key Laboratory of Seed Disease Testing and Control (BKL-SDTC), China Agricultural University, Beijing, P. R. China
| |
Collapse
|
10
|
Yasuhara‐Bell J, Marrero G, De Silva A, Alvarez AM. Specific detection of Pectobacterium carotovorum by loop-mediated isothermal amplification. MOLECULAR PLANT PATHOLOGY 2016; 17:1499-1505. [PMID: 26833881 PMCID: PMC6638492 DOI: 10.1111/mpp.12378] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 11/13/2015] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
Potatoes are an important agroeconomic crop worldwide and maceration diseases caused by pectolytic bacterial pathogens result in significant pre- and post-harvest losses. Pectobacterium carotovorum shares a common host range with other Pectobacterium spp. and other members of the Enterobacteriaceae, such as Dickeya spp. As these pathogens cannot be clearly differentiated on the basis of the symptoms they cause, improved methods of identification are critical for the determination of sources of contamination. Current standardized methods for the differentiation of pectolytic species are time consuming and require trained personnel, as they rely on traditional bacteriological practices that do not always produce conclusive results. In this growing world market, there is a need for rapid diagnostic tests that can differentiate between pectolytic pathogens, as well as separate them from non-pectolytic enteric bacteria associated with soft rots of potato. An assay has been designed previously to detect the temperate pathogen Pectobacterium atrosepticum, but there is currently no recognized rapid assay for the detection of the tropical/subtropical counterpart, Pectobacterium carotovorum. This report describes the development of a loop-mediated isothermal amplification (LAMP) assay that detects P. carotovorum with high specificity. The assay was evaluated using all known species of Pectobacterium and only showed positive reactions for P. carotovorum. This assay was also tested against 15 non-target genera of plant-associated bacteria and did not produce any false positives. The LAMP assay described here can be used as a rapid test for the differentiation of P. carotovorum from other pectolytic pathogens, and its gene target can be the basis for the development of other molecular-based detection assays.
Collapse
Affiliation(s)
- Jarred Yasuhara‐Bell
- Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Glorimar Marrero
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Asoka De Silva
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| | - Anne M. Alvarez
- Department of Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human ResourcesUniversity of Hawai‘i at Mānoa3190 Maile Way, St. John Room 315HonoluluHI96822USA
| |
Collapse
|
11
|
Hansen ZR, Knaus BJ, Tabima JF, Press CM, Judelson HS, Grünwald NJ, Smart CD. Loop-mediated isothermal amplification for detection of the tomato and potato late blight pathogen, Phytophthora infestans. J Appl Microbiol 2016; 120:1010-20. [PMID: 26820117 DOI: 10.1111/jam.13079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/01/2022]
Abstract
AIMS To design and validate a colorimetric loop-mediated isothermal amplification assay for rapid detection of Phytophthora infestans DNA. METHODS AND RESULTS Two sets of loop-mediated isothermal amplification (LAMP) primers were designed and evaluated for their sensitivity and specificity for P. infestans. ITSII primers targeted a portion of the internal transcribed spacer region of ribosomal DNA. These primers had a limit of detection of 2 pg P. infestans DNA and cross-reacted with the closely related species Phytophthora nicotianae. Rgn86_2 primers, designed to improve assay specificity, targeted a portion of a conserved hypothetical protein. These primers had a limit of detection of 200 pg P. infestans DNA and did not cross-react with P. nicotianae. The specificity of the Rgn86_2 assay was tested further using the closely related species P. andina, P. ipomoeae, P. mirabilis and P. phaseoli. Cross-reactions occurred with P. andina and P. mirabilis, but neither species occurs on tomato or potato. Both primer sets were able to detect P. infestans DNA extracted from tomato late blight leaf lesions. CONCLUSIONS Two colorimetric LAMP assays detected P. infestans DNA from pure cultures as well as infected leaf tissue. The ITSII primers had higher sensitivity, and the Rgn86_2 primers had higher specificity. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first report of a LAMP assay for the detection of P. infestans, the causal organism of potato and tomato late blight. These assays have potential for immediate utility in plant disease research and diagnostic laboratories.
Collapse
Affiliation(s)
- Z R Hansen
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| | - B J Knaus
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA
| | - J F Tabima
- Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - C M Press
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA
| | - H S Judelson
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, USA
| | - N J Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, OR, USA.,Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - C D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY, USA
| |
Collapse
|
12
|
Yasuhara-Bell J, de Silva A, Heuchelin SA, Chaky JL, Alvarez AM. Detection of Goss's Wilt Pathogen Clavibacter michiganensis subsp. nebraskensis in Maize by Loop-Mediated Amplification. PHYTOPATHOLOGY 2016; 106:226-235. [PMID: 26595113 DOI: 10.1094/phyto-10-15-0249-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The Goss's wilt pathogen, Clavibacter michiganensis subsp. nebraskensis, can cause considerable losses in maize (Zea mays) production. Diagnosis of Goss's wilt currently is based on symptomology and identification of C. michiganensis subsp. nebraskensis, following isolation on a semiselective medium and/or serological testing. In an effort to provide a more efficient identification method, a loop-mediated amplification (LAMP) assay was developed to detect the tripartite ATP-independent periplasmic (TRAP)-type C4-dicarboxylate transport system large permease component and tested using strains of C. michiganensis subsp. nebraskensis, all other C. michiganensis subspecies and several genera of nontarget bacteria. Only strains of C. michiganensis subsp. nebraskensis reacted positively with the LAMP assay. The LAMP assay was then used to identify bacterial isolates from diseased maize. 16S rDNA and dnaA sequence analyses were used to confirm the identity of the maize isolates and validate assay specificity. The Cmm ImmunoStrip assay was included as a presumptive identification test of C. michiganensis subsp. nebraskensis at the species level. The Cmn-LAMP assay was further tested using symptomatic leaf tissue. The Cmn-LAMP assay was run in a hand-held real-time monitoring device (SMART-DART) and performed equally to in-lab quantitative polymerase chain reaction equipment. The Cmn-LAMP assay accurately identified C. michiganensis subsp. nebraskensis and has potential as a field test. The targeted sequence also has potential application in other molecular detection platforms.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- First author: Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and second and fifth authors: Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and third and fourth authors: DuPont Pioneer, Johnston, IA 50131
| | - Asoka de Silva
- First author: Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and second and fifth authors: Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and third and fourth authors: DuPont Pioneer, Johnston, IA 50131
| | - Scott A Heuchelin
- First author: Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and second and fifth authors: Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and third and fourth authors: DuPont Pioneer, Johnston, IA 50131
| | - Jennifer L Chaky
- First author: Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and second and fifth authors: Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and third and fourth authors: DuPont Pioneer, Johnston, IA 50131
| | - Anne M Alvarez
- First author: Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and second and fifth authors: Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Mānoa, Honolulu 96822; and third and fourth authors: DuPont Pioneer, Johnston, IA 50131
| |
Collapse
|
13
|
Elkins RB, Temple TN, Shaffer CA, Ingels CA, Lindow SB, Zoller BG, Johnson KB. Evaluation of Dormant-Stage Inoculum Sanitation as a Component of a Fire Blight Management Program for Fresh-Market Bartlett Pear. PLANT DISEASE 2015; 99:1147-1152. [PMID: 30695942 DOI: 10.1094/pdis-10-14-1082-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
From 2010 to 2013, the efficacy of copper-based inoculum sanitation as a component of fire blight management programs was evaluated in commercial pear orchards located in northern California. Forty-one 4-ha sections of orchard were split into two equal-sized plots, with the orchardist applying horticultural oil alone to one plot and horticultural oil plus a fixed copper bactericide to the other plot. These treatments were timed to begin just prior to and finish at the "green tip" phenological stage, which occurs about 5 weeks before full bloom. During bloom, flower samples were collected from the plots and subjected to a loop-mediated isothermal DNA amplification (LAMP) assay for specific detection of Erwinia amylovora. Overall, epiphytic populations of E. amylovora on flowers were detected rarely at midbloom (6% of samples) but commonly at petal fall (44% of samples). In three of four seasons, E. amylovora detection in flower samples at a given bloom stage was significantly suppressed in copper-plus-oil-treated plots compared with oil-only plots. All orchards also received antibiotic treatments during the bloom period and, perhaps as a consequence, the development of fire blight was sporadic and not affected significantly by the copper treatment in any season. The pathogen detection data indicate that copper sanitation may add value to a fire blight management program by delaying the increase of epiphytic populations of E. amylovora in flowers to the late stages of the bloom period, at which time the number of susceptible flowers declines rapidly.
Collapse
Affiliation(s)
- Rachel B Elkins
- Lake County Cooperative Extension, University of California, Lakeport 95453-5405
| | - Todd N Temple
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331-2902
| | - Carolyn A Shaffer
- Lake County Cooperative Extension, University of California, Lakeport
| | - Chuck A Ingels
- Sacramento County Cooperative Extension, University of California, Sacramento 95827-3823
| | - Steven B Lindow
- Department of Plant and Microbial Biology, University of California, Berkeley 94720-3102
| | | | | |
Collapse
|
14
|
Tancos MA, Lange HW, Smart CD. Characterizing the Genetic Diversity of the Clavibacter michiganensis subsp. michiganensis Population in New York. PHYTOPATHOLOGY 2015; 105:169-179. [PMID: 25208240 DOI: 10.1094/phyto-06-14-0178-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
New York Clavibacter michiganensis subsp. michiganensis isolates, collected from disparate bacterial canker of tomato outbreaks over the past 11 years, were characterized with a multilocus sequence analysis (MLSA) scheme that differentiated the 51 isolates into 21 haplotypes with a discriminatory power of 0.944. The MLSA scheme consisted of five housekeeping genes (kdpA, sdhA, dnaA, ligA, and gyrB) and three putative pathogenicity genes (celA, tomA, and nagA). Repetitive polymerase chain reaction (PCR), with the BOX-A1R primer, confirmed the high diversity of C. michiganensis subsp. michiganensis isolates in New York by demonstrating that all six PCR patterns (A, B, 13C, 65C, 81C, and D) were present, with PCR patterns C and A being the most common. The MLSA scheme provided higher resolving power than the current repetitive-PCR approach. The plasmid profiles of New York isolates were diverse and differed from reference strain NCPPB382. PCR analysis indicated that the presence of putative pathogenicity genes varied between isolates and highlighted the ephemeral nature of pathogenicity genes in field populations of C. michiganensis subsp. michiganensis. Analysis of molecular variance between Serbian and New York C. michiganensis subsp. michiganensis isolates demonstrated that the two populations were not significantly different, with 98% genetic variation within each population and only 2% genetic variation between populations.
Collapse
|
15
|
Yasuhara-Bell J, Alvarez AM. Seed-associated subspecies of the genus Clavibacter are clearly distinguishable from Clavibacter michiganensis subsp. michiganensis. Int J Syst Evol Microbiol 2014; 65:811-826. [PMID: 25481293 DOI: 10.1099/ijs.0.000022] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The genus Clavibacter contains one recognized species, Clavibacter michiganensis. Clavibacter michiganensis is subdivided into subspecies based on host specificity and bacteriological characteristics, with Clavibacter michiganensis subsp. michiganensis causing bacterial canker of tomato. Clavibacter michiganensis subsp. michiganensis is often spread through contaminated seed leading to outbreaks of bacterial canker in tomato production areas worldwide. The frequent occurrence of non-pathogenic Clavibacter michiganensis subsp. michiganensis-like bacteria (CMB) is a concern for seed producers because Clavibacter michiganensis subsp. michiganensis is a quarantine organism and detection of a non-pathogenic variant may result in destruction of an otherwise healthy seed lot. A thorough biological and genetic characterization of these seed-associated CMB strains was performed using standard biochemical tests, cell wall analyses, metabolic profiling using Biolog, and single-gene and multilocus sequence analyses. Combined, these tests revealed two distinct populations of seed-associated members of the genus Clavibacter that differed from each other, as well as from all other described subspecies of Clavibacter michiganensis. DNA-DNA hybridization values are 70 % or higher, justifying placement into the single recognized species, C. michiganensis, but other analyses justify separate subspecies designations. Additionally, strains belonging to the genus Clavibacter isolated from pepper also represent a distinct population and warrant separate subspecies designation. On the basis of these data we propose subspecies designations for separate non-pathogenic subpopulations of Clavibacter michiganensis: Clavibacter michiganensis subsp. californiensis subsp. nov. and Clavibacter michiganensis subsp. chilensis subsp. nov. for seed-associated strains represented by C55(T) ( = ATCC BAA-2691(T) = CFBP 8216(T)) and ZUM3936(T) ( = ATCC BAA-2690(T) = CFBP 8217(T)), respectively. Recognition of separate subspecies is essential for improved international seed testing operations.
Collapse
Affiliation(s)
- Jarred Yasuhara-Bell
- Departments of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, St. John Room 315, Honolulu, HI 96822, USA
| | - Anne M Alvarez
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawai'i at Mānoa, 3190 Maile Way, St. John Room 315, Honolulu, HI 96822, USA
| |
Collapse
|
16
|
Lang JM, Langlois P, Nguyen MHR, Triplett LR, Purdie L, Holton TA, Djikeng A, Vera Cruz CM, Verdier V, Leach JE. Sensitive detection of Xanthomonas oryzae Pathovars oryzae and oryzicola by loop-mediated isothermal amplification. Appl Environ Microbiol 2014; 80:4519-30. [PMID: 24837384 PMCID: PMC4148787 DOI: 10.1128/aem.00274-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/06/2014] [Indexed: 11/20/2022] Open
Abstract
Molecular diagnostics for crop diseases can enhance food security by enabling the rapid identification of threatening pathogens and providing critical information for the deployment of disease management strategies. Loop-mediated isothermal amplification (LAMP) is a PCR-based tool that allows the rapid, highly specific amplification of target DNA sequences at a single temperature and is thus ideal for field-level diagnosis of plant diseases. We developed primers highly specific for two globally important rice pathogens, Xanthomonas oryzae pv. oryzae, the causal agent of bacterial blight (BB) disease, and X. oryzae pv. oryzicola, the causal agent of bacterial leaf streak disease (BLS), for use in reliable, sensitive LAMP assays. In addition to pathovar distinction, two assays that differentiate X. oryzae pv. oryzae by African or Asian lineage were developed. Using these LAMP primer sets, the presence of each pathogen was detected from DNA and bacterial cells, as well as leaf and seed samples. Thresholds of detection for all assays were consistently 10(4) to 10(5) CFU ml(-1), while genomic DNA thresholds were between 1 pg and 10 fg. Use of the unique sequences combined with the LAMP assay provides a sensitive, accurate, rapid, simple, and inexpensive protocol to detect both BB and BLS pathogens.
Collapse
Affiliation(s)
- Jillian M. Lang
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
| | - Paul Langlois
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
| | | | - Lindsay R. Triplett
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
| | - Laura Purdie
- Biosciences eastern and central Africa, Nairobi, Kenya
| | | | | | | | - Valérie Verdier
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
- Institut de Recherche pour le Développement, UMR Résistance des Plantes aux Bioagresseurs, IRD-CIRAD-UM2, Montpellier, France
| | - Jan E. Leach
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
17
|
Ash GJ, Lang JM, Triplett LR, Stodart BJ, Verdier V, Cruz CV, Rott P, Leach JE. Development of a Genomics-Based LAMP (Loop-Mediated Isothermal Amplification) Assay for Detection of Pseudomonas fuscovaginae from Rice. PLANT DISEASE 2014; 98:909-915. [PMID: 30708849 DOI: 10.1094/pdis-09-13-0957-re] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The vast amount of data available through next-generation sequencing technology is facilitating the design of diagnostic marker systems. This study reports the use of draft genome sequences from the bacterial plant pathogen Pseudomonas fuscovaginae, the cause of sheath brown rot of rice, to describe the genetic diversity within a worldwide collection of strains representing the species. Based on a comparative analysis with the draft sequences, primers for a loop-mediated isothermal amplification (LAMP) assay were developed to identify P. fuscovaginae. The assay reported here reliably differentiated strains of P. fuscovaginae isolated from rice from a range of other bacteria that are commonly isolated from rice and other plants using a primer combination designated Pf8. The LAMP assay identified P. fuscovaginae purified DNA, live or heat-killed cells from pure cultures, and detected the bacterium in extracts or exudates from infected host plant material. The P. fuscovaginae LAMP assay is a suitable diagnostic tool for the glasshouse and laboratory and could be further developed for in-field surveys.
Collapse
Affiliation(s)
- Gavin J Ash
- Graham Centre for Agricultural Innovation (an alliance between Charles Sturt University and NSW DPI), School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga 2678, NSW, Australia
| | - Jillian M Lang
- Colorado State University, Department of Bioagricultural Sciences & Pest Management, Fort Collins 80523-1177
| | - Lindsay R Triplett
- Colorado State University, Department of Bioagricultural Sciences & Pest Management, Fort Collins 80523-1177
| | | | - Valérie Verdier
- Institut de Recherche pour le Développement, UMR Résistance des Plantes aux Bioagresseurs, IRD-CIRAD-UM2, 34394 Montpellier Cedex 5, France
| | - Casiana Vera Cruz
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | | | - Jan E Leach
- Colorado State University, Department of Bioagricultural Science & Pest Management
| |
Collapse
|