1
|
Huang Q, Li X, Li Q, Zhong S, Li X, Yang J, Tan F, Ren T, Li Z, Suizhuang Y. Three novel QTLs for FHB resistance identified and mapped in spring wheat PI672538 by bulked segregant analysis of the recombinant inbred line. FRONTIERS IN PLANT SCIENCE 2024; 15:1409095. [PMID: 39135653 PMCID: PMC11317384 DOI: 10.3389/fpls.2024.1409095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Introduction Fusarium head blight (FHB) has a large influence on both the yield and quality of wheat grain worldwide. Host resistance is the most effective method for controlling FHB, but unfortunately, very few genetic resources on FHB resistance are available; therefore, identifying novel resistance genes or quantitative trait loci (QTLs) is valuable. Methods Here, a recombinant inbred line (RIL) population containing 451 lines derived from the cross L661/PI672538 was sown in four different environments (2019CZa, 2019CZb, 2021QL and 2021WJ). Results Five QTLs, consisting of two previously reported QTLs (FhbL693a and FhbL693b) and three new QTLs (FhbL693c, FhbL693d and FhbL693e), were identified. Further investigation revealed that FhbL693b, FhbL693c and FhbL693d could be detected in all four environments, and FhbL693a and FhbL693e were detected only in 2019CZb and 2021WJ, respectively. Among the QTLs, the greatest contribution (10.5%) to the phenotypic variation effect (PVE) was FhbL693d in 2021WJ, while the smallest (1.2%) was FhbL693e and FhbL693a in 2019CZb. The selection of 5Dindel-4 for FhbL693d, 4Aindel-7 for FhbL693c and 3Bindel-24 for FhbL693b decreased the number of damaged spikelets by 2.1, and a new line resistant to FHB named H140-2 was developed by marker-assisted selection (MAS). Discussion These results could help to further improve FHB resistance in the future.
Collapse
Affiliation(s)
- Qianglan Huang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin Li
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Qing Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Fuling, Chongqing, China
| | - Shengfu Zhong
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiuying Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiezhi Yang
- Wheat Research Institute, Neijiang Academy of Agricultural Sciences, Neijiang, Sichuan, China
| | - Feiquan Tan
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Tianheng Ren
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhi Li
- Provincial Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Suizhuang
- Wheat Research Institute, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
2
|
Zhong S, Yang H, Chen C, Ren T, Li Z, Tan F, Luo P. Phenotypic characterization of the wheat temperature-sensitive leaf color mutant and physical mapping of mutant gene by reduced-representation sequencing. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111657. [PMID: 36813241 DOI: 10.1016/j.plantsci.2023.111657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/10/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Few available leaf color mutants in crops have greatly limited the understanding of photosynthesis mechanisms, leading to few accomplishments in crop yield improvement via enhanced photosynthetic efficiency. Here, a noticeable albino mutant, CN19M06, was identified. A comparison between CN19M06 and the wild type CN19 at different temperatures showed that the albino mutant was temperature-sensitive and produced leaves with a decreased chlorophyll content at temperatures below 10 °C. Genetic analysis suggested that the albinism was controlled by one recessive nuclear gene named TSCA1, which was putatively assigned to the region of 718.1-729.8 Mb on chromosome 2AL using bulked-segregant analysis and double-digest restriction site-associated DNA. Finally, molecular linkage analysis physically anchored TSCA1 to a narrowed region of 718.8-725.3 Mb with a 6.5 Mb length on 2AL flanked by InDel 18 and InDel 25 with 0.7 cM genetic interval. Among the 111 annotated functional genes in the corresponding chromosomal region, only TraesCS2A01G487900 of the PAP fibrillin family was both related to chlorophyll metabolism and temperature sensitivity; therefore, it was considered the putative candidate gene of TSCA1. Overall, CN19M06 has great potential for exploring the molecular mechanism of photosynthesis and monitoring temperature changes in wheat production.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Chen
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Li
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Feiquan Tan
- Institute of Ecological Agriculture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricultural University of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Assessment of the Breeding Potential of a Set of Genotypes Selected from a Natural Population of Akebia trifoliata (Three–Leaf Akebia). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Akebia trifoliata (three-leaf akebia) has long been used as a medicinal herb and has the potential to be used in diverse ways, especially as a fruit crop. However, efforts to domesticate and cultivate new varieties for commercial use are only in their infancy. Here, we evaluated the genetic diversity of 29 genotypes, which were previously selected from a natural population consisting of 1447 genotypes and exhibiting high resistance to fungal diseases and a smooth peel of A. trifoliata using 85 genome-specific single sequence repeat (SSR) markers. We also characterized variation in 19 phenotypic traits and nutritional components. Large variation in phenotypic traits and nutritional components was observed, especially in vitamin C, seed/pulp, and fruit color. Correlation analyses revealed that many phenotypic traits and nutritional components were significantly correlated. A principal component analysis identified five principal components, which explained 83.2% of the total variation in the data. The results of the SSR analysis revealed that 80 of the 85 SSR markers were polymorphic; the total number of alleles amplified was 532. The expected heterozygosity was 0.672, and Shannon’s information index was 1.328. A Ward dendrogram and unweighted pair group method with arithmetic mean dendrogram revealed high diversity among the 29 genotypes and suggested that the measured morphological and nutritional traits were genetically independent of disease resistance and texture traits, as well as SSR marker loci. Finally, our results suggest that additional rounds of selection from the selected population, despite its small size, could be effective for the development of new A. trifoliata fruit cultivars.
Collapse
|
4
|
Ren T, Sun Z, Ren Z, Tan F, Luo P, Tang Z, Fu S, Li Z. Molecular and Cytogenetic Characterization of a Wheat-Rye 7BS.7RL Translocation Line with Resistance to Stripe Rust, Powdery Mildew, and Fusarium Head Blight. PHYTOPATHOLOGY 2020; 110:1713-1720. [PMID: 32460689 DOI: 10.1094/phyto-02-20-0061-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Secale cereale is used as a source of genes for disease resistance in wheat cultivation. In this study, a homozygous translocation line (RT14-245) that originated from a cross between a commercial wheat cultivar (Mianyang 11) and a local Chinese variety of rye (Baili) was developed. Multicolor fluorescence in situ hybridization and PCR analysis demonstrated that the translocation chromosome was 7BS.7RL. Resistance analysis showed that RT14-245 was resistant to prevalent pathotypes of stripe rust and powdery mildew. RT14-245 also exhibited high resistance to Fusarium head blight, which was similar to the resistance exhibited by the wheat cultivar Sumai 3. The results indicated that RT14-245 simultaneously exhibited high levels of resistance against stripe rust, powdery mildew, and Fusarium head blight. These results indicate that chromosome arm 7RL in the translocation line RT14-245 is an excellent new resource for wheat breeding programs.
Collapse
Affiliation(s)
- Tianheng Ren
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zixin Sun
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zhenglong Ren
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Feiquan Tan
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Peigao Luo
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zongxiang Tang
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Shulan Fu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| | - Zhi Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
- Provincial Key Laboratory for Plant Genetics and Breeding, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, China
| |
Collapse
|
5
|
Su P, Guo X, Fan Y, Wang L, Yu G, Ge W, Zhao L, Ma X, Wu J, Li A, Wang H, Kong L. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:255-266. [PMID: 29807599 DOI: 10.1016/j.plantsci.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The resistance to Fusarium head blight (FHB) in wheat is mainly via the restrain of fungal expansion through spike rachis (type II resistance). In order to unravel the resistance mechanisms, Brachypodium distachyon 21 (Bd21), a monocotyledonous model plant, was previously proved to interact with F. graminearum, while the disease development in spike still needs to be explored in detail. Herein, it is found that the fungal spores mainly germinate on pistil of Bd21, then the hyphae rapidly extend to the bottom of floret and enter spike rachis, similar with the infection progress in wheat. However, structural difference of spike rachis was found between Brachypodium and wheat. It was found that the spread of the fungus through the rachis node of inoculated spikelets is an important index for the evaluation of type II FHB resistance in Brachypodium under optimal conditions at 28 °C and 50%-70% humidity. To verify the feasibility of this strategy, the transcription factor TaTGA2 was overexpressed in Bd21, and transgenic plants were found to show improved resistance to F. graminearum in both spikes and detached leaves, which was further supported by the increased disease severity when silencing TaTGA2 in the wheat cultivar "Sumai 3" or in tilling "Kronos" mutants. Except for Bd21, another 49 Brachypodium germplasms were further screened for FHB resistance, and three moderately susceptible germplasms, namely, PI 317418, W6-39284, and PI 254868, feasible for transformation, were determined to be better hosts than Bd21 when evaluating heterologous genes that positively regulate FHB resistance. The present study also observed variations in the levels of FHB resistance between coleoptiles and spikes or transgenic plants and natural germplasms.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiuxiu Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Guanghui Yu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
6
|
Transcriptome Analysis Identifies a 140 kb Region of Chromosome 3B Containing Genes Specific to Fusarium Head Blight Resistance in Wheat. Int J Mol Sci 2018. [PMID: 29538315 PMCID: PMC5877713 DOI: 10.3390/ijms19030852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Fusarium head blight (FHB), mainly caused by Fusarium graminearum, is one of the most destructive fungal diseases of wheat (Triticum aestivum L.). Because of the quantitative nature of FHB resistance, its mechanism is poorly understood. We conducted a comparative transcriptome analysis to identify genes that are differentially expressed in FHB-resistant and FHB-susceptible wheat lines grown under field conditions for various periods after F. graminearum infection and determined the chromosomal distribution of the differentially expressed genes (DEGs). For each line, the expression in the spike (which exhibits symptoms in the infected plants) was compared with that in the flag leaves (which do not exhibit symptoms in the infected plants). We identified an island of 53 constitutive DEGs in a 140 kb region with high homology to the FhbL693b region on chromosome 3B. Of these genes, 13 were assigned to specific chloroplast-related pathways. Furthermore, one gene encoded inositol monophosphate (IMPa) and two genes encoded ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Our findings suggest that the temporary susceptibility in locally infected spikes results from the cross-talk between RuBisCO and IMPa, which blocks secondary signaling pathways mediated by salicylic acid and induces a systemic acquired resistance in the distant leaf tissue.
Collapse
|
7
|
A journey to understand wheat Fusarium head blight resistance in the Chinese wheat landrace Wangshuibai. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2017.09.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
8
|
Zhong S, Ma L, Fatima SA, Yang J, Chen W, Liu T, Hu Y, Li Q, Guo J, Zhang M, Lei L, Li X, Tang S, Luo P. Collinearity Analysis and High-Density Genetic Mapping of the Wheat Powdery Mildew Resistance Gene Pm40 in PI 672538. PLoS One 2016; 11:e0164815. [PMID: 27755575 PMCID: PMC5068701 DOI: 10.1371/journal.pone.0164815] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 10/01/2016] [Indexed: 11/18/2022] Open
Abstract
The wheat powdery mildew resistance gene Pm40, which is located on chromosomal arm 7BS, is effective against nearly all prevalent races of Blumeria graminis f. sp tritici (Bgt) in China and is carried by the common wheat germplasm PI 672538. A set of the F1, F2 and F2:3 populations from the cross of the resistant PI 672538 with the susceptible line L1034 were used to conduct genetic analysis of powdery mildew resistance and construct a high-density linkage map of the Pm40 gene. We constructed a high-density linkage genetic map with a total length of 6.18 cM and average spacing between markers of 0.48 cM.Pm40 is flanked by Xwmc335 and BF291338 at genetic distances of 0.58 cM and 0.26 cM, respectively, in deletion bin C-7BS-1-0.27. Comparative genomic analysis based on EST-STS markers established a high level of collinearity of the Pm40 genomic region with a 1.09-Mbp genomic region on Brachypodium chromosome 3, a 1.16-Mbp genomic region on rice chromosome 8, and a 1.62-Mbp genomic region on sorghum chromosome 7. We further anchored the Pm40 target intervals to the wheat genome sequence. A putative linear index of 85 wheat contigs containing 97 genes on 7BS was constructed. In total, 9 genes could be considered as candidates for the resistances to powdery mildew in the target genomic regions, which encoded proteins that were involved in the plant defense and response to pathogen attack. These results will facilitate the development of new markers for map-based cloning and marker-assisted selection of Pm40 in wheat breeding programs.
Collapse
Affiliation(s)
- Shengfu Zhong
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Lixia Ma
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Syeda Akash Fatima
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiezhi Yang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Yuting Hu
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Li
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic Institute, Fuling District of Chongqing, China
| | - Jingwei Guo
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Min Zhang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Li Lei
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, United States of America
| | - Xin Li
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shengwen Tang
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Peigao Luo
- State Key Laboratory of Plant Breeding and Genetics, Sichuan Agricultural University, Chengdu, Sichuan, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| |
Collapse
|