1
|
Bupi N, Vo TTB, Qureshi MA, Tabassum M, Im HJ, Chung YJ, Ryu JG, Kim CS, Lee S. Twindemic Threats of Weeds Coinfected with Tomato Yellow Leaf Curl Virus and Tomato Spotted Wilt Virus as Viral Reservoirs in Tomato Greenhouses. THE PLANT PATHOLOGY JOURNAL 2024; 40:310-321. [PMID: 38835302 PMCID: PMC11162864 DOI: 10.5423/ppj.oa.03.2024.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Tomato yellow leaf curl virus (TYLCV) and tomato spotted wilt virus (TSWV) are well-known examples of the begomovirus and orthotospovirus genera, respectively. These viruses cause significant economic damage to tomato crops worldwide. Weeds play an important role in the ongoing presence and spread of several plant viruses, such as TYLCV and TSWV, and are recognized as reservoirs for these infections. This work applies a comprehensive approach, encompassing field surveys and molecular techniques, to acquire an in-depth understanding of the interactions between viruses and their weed hosts. A total of 60 tomato samples exhibiting typical symptoms of TYLCV and TSWV were collected from a tomato greenhouse farm in Nonsan, South Korea. In addition, 130 samples of 16 different weed species in the immediate surroundings of the greenhouse were collected for viral detection. PCR and reverse transcription-PCR methodologies and specific primers for TYLCV and TSWV were used, which showed that 15 tomato samples were coinfected by both viruses. Interestingly, both viruses were also detected in perennial weeds, such as Rumex crispus, which highlights their function as viral reservoirs. Our study provides significant insights into the co-occurrence of TYLCV and TSWV in weed reservoirs, and their subsequent transmission under tomato greenhouse conditions. This project builds long-term strategies for integrated pest management to prevent and manage simultaneous virus outbreaks, known as twindemics, in agricultural systems.
Collapse
Affiliation(s)
- Nattanong Bupi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Thuy Thi Bich Vo
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Marjia Tabassum
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyo-jin Im
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Young-Jae Chung
- Department of Biomedical Science, Hwasung Medi-Science University, Hwaseong 18274, Korea
| | - Jae-Gee Ryu
- Research and Development Planning Division, Rural Development Administration, Jeonju 54875, Korea
| | - Chang-seok Kim
- Institute for Future Environmental Ecology, Jeonju 54883, Korea
| | - Sukchan Lee
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
2
|
Chen YJ, Catto MA, Pandey S, Leal-Bertioli S, Abney M, Hunt BG, Bag S, Culbreath A, Srinivasan R. Characterization of gene expression patterns in response to an orthotospovirus infection between two diploid peanut species and their hybrid. FRONTIERS IN PLANT SCIENCE 2023; 14:1270531. [PMID: 38034554 PMCID: PMC10683084 DOI: 10.3389/fpls.2023.1270531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/11/2023] [Indexed: 12/02/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) transmitted by thrips causes significant yield loss in peanut (Arachis hypogaea L.) production. Use of peanut cultivars with moderate field resistance has been critical for TSWV management. However, current TSWV resistance is often not adequate, and the availability of sources of tetraploid resistance to TSWV is very limited. Allotetraploids derived by crossing wild diploid species could help introgress alleles that confer TSWV resistance into cultivated peanut. Thrips-mediated TSWV screening identified two diploids and their allotetraploid possessing the AA, BB, and AABB genomes Arachis stenosperma V10309, Arachis valida GK30011, and [A. stenosperma × A. valida]4x (ValSten1), respectively. These genotypes had reduced TSWV infection and accumulation in comparison with peanut of pure cultivated pedigree. Transcriptomes from TSWV-infected and non-infected samples from A. stenosperma, A. valida, and ValSten1 were assembled, and differentially expressed genes (DEGs) following TSWV infection were assessed. There were 3,196, 8,380, and 1,312 significant DEGs in A. stenosperma, A. valida, and ValSten1, respectively. A higher proportion of genes decreased in expression following TSWV infection for A. stenosperma and ValSten1, whereas a higher proportion of genes increased in expression following infection in A. valida. The number of DEGs previously annotated as defense-related in relation to abiotic and biotic stress was highest in A. valida followed by ValSten1 and A. stenosperma. Plant phytohormone and photosynthesis genes also were differentially expressed in greater numbers in A. valida followed by ValSten1 and A. stenosperma, with over half of those exhibiting decreases in expression.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Michael A. Catto
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Soraya Leal-Bertioli
- Plant Pathology Department, University of Georgia, Athens, GA, United States
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Mark Abney
- Entomology Department, University of Georgia, Tifton, GA, United States
| | - Brendan G. Hunt
- Entomology Department, University of Georgia, Griffin, GA, United States
| | - Sudeep Bag
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | - Albert Culbreath
- Plant Pathology Department, University of Georgia, Tifton, GA, United States
| | | |
Collapse
|
3
|
Chen YJ, Pandey S, Catto M, Leal-Bertioli S, Abney MR, Bag S, Hopkins M, Culbreath A, Srinivasan R. Evaluation of Wild Peanut Species and Their Allotetraploids for Resistance against Thrips and Thrips-Transmitted Tomato Spotted Wilt Orthotospovirus (TSWV). Pathogens 2023; 12:1102. [PMID: 37764910 PMCID: PMC10536083 DOI: 10.3390/pathogens12091102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanut (Arachis hypogaea L.) and limits yield. Breeding programs have been developing TSWV-resistant cultivars, but availability of sources of resistance against TSWV in cultivated germplasm is extremely limited. Diploid wild Arachis species can serve as important sources of resistance, and despite ploidy barriers (cultivated peanut is tetraploid), their usage in breeding programs is now possible because of the knowledge and development of induced interspecific allotetraploid hybrids. This study screened 10 wild diploid Arachis and six induced allotetraploid genotypes via thrips-mediated TSWV transmission assays and thrips' feeding assays in the greenhouse. Three parameters were evaluated: percent TSWV infection, virus accumulation, and temporal severity of thrips feeding injury. Results indicated that the diploid A. stenosperma accession V10309 and its derivative-induced allotetraploid ValSten1 had the lowest TSWV infection incidences among the evaluated genotypes. Allotetraploid BatDur1 had the lowest thrips-inflicted damage at each week post thrips release, while diploid A. batizocoi accession K9484 and A. duranensis accession V14167 had reduced feeding damage one week post thrips release, and diploids A. valida accession GK30011 and A. batizocoi had reduced feeding damage three weeks post thrips releasethan the others. Overall, plausible TSWV resistance in diploid species and their allotetraploid hybrids was characterized by reduced percent TSWV infection, virus accumulation, and feeding severity. Furthermore, a few diploids and tetraploid hybrids displayed antibiosis against thrips. These results document evidence for resistance against TSWV and thrips in wild diploid Arachis species and peanut-compatible-induced allotetraploids.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Sudeep Pandey
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA; (Y.-J.C.); (S.P.)
| | - Michael Catto
- Department of Entomology, University of Georgia, Athens, GA 30602, USA;
| | - Soraya Leal-Bertioli
- Department of Plant Pathology, Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA 31794, USA;
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | - Mark Hopkins
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA 30602, USA;
| | - Albert Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (S.B.); (A.C.)
| | | |
Collapse
|
4
|
Lv J, Deng M, Jiang S, Zhu H, Li Z, Wang Z, Li J, Yang Z, Yue Y, Xu J, Zhao K. Mapping and functional characterization of the tomato spotted wilt virus resistance gene SlCHS3 in Solanum lycopersicum. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:55. [PMID: 37313421 PMCID: PMC10248591 DOI: 10.1007/s11032-022-01325-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt virus (TSWV) poses a serious threat to tomato (Solanum lycopersicum) production. In this study, tomato inbred line YNAU335 was developed without the Sw-5 locus, which confers resistance or immunity to TSWV (absence of infection). Genetic analysis demonstrated that immunity to TSWV was controlled by a dominant nuclear gene. The candidate genes were mapped into a 20-kb region in the terminal of the long arm of chromosome 9 using bulk segregant analysis and linkage analysis. In this candidate region, a chalcone synthase-encoding gene (SlCHS3) was identified as a strong candidate gene for TSWV resistance. Silencing SlCHS3 reduced flavonoid synthesis, and SlCHS3 overexpression increased flavonoid content. The increase in flavonoids improved TSWV resistance in tomato. These findings indicate that SlCHS3 is indeed involved in the regulation of flavonoid synthesis and plays a significant role in TSWV resistance of YNAU335. This could provide new insights and lay the foundation for analyzing TSWV resistance mechanisms. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01325-5.
Collapse
Affiliation(s)
- Junheng Lv
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Minghua Deng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Shurui Jiang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Haishan Zhu
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Zuosen Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Ziran Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Jing Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Zhengan Yang
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Yanling Yue
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| | - Junqiang Xu
- Dian-Tai Engineering Research Center for Characteristic Agriculture Industrialization of Yunnan Province, YunnanAgricultural University, Kunming, 650201 China
| | - Kai Zhao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
5
|
Discrepancies in Serology-Based and Nucleic Acid-Based Detection and Quantitation of Tomato Spotted Wilt Orthotospovirus in Leaf and Root Tissues from Symptomatic and Asymptomatic Peanut Plants. Pathogens 2021; 10:pathogens10111476. [PMID: 34832630 PMCID: PMC8624541 DOI: 10.3390/pathogens10111476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) causes spotted wilt disease in peanuts. A serological test (DAS-ELISA) is often used to detect TSWV in peanut leaf samples. However, in a few studies, DAS-ELISA detected more TSWV infection in root than leaf samples. It was not clear if the increased detection was due to increased TSWV accumulation in root tissue or merely an overestimation. Additionally, it was unclear if TSWV detection in asymptomatic plants would be affected by the detection technique. TSWV infection in leaf and root tissue from symptomatic and asymptomatic plants was compared via DAS-ELISA, RT-PCR, and RT-qPCR. TSWV incidence did not vary by DAS-ELISA, RT-PCR, and RT-qPCR in leaf and root samples of symptomatic plants or in leaf samples of asymptomatic plants. In contrast, significantly more TSWV infection and virus load were detected in root samples of asymptomatic plants via DAS-ELISA than other techniques suggesting that DAS-ELISA overestimated TSWV incidence and load. TSWV loads from symptomatic plants via RT-qPCR were higher in leaf than root samples, while TSWV loads in leaf and root samples from asymptomatic plants were not different but were lower than those in symptomatic plants. These findings suggested that peanut tissue type and detection technique could affect accurate TSWV detection and/or quantitation.
Collapse
|
6
|
Impact of Host Resistance to Tomato Spotted Wilt Orthotospovirus in Peanut Cultivars on Virus Population Genetics and Thrips Fitness. Pathogens 2021; 10:pathogens10111418. [PMID: 34832574 PMCID: PMC8625697 DOI: 10.3390/pathogens10111418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/25/2022] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) is a major constraint to peanut production in the southeastern United States. Peanut cultivars with resistance to TSWV have been widely used for over twenty years. Intensive usage of resistant cultivars has raised concerns about possible selection pressure against TSWV and a likelihood of resistance breakdown. Population genetics of TSWV isolates collected from cultivars with varying levels of TSWV resistance was investigated using five TSWV genes. Phylogenetic trees of genes did not indicate host resistance-based clustering of TSWV isolates. Genetic variation in TSWV isolates and neutrality tests suggested recent population expansion. Mutation and purifying selection seem to be the major forces driving TSWV evolution. Positive selection was found in N and RdRp genes but was not influenced by TSWV resistance. Population differentiation occurred between isolates collected from 1998 and 2010 and from 2016 to 2019 but not between isolates from susceptible and resistant cultivars. Evaluated TSWV-resistant cultivars differed, albeit not substantially, in their susceptibility to thrips. Thrips oviposition was reduced, and development was delayed in some cultivars. Overall, no evidence was found to support exertion of selection pressure on TSWV by host resistance in peanut cultivars, and some cultivars differentially affected thrips fitness than others.
Collapse
|
7
|
Defense-Related Gene Expression Following an Orthotospovirus Infection Is Influenced by Host Resistance in Arachis hypogaea. Viruses 2021; 13:v13071303. [PMID: 34372510 PMCID: PMC8310252 DOI: 10.3390/v13071303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 07/03/2021] [Indexed: 12/13/2022] Open
Abstract
Planting resistant cultivars is the most effective tactic to manage the thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) in peanut plants. However, molecular mechanisms conferring resistance to TSWV in resistant cultivars are unknown. In this study, transcriptomes of TSWV-susceptible (SunOleic 97R) and field-resistant (Tifguard) peanut cultivars with and without TSWV infection were assembled and differentially expressed genes (DEGs) were compared. There were 4605 and 2579 significant DEGs in SunOleic 97R and Tifguard, respectively. Despite the lower number of DEGs in Tifguard, an increased proportion of defense-related genes were upregulated in Tifguard than in the susceptible cultivar. Examples included disease resistance (R) proteins, leucine-rich repeats, stilbene synthase, dicer, and calmodulin. Pathway analysis revealed the increased downregulation of genes associated with defense and photosynthesis in the susceptible cultivar rather than in the resistant cultivar. These results suggest that essential physiological functions were less perturbed in the resistant cultivar than in the susceptible cultivar and that the defense response following TSWV infection was more robust in the resistant cultivar than in the susceptible cultivar.
Collapse
|
8
|
Kormelink R, Verchot J, Tao X, Desbiez C. The Bunyavirales: The Plant-Infecting Counterparts. Viruses 2021; 13:842. [PMID: 34066457 PMCID: PMC8148189 DOI: 10.3390/v13050842] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 12/18/2022] Open
Abstract
Negative-strand (-) RNA viruses (NSVs) comprise a large and diverse group of viruses that are generally divided in those with non-segmented and those with segmented genomes. Whereas most NSVs infect animals and humans, the smaller group of the plant-infecting counterparts is expanding, with many causing devastating diseases worldwide, affecting a large number of major bulk and high-value food crops. In 2018, the taxonomy of segmented NSVs faced a major reorganization with the establishment of the order Bunyavirales. This article overviews the major plant viruses that are part of the order, i.e., orthospoviruses (Tospoviridae), tenuiviruses (Phenuiviridae), and emaraviruses (Fimoviridae), and provides updates on the more recent ongoing research. Features shared with the animal-infecting counterparts are mentioned, however, special attention is given to their adaptation to plant hosts and vector transmission, including intra/intercellular trafficking and viral counter defense to antiviral RNAi.
Collapse
Affiliation(s)
- Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jeanmarie Verchot
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA;
| | - Xiaorong Tao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China;
| | | |
Collapse
|
9
|
Konakalla NC, Bag S, Deraniyagala AS, Culbreath AK, Pappu HR. Induction of Plant Resistance in Tobacco (Nicotiana tabacum) against Tomato Spotted Wilt Orthotospovirus through Foliar Application of dsRNA. Viruses 2021; 13:662. [PMID: 33921345 PMCID: PMC8069313 DOI: 10.3390/v13040662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Thrips-transmitted tomato spotted wilt orthotospovirus (TSWV) continues to be a constraint to peanut, pepper, tobacco, and tomato production in Georgia and elsewhere. TSWV is being managed by an integrated disease management strategy that includes a combination of cultural practices, vector management, and growing virus-resistant varieties where available. We used a non-transgenic strategy to induce RNA interference (RNAi)-mediated resistance in tobacco (Nicotiana tabacum) plants against TSWV. Double-stranded RNA (dsRNA) molecules for the NSs (silencing suppressor) and N (nucleoprotein) genes were produced by a two-step PCR approach followed by in vitro transcription. When topically applied to tobacco leaves, both molecules elicited a resistance response. Host response to the treatments was measured by determining the time to symptom expression, and the level of resistance by absolute quantification of the virus. We also show the systemic movement of dsRNA_N from the inoculated leaves to younger, non-inoculated leaves. Post-application, viral siRNAs were detected for up to nine days in inoculated leaves and up to six days in non-inoculated leaves. The topical application of dsRNAs to induce RNAi represents an environmentally safe and efficient way to manage TSWV in tobacco crops and could be applicable to other TSWV-susceptible crops.
Collapse
Affiliation(s)
- Naga Charan Konakalla
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, 230 53 Alnarp, Sweden
| | - Sudeep Bag
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | | | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA; (N.C.K.); (A.S.D.); (A.K.C.)
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA 99163, USA;
| |
Collapse
|
10
|
Revisiting Orthotospovirus phylogeny using full-genome data and testing the contribution of selection, recombination and segment reassortment in the origin of members of new species. Arch Virol 2021; 166:491-499. [PMID: 33394171 DOI: 10.1007/s00705-020-04902-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023]
Abstract
The family Tospoviridae of the order Bunyavirales is constituted of tri-segmented negative-sense single-stranded RNA viruses that infect plants and are also able to replicate in their insect vectors in a persistent manner. The family is composed of a single genus, Orthotospovirus, whose type species is Tomato spotted wilt orthotospovirus. Previous studies assessing the phylogenetic relationships within this genus were based on partial genomic sequences, resulting in unresolved clades and a poor assessment of the roles of recombination and segment reassortment during mixed infections. Full genome sequences of members of recognized Orthotospovirus species are now available at NCBI. In this study, we examined 67 complete genome sequences from members of 22 species. Our study confirms the existence of four phylogroups (A to D), grouped in two major clades (A-B and C-D) within the genus. We found strong evidence that within-segment recombination events and reassortment of segments during mixed infections have been involved in the origin of new orthotospoviruses. Also, selection pressures were analyzed for each gene, and evidence of positive selection was found in all genes.
Collapse
|
11
|
Jeger MJ. The Epidemiology of Plant Virus Disease: Towards a New Synthesis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1768. [PMID: 33327457 PMCID: PMC7764944 DOI: 10.3390/plants9121768] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Epidemiology is the science of how disease develops in populations, with applications in human, animal and plant diseases. For plant diseases, epidemiology has developed as a quantitative science with the aims of describing, understanding and predicting epidemics, and intervening to mitigate their consequences in plant populations. Although the central focus of epidemiology is at the population level, it is often necessary to recognise the system hierarchies present by scaling down to the individual plant/cellular level and scaling up to the community/landscape level. This is particularly important for diseases caused by plant viruses, which in most cases are transmitted by arthropod vectors. This leads to range of virus-plant, virus-vector and vector-plant interactions giving a distinctive character to plant virus epidemiology (whilst recognising that some fungal, oomycete and bacterial pathogens are also vector-borne). These interactions have epidemiological, ecological and evolutionary consequences with implications for agronomic practices, pest and disease management, host resistance deployment, and the health of wild plant communities. Over the last two decades, there have been attempts to bring together these differing standpoints into a new synthesis, although this is more apparent for evolutionary and ecological approaches, perhaps reflecting the greater emphasis on shorter often annual time scales in epidemiological studies. It is argued here that incorporating an epidemiological perspective, specifically quantitative, into this developing synthesis will lead to new directions in plant virus research and disease management. This synthesis can serve to further consolidate and transform epidemiology as a key element in plant virus research.
Collapse
Affiliation(s)
- Michael J Jeger
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL5 7PY, UK
| |
Collapse
|
12
|
Specific and Spillover Effects on Vectors Following Infection of Two RNA Viruses in Pepper Plants. INSECTS 2020; 11:insects11090602. [PMID: 32899551 PMCID: PMC7564562 DOI: 10.3390/insects11090602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/02/2020] [Accepted: 09/02/2020] [Indexed: 01/05/2023]
Abstract
Mixed infection of plant viruses is ubiquitous in nature and can affect virus-plant-vector interactions differently than single virus infection. While several studies have examined virus-virus interactions involving mixed virus infection, relatively few have examined effects of mixed virus infection on vector preference and fitness, especially when multiple vectors are involved. This study explored how single and mixed viral infection of a non-persistently transmitted cucumber mosaic virus (CMV) and propagative and persistently-transmitted tomato spotted wilt orthotospovirus (TSWV) in pepper, Capsicum annum L., influenced the preference and fitness of their vectors, the green peach aphid, Myzus persicae (Sulzer), and the tobacco thrips, Frankliniella fusca (Hinds), respectively. In general, mixed infected plants exhibited severe symptoms compared with individually infected plants. An antagonistic interaction between the two viruses was observed when CMV titer was reduced following mixed infection with TSWV in comparison with the single infection. TSWV titer did not differ between single and mixed infection. Myzus persicae settling preference and median developmental were not significantly different between CMV and/or TSWV-infected and non-infected plants. Moreover, M. persicae fecundity did not differ between CMV-infected and non-infected pepper plants. However, M. persicae fecundity was substantially greater on TSWV-infected plants than non-infected plants. Myzus persicae fecundity on mixed-infected plants was significantly lower than on singly-infected and non-infected plants. Frankliniella fusca fecundity was higher on CMV and/or TSWV-infected pepper plants than non-infected pepper plants. Furthermore, F. fusca-induced feeding damage was higher on TSWV-infected than on CMV-infected, mixed-infected, or non-infected pepper plants. Overall, our results indicate that the effects of mixed virus infection on vectors were not different from those observed following single virus infection. Virus-induced host phenotype-modulated effects were realized on both specific and non-specific vectors, suggesting crosstalk involving all vectors and viruses in this pathosystem. The driving forces of these interactions need to be further examined. The effects of interactions between two viruses and two vectors towards epidemics of one or both viruses also need to be examined.
Collapse
|
13
|
Chappell TM, Codod CB, Williams BW, Kemerait RC, Culbreath AK, Kennedy GG. Adding Epidemiologically Important Meteorological Data to Peanut Rx, the Risk Assessment Framework for Spotted Wilt of Peanut. PHYTOPATHOLOGY 2020; 110:1199-1207. [PMID: 32133919 DOI: 10.1094/phyto-11-19-0438-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Management of disease affecting peanut in the southeastern United States has benefited from extensive field research identifying disease-associated risk factors since the 1990s. An assessment of risk factors associated with tomato spotted wilt (TSW), caused by tomato spotted wilt virus and spread exclusively by thrips, is available to growers through Peanut Rx, a tool developed to inform peanut management decisions. Peanut Rx provides an assessment of relative TSW risk as an index. The assessment provides information about the relative degree to which a field characterized by a specified suite of practices is at risk of crop loss caused by TSW. Loss results when infection occurs, and infection rates are determined, in part, by factors outside a grower's control, primarily the abundance of dispersing, viruliferous thrips. In this study, we incorporated meteorological variables useful for predicting thrips dispersal, increasing the robustness of the Peanut Rx framework in relation to variation in the weather. We used data from field experiments and a large grower survey to estimate the relationships between weather and TSW risk mediated by thrips vectors, and developed an addition to Peanut Rx that proved informative and easy to implement. The expected temporal occurrence of major thrips flights, as a function of heat and precipitation, was translated into the existing risk-point system of Peanut Rx. Results from the grower survey further demonstrated the validity of Peanut Rx for guiding growers' decisions to minimize risk of TSW.
Collapse
Affiliation(s)
- Thomas M Chappell
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, U.S.A
| | - Clarence B Codod
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Blake W Williams
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Robert C Kemerait
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - Albert K Culbreath
- Department of Plant Pathology, College of Agricultural and Environmental Science, University of Georgia, Tifton, GA 31793, U.S.A
| | - George G Kennedy
- Department of Entomology and Plant Pathology, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695-7630, U.S.A
| |
Collapse
|
14
|
Kil EJ, Chung YJ, Choi HS, Lee S, Kim CS. Life Cycle-Based Host Range Analysis for Tomato Spotted Wilt Virus in Korea. THE PLANT PATHOLOGY JOURNAL 2020; 36:67-75. [PMID: 32089662 PMCID: PMC7012576 DOI: 10.5423/ppj.ft.12.2019.0290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
Tomato spotted wilt virus (TSWV) is one of the plant viruses transmitted by thrips and causes severe economic damage to various crops. From 2008 to 2011, to identify natural host species of TSWV in South Korea, weeds and crops were collected from 5 regions (Seosan, Yesan, Yeonggwang, Naju, and Suncheon) where TSWV occurred and were identified as 1,104 samples that belong to 144 species from 40 families. According to reverse transcription-polymerase chain reaction, TSWV was detected from 73 samples from 23 crop species, 5 of which belonged to family Solanaceae. Additionally, 42 weed species were confirmed as natural hosts of TSWV with three different life cycles, indicating that these weed species could play an important role as virus reservoirs during no cultivation periods of crops. This study provides up-to-date comprehensive information for TSWV natural hosts in South Korea.
Collapse
Affiliation(s)
- Eui-Joon Kil
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Young-Jae Chung
- Department of Life Science and Biotechnology, Shingyeong University, Hwaseong 18274,
Korea
| | - Hong-Soo Choi
- Crop Protection Division, National Academy of Agricultural Science, Rural Development Administration, Wanju 55365,
Korea
| | - Sukchan Lee
- College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419,
Korea
| | - Chang-Seok Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342,
Korea
| |
Collapse
|
15
|
Marchant WG, Gautam S, Hutton SF, Srinivasan R. Tomato Yellow Leaf Curl Virus-Resistant and -Susceptible Tomato Genotypes Similarly Impact the Virus Population Genetics. FRONTIERS IN PLANT SCIENCE 2020; 11:599697. [PMID: 33365041 PMCID: PMC7750400 DOI: 10.3389/fpls.2020.599697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 05/14/2023]
Abstract
Tomato yellow leaf curl virus is a species in the genus Begomovirus and family Geminiviridae. Tomato yellow leaf curl virus (TYLCV) infection induces severe symptoms on tomato plants and causes serious yield losses worldwide. TYLCV is persistently transmitted by the sweetpotato whitefly, Bemisia tabaci (Gennadius). Cultivars and hybrids with a single or few genes conferring resistance against TYLCV are often planted to mitigate TYLCV-induced losses. These resistant genotypes (cultivars or hybrids) are not immune to TYLCV. They typically develop systemic infection, display mild symptoms, and produce more marketable tomatoes than susceptible genotypes under TYLCV pressure. In several pathosystems, extensive use of resistant cultivars with single dominant resistance-conferring gene has led to intense selection pressure on the virus, development of highly virulent strains, and resistance breakdown. This study assessed differences in TYLCV genomes isolated from susceptible and resistant genotypes in Florida and Georgia. Phylogenetic analyses indicated that Florida and Georgia isolates were distinct from each other. Population genetics analyses with genomes field-collected from resistant and susceptible genotypes from Florida and/or Georgia provided no evidence of a genetic structure between the resistant and susceptible genotypes. No codons in TYLCV genomes from TYLCV-resistant or susceptible genotypes were under positive selection, suggesting that highly virulent or resistance-breaking TYLCV strains might not be common in tomato farmscapes in Florida and Georgia. With TYLCV-resistant genotypes usage increasing recently and multiple tomato crops being planted during a calendar year, host resistance-induced selection pressure on the virus remains a critical issue. To address the same, a greenhouse selection experiment with one TYLCV-resistant and susceptible genotype was conducted. Each genotype was challenged with TYLCV through whitefly-mediated transmission serially 10 times (T1-T10). Population genetics parameters at the genome level were assessed at T1, T5, and T10. Results indicated that genomes from resistant and susceptible genotypes did not differentiate with increasing transmission number, no specific mutations were repeatedly observed, and no positive selection was detected. These results reiterate that resistance in tomato might not be exerting selection pressure against TYLCV to facilitate development of resistance-breaking strains. TYLCV populations rather seem to be shaped by purifying selection and/or population expansion.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Samuel F. Hutton
- Horticulture Sciences Department, University of Florida, Wimauma, FL, United States
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, Griffin, GA, United States
- *Correspondence: Rajagopalbabu Srinivasan
| |
Collapse
|
16
|
Srinivasan R, Abney MR, Lai PC, Culbreath AK, Tallury S, Leal-Bertioli SCM. Resistance to Thrips in Peanut and Implications for Management of Thrips and Thrips-Transmitted Orthotospoviruses in Peanut. FRONTIERS IN PLANT SCIENCE 2018; 9:1604. [PMID: 30459792 PMCID: PMC6232880 DOI: 10.3389/fpls.2018.01604] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 10/17/2018] [Indexed: 05/31/2023]
Abstract
Thrips are major pests of peanut (Arachis hypogaea L.) worldwide, and they serve as vectors of devastating orthotospoviruses such as Tomato spotted wilt virus (TSWV) and Groundnut bud necrosis virus (GBNV). A tremendous effort has been devoted to developing peanut cultivars with resistance to orthotospoviruses. Consequently, cultivars with moderate field resistance to viruses exist, but not much is known about host resistance to thrips. Integrating host plant resistance to thrips in peanut could suppress thrips feeding damage and reduce virus transmission, will decrease insecticide usage, and enhance sustainability in the production system. This review focuses on details of thrips resistance in peanut and identifies future directions for incorporating thrips resistance in peanut cultivars. Research on thrips-host interactions in peanut is predominantly limited to field evaluations of feeding damage, though, laboratory studies have revealed that peanut cultivars could differentially affect thrips feeding and thrips biology. Many runner type cultivars, field resistant to TSWV, representing diverse pedigrees evaluated against thrips in the greenhouse revealed that thrips preferred some cultivars over others, suggesting that antixenosis "non-preference" could contribute to thrips resistance in peanut. In other crops, morphological traits such as leaf architecture and waxiness and spectral reflectance have been associated with thrips non-preference. It is not clear if foliar morphological traits in peanut are associated with reduced preference or non-preference of thrips and need to be evaluated. Besides thrips non-preference, thrips larval survival to adulthood and median developmental time were negatively affected in some peanut cultivars and in a diploid peanut species Arachis diogoi (Hoehne) and its hybrids with a Virginia type cultivar, indicating that antibiosis (negative effects on biology) could also be a factor influencing thrips resistance in peanut. Available field resistance to orthotospoviruses in peanut is not complete, and cultivars can suffer substantial yield loss under high thrips and virus pressure. Integrating thrips resistance with available virus resistance would be ideal to limit losses. A discussion of modern technologies such as transgenic resistance, marker assisted selection and RNA interference, and future directions that could be undertaken to integrate resistance to thrips and to orthotospoviruses in peanut cultivars is included in this article.
Collapse
Affiliation(s)
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Pin-Chu Lai
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States
| | - Shyam Tallury
- United States Department of Agriculture – Agricultural Research Service, Griffin, GA, United States
| | | |
Collapse
|
17
|
Marasigan K, Toews M, Kemerait R, Abney MR, Culbreath A, Srinivasan R. Evaluation of Alternatives to an Organophosphate Insecticide with Selected Cultural Practices: Effects on Thrips, Frankliniella fusca, and Incidence of Spotted Wilt in Peanut Farmscapes. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1030-1041. [PMID: 29635299 DOI: 10.1093/jee/toy079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Indexed: 06/08/2023]
Abstract
Peanut growers use a combination of tactics to manage spotted wilt disease caused by thrips-transmitted Tomato spotted wilt virus (TSWV). They include planting TSWV-resistant cultivars, application of insecticides, and various cultural practices. Two commonly used insecticides against thrips are aldicarb and phorate. Both insecticides exhibit broad-spectrum toxicity. Recent research has led to the identification of potential alternatives to aldicarb and phorate. In this study, along with reduced-risk, alternative insecticides, we evaluated the effect of conventional versus strip tillage; single versus twin row seeding pattern; and 13 seed/m versus 20 seed/m on thips density, feeding injury, and spotted wilt incidence. Three field trials were conducted in Georgia in 2012 and 2013. Thrips counts, thrips feeding injuriy, and incidence of spotted wilt were less under strip tillage than under conventional tillage. Reduced feeding injury from thrips was observed on twin-row plots compared with single-row plots. Thrips counts, thrips feeding injury, and incidence of spotted wilt did not vary by seeding rate. Yield from twin-row plots was greater than yield from single-row plots only in 2012. Yield was not affected by other cultural practices. Alternative insecticides, including imidacloprid and spinetoram, were as effective as phorate in suppressing thrips and reducing incidence of spotted wilt in conjunction with cultural practices. Results suggest that cultural practices and reduced-risk insecticides (alternatives to aldicarb and phorate) can effectively suppress thrips and incidence of spotted wilt in peanut.
Collapse
Affiliation(s)
- K Marasigan
- Department of Entomology, University of Georgia, Tifton, GA
| | - M Toews
- Department of Entomology, University of Georgia, Tifton, GA
| | - R Kemerait
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - M R Abney
- Department of Entomology, University of Georgia, Tifton, GA
| | - A Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA
| | - R Srinivasan
- Department of Entomology, University of Georgia, Tifton, GA
| |
Collapse
|
18
|
Srinivasan R, Abney MR, Culbreath AK, Kemerait RC, Tubbs RS, Monfort WS, Pappu HR. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States. Virus Res 2017; 241:203-212. [PMID: 28549856 DOI: 10.1016/j.virusres.2017.05.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/19/2017] [Accepted: 05/21/2017] [Indexed: 11/30/2022]
Abstract
Southeastern states namely Georgia, Florida, and Alabama produce two-thirds of the peanuts in the United States. Thrips-transmitted Tomato spotted wilt virus (TSWV), which causes spotted wilt disease, has been a major impediment to peanut production for the past three decades. The cultivars grown in the 1980s were extremely susceptible to TSWV. Early yield losses extended to tens of millions of dollars each year (up to 100% loss in many fields). This situation led to the creation of an interdisciplinary team known as "SWAT: Spotted Wilt Action Team". Initial efforts focused on risk mitigation using a combination of chemical and cultural management practices along with a strong investment in breeding programs. Beginning in the mid 1990s, cultivars with field resistance were developed and integrated with cultural and chemical management options. A Risk Mitigation Index (Peanut Rx) was made available to growers to assess risks, and provide options for mitigating risks such as planting field resistant cultivars with in-furrow insecticides, planting after peak thrips incidence, planting in twin rows, and increasing seeding rates. These efforts helped curtail losses due to spotted wilt. The Peanut Rx continues to be refined every year based on new research findings. Breeding efforts, predominantly in Georgia and Florida, continue to develop cultivars with incremental field resistance. The present-day cultivars (third-generation TSWV-resistant cultivars released after 2010) possess substantially greater field resistance than second-generation (cultivars released from 2000 to 2010) and first-generation (cultivars released from 1994 to 2000) TSWV resistant cultivars. Despite increased field resistance, these cultivars are not immune to TSWV and succumb under high thrips and TSWV pressure. Therefore, field resistant cultivars cannot serve as a 'stand-alone' option and have to be integrated with other management options. The mechanism of resistance is also unknown in field resistant cultivars. Recent research in our laboratory evaluated field resistant cultivars against thrips and TSWV. Results revealed that some resistant cultivars suppressed thrips feeding and development, and they accumulated fewer viral copies than susceptible cultivars. Transcriptomes developed with the aid of Next Generation Sequencing revealed differential gene expression patterns following TSWV infection in susceptible than field resistant cultivars. Results revealed that the upregulation of transcripts pertaining to constitutive and induced plant defense proteins in TSWV resistant cultivars was more robust over susceptible cultivars. On the flipside, the long-term effects of using such resistant cultivars on TSWV were assessed by virus population genetics studies. Initial results suggest lack of positive selection pressure on TSWV, and that the sustainable use of resistant cultivars is not threatened. Follow up research is being conducted. Improvements in TSWV management have enhanced sustainability and contributed to increased yields from <2800kg/ha before 1995 to ∼5000kg/ha in 2015.
Collapse
Affiliation(s)
- R Srinivasan
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA.
| | - M R Abney
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - A K Culbreath
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - R C Kemerait
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - R S Tubbs
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - W S Monfort
- University of Georgia, 2360 Rainwater Road, Tifton, GA 31793, USA
| | - H R Pappu
- Washington State University, 345 Johnson hall, Pullman, WA 99164, USA
| |
Collapse
|
19
|
Abstract
The genus Tospovirus is unique within the family Bunyaviridae in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector Frankliniella occidentalis and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order Thysanoptera, represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus Tospovirus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.
Collapse
Affiliation(s)
- J E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| | - A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
20
|
de Breuil S, Cañizares J, Blanca JM, Bejerman N, Trucco V, Giolitti F, Ziarsolo P, Lenardon S. Analysis of the coding-complete genomic sequence of groundnut ringspot virus suggests a common ancestor with tomato chlorotic spot virus. Arch Virol 2016; 161:2311-6. [PMID: 27260536 DOI: 10.1007/s00705-016-2912-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Abstract
Groundnut ringspot virus (GRSV) and tomato chlorotic spot virus (TCSV) share biological and serological properties, so their identification is carried out by molecular methods. Their genomes consist of three segmented RNAs: L, M and S. The finding of a reassortant between these two viruses may complicate correct virus identification and requires the characterization of the complete genome. Therefore, we present for the first time the complete sequences of all the genes encoded by a GRSV isolate. The high level of sequence similarity between GRSV and TCSV (over 90 % identity) observed in the genes and proteins encoded in the M RNA support previous results indicating that these viruses probably have a common ancestor.
Collapse
Affiliation(s)
- Soledad de Breuil
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, X5020ICA, Córdoba, Argentina. .,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina.
| | - Joaquín Cañizares
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de Valencia (COMAV-UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - José Miguel Blanca
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de Valencia (COMAV-UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Nicolás Bejerman
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, X5020ICA, Córdoba, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB, CABA, Argentina
| | - Verónica Trucco
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, X5020ICA, Córdoba, Argentina
| | - Fabián Giolitti
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, X5020ICA, Córdoba, Argentina
| | - Peio Ziarsolo
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de Valencia (COMAV-UPV), Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergio Lenardon
- Instituto de Patología Vegetal, Centro de Investigaciones Agropecuarias, Instituto Nacional de Tecnología Agropecuaria (IPAVE-CIAP-INTA), Camino 60 Cuadras Km 5,5, X5020ICA, Córdoba, Argentina
| |
Collapse
|
21
|
Sohrab SS, Bhattacharya P, Rana D, Kamal MA, Pande M. Development of interspecific Solanum lycopersicum and screening for Tospovirus resistance. Saudi J Biol Sci 2015; 22:730-8. [PMID: 26587001 PMCID: PMC4625138 DOI: 10.1016/j.sjbs.2014.11.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 10/25/2014] [Accepted: 11/07/2014] [Indexed: 12/04/2022] Open
Abstract
Tospovirus has emerged as a serious viral pathogen for several crops including tomato. The tomato production is being severely affected worldwide by Tospovirus. Some reports have been published about the association of plant virus and development of human disease either by direct or indirect consumption. Resistance to this virus has been identified as good source in wild tomato species (Lycopersicum peruvianum). But the introgression of resistance genes into cultivated tomato lines and the development of interspecific hybrid are hampered due to incompatibility, fertilization barriers and embryo abortion. But this barrier has been broken by applying the embryo rescue methods. This study describes the development of interspecific hybrid tomato plants by highly efficient embryo rescue method and screening for Tospovirus resistance. The interspecific hybrid tomato plants were developed by making a cross between wild tomato species (L. peruvianum) and cultivated tomato (Solanum lycopersicum). The immature embryos were cultured in standardized medium and interspecific hybrids were developed from embryogenic callus. The immature embryos excised from 7 to 35 days old fruits were used for embryo rescue and 31 days old embryos showed very good germination capabilities and produced the highest number of plants. Developed plants were hardened enough and shifted to green house. The hybrid nature of interspecific plants was further confirmed by comparing the morphological characters from their parents. The F1, F2 and F3 plants were found to have varying characters especially for leaf type, color of stem, fruits, size, shapes and they were further screened for virus resistance both in lab and open field followed by Enzyme linked Immunosorbant Assay confirmation. Finally, a total of 11 resistant plants were selected bearing red color fruits with desired shape and size.
Collapse
Affiliation(s)
- Sayed Sartaj Sohrab
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - P.S. Bhattacharya
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - D. Rana
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| | - Mohammad A. Kamal
- King Fahd Medical Research Center, King Abdulaziz University, Post Box No. 80216, Jeddah 21589, Saudi Arabia
| | - M.K. Pande
- Division of Biotechnology, JK Agri-Genetics Ltd., Hyderabad, A.P., India
| |
Collapse
|
22
|
Hema M, Sreenivasulu P, Patil BL, Kumar PL, Reddy DVR. Tropical food legumes: virus diseases of economic importance and their control. Adv Virus Res 2015; 90:431-505. [PMID: 25410108 DOI: 10.1016/b978-0-12-801246-8.00009-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Diverse array of food legume crops (Fabaceae: Papilionoideae) have been adopted worldwide for their protein-rich seed. Choice of legumes and their importance vary in different parts of the world. The economically important legumes are severely affected by a range of virus diseases causing significant economic losses due to reduction in grain production, poor quality seed, and costs incurred in phytosanitation and disease control. The majority of the viruses infecting legumes are vectored by insects, and several of them are also seed transmitted, thus assuming importance in the quarantine and in the epidemiology. This review is focused on the economically important viruses of soybean, groundnut, common bean, cowpea, pigeonpea, mungbean, urdbean, chickpea, pea, faba bean, and lentil and begomovirus diseases of three minor tropical food legumes (hyacinth bean, horse gram, and lima bean). Aspects included are geographic distribution, impact on crop growth and yields, virus characteristics, diagnosis of causal viruses, disease epidemiology, and options for control. Effectiveness of selection and planting with virus-free seed, phytosanitation, manipulation of crop cultural and agronomic practices, control of virus vectors and host plant resistance, and potential of transgenic resistance for legume virus disease control are discussed.
Collapse
Affiliation(s)
- Masarapu Hema
- Department of Virology, Sri Venkateswara University, Tirupati, India
| | - Pothur Sreenivasulu
- Formerly Professor of Virology, Sri Venkateswara University, Tirupati, India
| | - Basavaprabhu L Patil
- National Research Centre on Plant Biotechnology, IARI, Pusa Campus, New Delhi, India
| | - P Lava Kumar
- International Institute of Tropical Agriculture, Ibadan, Nigeria
| | - Dodla V R Reddy
- Formerly Principal Virologist, ICRISAT, Patancheru, Hyderabad, India.
| |
Collapse
|
23
|
Shrestha A, Sundaraj S, Culbreath AK, Riley DG, Abney MR, Srinivasan R. Effects of Thrips Density, Mode of Inoculation, and Plant Age on Tomato Spotted Wilt Virus Transmission in Peanut Plants. ENVIRONMENTAL ENTOMOLOGY 2015; 44:136-143. [PMID: 26308816 DOI: 10.1093/ee/nvu013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
Spotted wilt caused by tomato spotted wilt virus (TSWV; family Bunyaviridae; genus Tospovirus) is a serious disease of peanut (Arachis hypogaea L.) in the southeastern United States. Peanut genotypes with field resistance to TSWV are effective in suppressing spotted wilt. All commercially available genotypes with field resistance to TSWV were developed through conventional breeding. As a part of the breeding process, peanut genotypes are regularly screened under field situations. Despite numerous advantages associated with field screening, it is often limited by inconsistent vector (thrips) and TSWV pressure. A greenhouse transmission protocol would aid in thorough screening of selected genotypes and conserve time. In this study, various parameters associated with TSWV transmission, including tobacco thrips, Frankliniella fusca (Hinds) density, mode of inoculation, and plant age, were evaluated. Greater incidences of TSWV infection were obtained with thrips-mediated inoculation when compared with mechanical inoculation. TSWV inoculation with three, five, and 10 thrips resulted in greater incidences of TSWV infection in plants than inoculation with one thrips. However, incidences of TSWV infection did not vary between plants inoculated with three, five, and 10 viruliferous thrips. With both thrips-mediated and mechanical inoculation methods, incidences of TSWV infection in 1-wk-old plants were greater than in 4-wk-old plants. TSWV copy numbers, as determined by qPCR, also decreased with plant age. Results suggest that using at least three thrips per plant and 1- to 2-wk-old plants would maximize TSWV infection in inoculated plants.
Collapse
Affiliation(s)
- Anita Shrestha
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | | | | | - David G Riley
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | - Mark R Abney
- Department of Entomology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
24
|
Iftikhar R, Ramesh SV, Bag S, Ashfaq M, Pappu HR. Global analysis of population structure, spatial and temporal dynamics of genetic diversity, and evolutionary lineages of Iris yellow spot virus (Tospovirus: Bunyaviridae). Gene 2014; 547:111-8. [PMID: 24954534 DOI: 10.1016/j.gene.2014.06.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 05/31/2014] [Accepted: 06/18/2014] [Indexed: 11/18/2022]
Abstract
Thrips-transmitted Iris yellow spot virus is an economically important viral pathogen of Allium crops worldwide. A global analysis of known IYSV nucleocapsid gene (N gene) sequences was carried out to determine the comparative population structure, spatial and temporal dynamics with reference to its genetic diversity and evolution. A total of 98 complete N gene sequences (including 8 sequences reported in this study) available in GenBank and reported from 23 countries were characterized by in-silico RFLP analysis. Based on RFLP, 94% of the isolates could be grouped into NL or BR types while the rest belonged to neither group. The relative proportion of NL and BR types was 46% and 48%, respectively. A temporal shift in the IYSV genotypes with a greater incremental incidence of IYSVBR was found over IYSVNL before 2005 compared to after 2005. The virus population had at least one evolutionarily significant recombination event, involving IYSVBR and IYSVNL. Codon substitution studies did not identify any significant differences among the genotypes of IYSV. However, N gene codons were minimally positively selected, moderately negatively selected denoting the action of purifying selection, thus rejecting the theory of neutral mutation in IYSV population. However, one codon position (139) was found to be positively selected in all the genotypes. Population selection statistics in the IYSVBR, IYSVNL genotypes and in the population as a whole also revealed the action of purifying selection or population expansion, whereas IYSVother displayed a decrease in population size. Genetic differentiation studies showed inherent differentiation and infrequent gene flow between IYSVBR and IYSVNL genotypes corroborating the geographical confinement of these genotypes. Taken together the study suggests that the observed diversity in IYSV population and temporal shift in IYSVBR genotype is attributable to genetic recombination, abundance of purifying selection, insignificant positive selection and population expansion. Restricted gene flow between the two major IYSV genotypes further emphasizes the role of genetic drift in modeling the population architecture, evolutionary lineage and epidemiology of IYSV.
Collapse
Affiliation(s)
- Romana Iftikhar
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan; Washington State University, Department of Plant Pathology, Pullman, WA, USA
| | - Shunmugiah V Ramesh
- Directorate of Soybean Research, Indian Council of Agricultural Research (ICAR), Indore, MP 452001, India; Washington State University, Department of Plant Pathology, Pullman, WA, USA
| | - Sudeep Bag
- Department of Entomology, University of California, One Shield Avenue, Davis, CA 95616, USA; Washington State University, Department of Plant Pathology, Pullman, WA, USA
| | - Muhammad Ashfaq
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad 45650, Pakistan; Biodiversity Institute of Ontario, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Hanu R Pappu
- Washington State University, Department of Plant Pathology, Pullman, WA, USA.
| |
Collapse
|