1
|
Wu KT, Spychalla P, Pereyra M, Liou M, Chen Y, Silva E, Gevens A. Impacts of a Commercially Available Horticultural Oil Biopesticide (EF-400) on the Tomato- Phytophthora infestans Pathosystem. PLANT DISEASE 2024; 108:1533-1543. [PMID: 38105459 DOI: 10.1094/pdis-12-22-2968-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biopesticide fungicides are naturally derived compounds that offer protection from plant diseases through various modes of action, including antimicrobial activity and upregulation of defense responses in host plants. These plant protectants provide a sustainable and safe alternative to conventional pesticides in integrated disease management programs and are especially salient in the management of high-risk and economically important diseases such as late blight of tomato and potato, for which host resistance options are limited. In this study, a commercially available biopesticide, EF400 comprised of clove (8.2%), rosemary (8.1%), and peppermint oils (6.7%) (Anjon AG, Corcoran, CA), was investigated for its effects on the Phytophthora infestans-tomato pathosystem. Specifically, we evaluated the impact of EF400 on P. infestans growth in culture, disease symptoms in planta, and activation of host defenses through monitoring transcript accumulation of defense-related genes. The application timing and use rate of EF400 were further investigated for managing tomato late blight. EF400 delayed the onset of tomato late blight symptoms, although not as effectively as the copper hydroxide fungicide Champ WG (Nufarm Americas Inc., Alsip, IL). Pathogen mycelial growth and sporangial quantity on late blight-susceptible tomato leaves were significantly reduced with EF400. The biopesticide also had an enhancing or suppressing effect on the transcript accumulation of three defense-related genes: Pin2, PR1a, and PR1b. Our work in exploring a commercially available horticultural oil biopesticide meaningfully contributed to the essential knowledge base for optimizing recommendations for the management of tomato late blight.
Collapse
Affiliation(s)
- Kuantin Tina Wu
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Pia Spychalla
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Matthew Pereyra
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Michael Liou
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Yu Chen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Erin Silva
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| | - Amanda Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
2
|
Babarinde S, Burlakoti RR, Peters RD, Al-Mughrabi K, Novinscak A, Sapkota S, Prithiviraj B. Genetic structure and population diversity of Phytophthora infestans strains in Pacific western Canada. Appl Microbiol Biotechnol 2024; 108:237. [PMID: 38407622 PMCID: PMC10896882 DOI: 10.1007/s00253-024-13040-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/27/2024]
Abstract
Late blight caused by Phytophthora infestans is an economically important disease of potato and tomato worldwide. In Canada, an increase in late blight incidence and severity coincided with changes in genetic composition of P. infestans. We monitored late blight incidence on tomato and potato in Pacific western and eastern Canada between 2019 and 2022, identified genotypes of P. infestans, and examined their population genetic diversity. We identified four major existing genotypes US11, US17, US8, and US23 as well as 25 new genotypes. The US11 genotype was dominant in Pacific western Canada, accounting for 59% of the total population. We discovered the US17 genotype for the first time in Canada. We revealed a higher incidence of late blight and quite diverse genotypes of P. infestans in Pacific western Canada than in eastern Canada. We found high genetic diversity of P. infestans population from Pacific western Canada, as evidenced by the high number of multilocus genotypes, high values of genetic diversity indices, and emergence of 25 new genotypes. Considering the number of disease incidence, the detection of diverse known genotypes, the emergence of novel genotypes, and the high number of isolates resistant to metalaxyl-m (95%) from Pacific western Canada, the region could play a role in establishing sexual recombination and diverse populations, which could ultimately pose challenges for late blight management. Therefore, continuous monitoring of P. infestans populations in Pacific western region and across Canada is warranted. KEY POINTS: • Genotypes of P. infestans in Pacific western were quite diverse than in eastern Canada. • We discovered US17 genotype for the first time in Canada and identified 26 novel genotypes. • Approximately 95% of P. infestans isolates were resistant to metalaxyl-m.
Collapse
Affiliation(s)
- Segun Babarinde
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| | - Rishi R Burlakoti
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada.
| | - Rick D Peters
- Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE, C1A 4N6, Canada
| | - Khalil Al-Mughrabi
- New Brunswick Department of Agriculture, Aquaculture and Fisheries, 39 Barker Lane, Wicklow, NB, E7L 3S4, Canada
| | - Amy Novinscak
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Sanjib Sapkota
- Agassiz Research and Development Centre, Agriculture and Agri-Food Canada, 6947 Hwy 7, Agassiz, BC, V0M 1A0, Canada
| | - Balakrishnan Prithiviraj
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada
| |
Collapse
|
3
|
Waheed A, Shen L, Nkurikiyimfura O, Fang H, Wang Y, Andersson B, Zhan J, Yang L. Evaluating the contribution of historical and contemporary temperature to the oospore production of self-fertile Phytophthora infestans. Evol Appl 2024; 17:e13643. [PMID: 38293269 PMCID: PMC10824702 DOI: 10.1111/eva.13643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024] Open
Abstract
Reproductive systems play an important role in the ecological function of species, but little is known about how climate change, such as global warming, may affect the reproductive systems of microbes. In this study, 116 Phytophthora infestans isolates sampled from five different altitudes along a mountain were evaluated under five temperature regimes to determine the effects of historical and experimental temperature on the reproductive system of the pathogen. Both altitude, a proxy for historical pathogen adaptation to temperature, and temperature used in the experiment affected the sexual reproduction of the pathogen, with experimental temperature, that is, contemporary temperature, playing a role several times more important than historical temperature. Furthermore, the potential of sexual reproduction, measured by the number of oospores quantified, increased with the temperature breadth (i.e., difference between the highest and lowest temperature at which sexual reproduction takes place) of the pathogen and reached the maximum at the experimental temperature of 21°C, which is higher than the annual average temperature in many potato-producing areas. The results suggest that rising air temperature associated with global warming may increase the potential of sexual reproduction in P. infestans. Given the importance of sexuality in pathogenicity and ecological adaptation of pathogens, these results suggest that global warming may increase the threat of P. infestans to agricultural production and other ecological services and highlight that new epidemiological strategies may need to be implemented for future food security and ecological resilience.
Collapse
Affiliation(s)
- Abdul Waheed
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of OceanographyMinjiang UniversityFuzhouChina
| | - Lin‐Lin Shen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of OceanographyMinjiang UniversityFuzhouChina
| | | | - Han‐Mei Fang
- Institute of Plant PathologyFujian Agriculture and Forestry UniversityFuzhouChina
| | - Yan‐Ping Wang
- College of Chemistry and Life SciencesChengdu Normal UniversityChengduChina
| | - Björn Andersson
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Jiasui Zhan
- Department of Forest Mycology and Plant PathologySwedish University of Agricultural SciencesUppsalaSweden
| | - Li‐Na Yang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of OceanographyMinjiang UniversityFuzhouChina
| |
Collapse
|
4
|
Mendoza CS, Findlay A, Judelson HS. A Variant of LbCas12a and Elevated Incubation Temperatures Enhance the Rate of Gene Editing in the Oomycete Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:677-681. [PMID: 37470431 DOI: 10.1094/mpmi-05-23-0072-sc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
CRISPR-Cas editing systems have proved to be powerful tools for functional genomics research, but their effectiveness in many non-model species remains limited. In the potato and tomato pathogen Phytophthora infestans, an editing system was previously developed that expresses the Lachnospiracae bacterium Cas12a endonuclease (LbCas12a) and guide RNA from a DNA vector. However, the method works at low efficiency. Based on a hypothesis that editing is constrained by a mismatch between the optimal temperatures for P. infestans growth and endonuclease catalysis, we tested two strategies that increased the frequency of editing of two target genes by about 10-fold. First, we found that editing was boosted by a mutation in LbCas12a (D156R) that had been reported to expand its catalytic activity over a broader temperature range. Second, we observed that editing was enhanced by transiently incubating transformed tissue at a higher temperature. These modifications should make CRISPR-Cas12a more useful for interrogating gene and protein function in P. infestans and its relatives, especially species that grow optimally at lower temperatures. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Carl S Mendoza
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Annika Findlay
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
5
|
Narouei-Khandan HA, Shakya SK, Garrett KA, Goss EM, Dufault NS, Andrade-Piedra JL, Asseng S, Wallach D, van Bruggen AH. BLIGHTSIM: A New Potato Late Blight Model Simulating the Response of Phytophthora infestans to Diurnal Temperature and Humidity Fluctuations in Relation to Climate Change. Pathogens 2020; 9:pathogens9080659. [PMID: 32824250 PMCID: PMC7459445 DOI: 10.3390/pathogens9080659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/21/2022] Open
Abstract
Temperature response curves under diurnal oscillating temperatures differ from those under constant conditions for all stages of the Phytophthora infestans infection cycle on potatoes. We developed a mechanistic model (BLIGHTSIM) with an hourly time step to simulate late blight under fluctuating environmental conditions and predict late blight epidemics in potato fields. BLIGHTSIM is a modified susceptible (S), latent (L), infectious (I) and removed (R) compartmental model with hourly temperature and relative humidity as driving variables. The model was calibrated with growth chamber data covering one infection cycle and validated with field data from Ecuador. The model provided a good fit to all data sets evaluated. There was a significant interaction between average temperature and amplitude in their effects on the area under the disease progress curve (AUDPC) as predicted from growth chamber data on a single infection cycle. BLIGHTSIM can be incorporated in a potato growth model to study effects of diurnal temperature range on late blight impact under climate change scenarios.
Collapse
Affiliation(s)
- Hossein A. Narouei-Khandan
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
- Ministry for Primary Industries, P.O. Box 2526, Wellington 6146, New Zealand
- Correspondence:
| | - Shankar K. Shakya
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
| | - Karen A. Garrett
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
- Food Systems Institute, University of Florida, P.O. Box 110180, Gainesville, FL 32611-0180, USA
| | - Erica M. Goss
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
| | - Nicholas S. Dufault
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
| | - Jorge L. Andrade-Piedra
- International Potato Center (CIP) and CGIAR Research Program on Roots Tubers and Bananas (RTB), P.O. Box 1558, Lima 12, Peru;
| | - Senthold Asseng
- Department of Agricultural and Biological Engineering, University of Florida, 224 Frazier Rogers Hall, P.O. Box 110570, Gainesville, FL 32611-0570, USA;
| | - Daniel Wallach
- Institut National de la Recherche Agronomique (INRA), UMR AGIR, BP 52627, 31326 Castanet Tolosan Cedex, France;
| | - Ariena H.C van Bruggen
- Department of Plant Pathology, University of Florida, 1450 Fifield Hall, P.O. Box 110680, Gainesville, FL 32611-0680, USA; (S.K.S.); (K.A.G.); (E.M.G.); (N.S.D.); (A.H.C.v.B.)
- Emerging Pathogens Institute, University of Florida, Gainesville, 2055 Mowry Road, P.O. Box 100009, Gainesville, FL 32610, USA
| |
Collapse
|
6
|
Gold KM, Townsend PA, Larson ER, Herrmann I, Gevens AJ. Contact Reflectance Spectroscopy for Rapid, Accurate, and Nondestructive Phytophthora infestans Clonal Lineage Discrimination. PHYTOPATHOLOGY 2020; 110:851-862. [PMID: 31880984 DOI: 10.1094/phyto-08-19-0294-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Populations of Phytophthora infestans, the oomycete causal agent of potato late blight in the United States, are predominantly asexual, and isolates are characterized by clonal lineage or asexual descendants of a single genotype. Current tools for clonal lineage identification are time consuming and require laboratory equipment. We previously found that foliar spectroscopy can be used for high-accuracy pre- and postsymptomatic detection of P. infestans infections caused by clonal lineages US-08 and US-23. In this work, we found subtle but distinct differences in spectral responses of potato foliage infected by these clonal lineages in both growth-chamber time-course experiments (12- to 24-h intervals over 5 days) and naturally infected samples from commercial production fields. In both settings, we measured continuous visible to shortwave infrared reflectance (400 to 2,500 nm) on leaves using a portable spectrometer with contact probe. We consistently discriminated between infections caused by the two clonal lineages across all stages of disease progression using partial least squares (PLS) discriminant analysis, with total accuracies ranging from 88 to 98%. Three-class random forest differentiation between control, US-08, and US-23 yielded total discrimination accuracy ranging from 68 to 76%. Differences were greatest during presymptomatic infection stages and progressed toward uniformity as symptoms advanced. Using PLS-regression trait models, we found that total phenolics, sugar, and leaf mass per area were different between lineages. Shortwave infrared wavelengths (>1,100 nm) were important for clonal lineage differentiation. This work provides a foundation for future use of hyperspectral sensing as a nondestructive tool for pathovar differentiation.
Collapse
Affiliation(s)
- Kaitlin M Gold
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Philip A Townsend
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Eric R Larson
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| | - Ittai Herrmann
- The Robert H. Smith Institute for Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 7610001, Israel
| | - Amanda J Gevens
- Department of Plant Pathology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, U.S.A
| |
Collapse
|
7
|
Saville A, Ristaino JB. Genetic Structure and Subclonal Variation of Extant and Recent U.S. Lineages of Phytophthora infestans. PHYTOPATHOLOGY 2019; 109:1614-1627. [PMID: 31066347 DOI: 10.1094/phyto-09-18-0357-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The oomycete Phytophthora infestans is an important plant pathogen on potato and tomato crops. We examined the genetic structure of extant 20th and 21st century U.S. lineages of P. infestans and compared them with populations from South America and Mexico to examine genetic relationships and potential sources of lineages. US-23, currently the most prevalent lineage detected in the United States, shared genetic similarity primarily with the BR-1 lineage identified in the 1990s from Bolivia and Brazil. Lineages US-8, US-14, and US-24, predominantly virulent on potato, formed a cluster distinct from other U.S. lineages. Many of the other U.S. lineages shared significant genetic similarity with Mexican populations. The US-1 lineage, dominant in the mid-20th century, clustered with US-1 lineages from Peru. A survey of the presence of RXLR effector PiAVR2 revealed that some lineages carried PiAVR2, its resistance-breaking variant PiAVR2-like, or both. Minimum spanning networks developed from simple sequence repeat genotype datasets from USABlight outbreaks clearly showed the expansion of US-23 over a 6-year time period and geographic substructuring of some lineages in the western United States. Many clonal lineages of P. infestans in the United States have come from introductions from Mexico, but the US-23 and US-1 lineages were most likely introduced from other sources.
Collapse
Affiliation(s)
- Amanda Saville
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - Jean Beagle Ristaino
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| |
Collapse
|
8
|
Mideros M, Turissini D, Guayazán N, Ibarra-Avila H, Danies G, Cárdenas M, Myers K, Tabima J, Goss E, Bernal A, Lagos L, Grajales A, Gonzalez L, Cooke D, Fry W, Grünwald N, Matute D, Restrepo S. Phytophthora betacei, a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia. PERSOONIA 2018; 41:39-55. [PMID: 30728598 PMCID: PMC6344807 DOI: 10.3767/persoonia.2018.41.03] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 09/12/2017] [Indexed: 11/25/2022]
Abstract
Over the past few years, symptoms akin to late blight disease have been reported on a variety of crop plants in South America. Despite the economic importance of these crops, the causal agents of the diseases belonging to the genus Phytophthora have not been completely characterized. In this study, a new Phytophthora species was described in Colombia from tree tomato (Solanum betaceum), a semi-domesticated fruit grown in northern South America. Comprehensive phylogenetic, morphological, population genetic analyses, and infection assays to characterize this new species, were conducted. All data support the description of the new species, Phytophthora betacei sp. nov. Phylogenetic analyses suggest that this new species belongs to clade 1c of the genus Phytophthora and is a close relative of the potato late blight pathogen, P. infestans. Furthermore, it appeared as the sister group of the P. andina strains collected from wild Solanaceae (clonal lineage EC-2). Analyses of morphological and physiological characters as well as host specificity showed high support for the differentiation of these species. Based on these results, a complete description of the new species is provided and the species boundaries within Phytophthora clade 1c in northern South America are discussed.
Collapse
Affiliation(s)
- M.F. Mideros
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - D.A. Turissini
- Biology Department, University of North Carolina, Chapel Hill, USA
| | - N. Guayazán
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - H. Ibarra-Avila
- Head of Microscopy Core (MCUA), Vice-Presidency of Research, Universidad de Los Andes, Bogotá, Colombia
| | - G. Danies
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
- Biology Department, Universidad de Nariño, Pasto, Colombia
| | - M. Cárdenas
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - K. Myers
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - J. Tabima
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - E.M. Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - A. Bernal
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - L.E. Lagos
- Biology Department, Universidad de Nariño, Pasto, Colombia
| | - A. Grajales
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - L.N. Gonzalez
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| | - D.E.L. Cooke
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - W.E. Fry
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell University, Ithaca, NY, USA
| | - N. Grünwald
- Horticultural Crops Research Laboratory, USDA Agricultural Research Service, Corvallis, Oregon, USA
| | - D.R. Matute
- Biology Department, University of North Carolina, Chapel Hill, USA
| | - S. Restrepo
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
9
|
Chen Y, Halterman D. Determination of virulence contribution from Phytophthora infestans effector IPI-O4 in a resistant potato host containing the RB gene. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2017; 100:30-34. [PMID: 0 DOI: 10.1016/j.pmpp.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|