1
|
de Moya-Ruiz C, Ferriol I, Gómez P. The Temporal Order of Mixed Viral Infections Matters: Common Events That Are Neglected in Plant Viral Diseases. Viruses 2024; 16:1954. [PMID: 39772260 PMCID: PMC11680185 DOI: 10.3390/v16121954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/03/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mixed infections of plant viruses are common in crops and represent a critical biotic factor with substantial epidemiological implications for plant viral diseases. Compared to single-virus infections, mixed infections arise from simultaneous or sequential infections, which can inevitably affect the ecology and evolution of the diseases. These infections can either exacerbate or ameliorate symptom severity, including virus-virus interactions within the same host that may influence a range of viral traits associated with disease emergence. This underscores the need for a more comprehensive understanding of how the order of virus arrival to the host can impact plant disease dynamics. From this perspective, we reviewed the current evidence regarding the impact of mixed infections within the framework of simultaneous and sequential infections in plants, considering the mode of viral transmission. We also examined how the temporal order of mixed infections could affect the dynamics of viral populations and present a case study of two aphid-transmitted viruses infecting melon plants, suggesting that the order of virus arrival significantly affects viral load and disease outcomes. Finally, we anticipate future research that reconciles molecular epidemiology and evolutionary ecology, underlining the importance of biotic interactions in shaping viral epidemiology and plant disease dynamics in agroecosystems.
Collapse
Affiliation(s)
- Celia de Moya-Ruiz
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| | | | - Pedro Gómez
- Departamento de Biología del Estrés y Patología Vegetal, Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, C.P. 30100 Murcia, Spain;
| |
Collapse
|
2
|
McLaughlin AA, Hanley-Bowdoin L, Kennedy GG, Jacobson AL. Vector acquisition and co-inoculation of two plant viruses influences transmission, infection, and replication in new hosts. Sci Rep 2022; 12:20355. [PMID: 36437281 PMCID: PMC9701672 DOI: 10.1038/s41598-022-24880-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 11/22/2022] [Indexed: 11/28/2022] Open
Abstract
This study investigated the role of vector acquisition and transmission on the propagation of single and co-infections of tomato yellow leaf curl virus (TYLCV,) and tomato mottle virus (ToMoV) (Family: Geminiviridae, Genus: Begomovirus) by the whitefly vector Bemisia tabaci MEAM1 (Gennadius) in tomato. The aim of this research was to determine if the manner in which viruses are co-acquired and co-transmitted changes the probability of acquisition, transmission and new host infections. Whiteflies acquired virus by feeding on singly infected plants, co-infected plants, or by sequential feeding on singly infected plants. Viral titers were also quantified by qPCR in vector cohorts, in artificial diet, and plants after exposure to viruliferous vectors. Differences in transmission, infection status of plants, and titers of TYLCV and ToMoV were observed among treatments. All vector cohorts acquired both viruses, but co-acquisition/co-inoculation generally reduced transmission of both viruses as single and mixed infections. Co-inoculation of viruses by the vector also altered virus accumulation in plants regardless of whether one or both viruses were propagated in new hosts. These findings highlight the complex nature of vector-virus-plant interactions that influence the spread and replication of viruses as single and co-infections.
Collapse
Affiliation(s)
- Autumn A McLaughlin
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - George G Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alana L Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
3
|
Ghosh S, Didi-Cohen S, Cna’ani A, Kontsedalov S, Lebedev G, Tzin V, Ghanim M. Comparative Analysis of Volatiles Emitted from Tomato and Pepper Plants in Response to Infection by Two Whitefly-Transmitted Persistent Viruses. INSECTS 2022; 13:840. [PMID: 36135541 PMCID: PMC9503296 DOI: 10.3390/insects13090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
The whitefly Bemisia tabaci is one of the most important agricultural pests due to its extreme invasiveness, insecticide resistance, and ability to transmit hundreds of plant viruses. Among these, Begomoviruses and recombinant whitefly-borne Poleroviruses are transmitted persistently. Several studies have shown that upon infection, plant viruses manipulate plant-emitted volatile organic compounds (VOCs), which have important roles in communication with insects. In this study, we profiled and compared the VOCs emitted by tomato and pepper plant leaves after infection with the Tomato yellow leaf curl virus (TYLCV) (Bogomoviruses) and the newly discovered Pepper whitefly-borne vein yellows virus (PeWBVYV) (Poleroviruses), respectively. The results identified shared emitted VOCs but also uncovered unique VOC signatures for each virus and for whitefly infestation (i.e., without virus infection) independently. The results suggest that plants have general defense responses; however, they are also able to respond individually to infection with specific viruses or infestation with an insect pest. The results are important to enhance our understanding of virus- and insect vector-induced alteration in the emission of plant VOCs. These volatiles can eventually be used for the management of virus diseases/insect vectors by either monitoring or disrupting insect-plant interactions.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, ARO, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | - Shoshana Didi-Cohen
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be’er Sheva 8499000, Israel
| | - Alon Cna’ani
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be’er Sheva 8499000, Israel
- Department of Food Sciences, University of Copenhagen, DK-1165 Copenhagen, Denmark
| | - Svetlana Kontsedalov
- Department of Entomology, ARO, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Galina Lebedev
- Department of Entomology, ARO, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Be’er Sheva 8499000, Israel
| | - Murad Ghanim
- Department of Entomology, ARO, The Volcani Center, HaMaccabim Road 68, P.O. Box 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
4
|
Factors Determining Transmission of Persistent Viruses by Bemisia tabaci and Emergence of New Virus-Vector Relationships. Viruses 2021; 13:v13091808. [PMID: 34578388 PMCID: PMC8472762 DOI: 10.3390/v13091808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 11/21/2022] Open
Abstract
Many plant viruses depend on insect vectors for their transmission and dissemination. The whitefly Bemisia tabaci (Hemiptera: Aleyrodidae) is one of the most important virus vectors, transmitting more than four hundred virus species, the majority belonging to begomoviruses (Geminiviridae), with their ssDNA genomes. Begomoviruses are transmitted by B. tabaci in a persistent, circulative manner, during which the virus breaches barriers in the digestive, hemolymph, and salivary systems, and interacts with insect proteins along the transmission pathway. These interactions and the tissue tropism in the vector body determine the efficiency and specificity of the transmission. This review describes the mechanisms involved in circulative begomovirus transmission by B. tabaci, focusing on the most studied virus in this regard, namely the tomato yellow leaf curl virus (TYLCV) and its closely related isolates. Additionally, the review aims at drawing attention to the recent knowhow of unorthodox virus—B. tabaci interactions. The recent knowledge of whitefly-mediated transmission of two recombinant poleroviruses (Luteoviridae), a virus group with an ssRNA genome and known to be strictly transmitted with aphids, is discussed with its broader context in the emergence of new whitefly-driven virus diseases.
Collapse
|