1
|
Chaudhary P, Agri U, Chaudhary A, Kumar A, Kumar G. Endophytes and their potential in biotic stress management and crop production. Front Microbiol 2022; 13:933017. [PMID: 36325026 PMCID: PMC9618965 DOI: 10.3389/fmicb.2022.933017] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/12/2022] [Indexed: 11/21/2022] Open
Abstract
Biotic stress is caused by harmful microbes that prevent plants from growing normally and also having numerous negative effects on agriculture crops globally. Many biotic factors such as bacteria, fungi, virus, weeds, insects, and nematodes are the major constrains of stress that tends to increase the reactive oxygen species that affect the physiological and molecular functioning of plants and also led to the decrease in crop productivity. Bacterial and fungal endophytes are the solution to overcome the tasks faced with conventional farming, and these are environment friendly microbial commodities that colonize in plant tissues without causing any damage. Endophytes play an important role in host fitness, uptake of nutrients, synthesis of phytohormone and diminish the injury triggered by pathogens via antibiosis, production of lytic enzymes, secondary metabolites, and hormone activation. They are also reported to help plants in coping with biotic stress, improving crops and soil health, respectively. Therefore, usage of endophytes as biofertilizers and biocontrol agent have developed an eco-friendly substitute to destructive chemicals for plant development and also in mitigation of biotic stress. Thus, this review highlighted the potential role of endophytes as biofertilizers, biocontrol agent, and in mitigation of biotic stress for maintenance of plant development and soil health for sustainable agriculture.
Collapse
Affiliation(s)
- Parul Chaudhary
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Upasana Agri
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | | | - Ashish Kumar
- Govind Ballabh Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Govind Kumar
- Indian Council of Agricultural Research (ICAR)-Central Institute for Subtropical Horticulture, Lucknow, India
| |
Collapse
|
2
|
de Lamo FJ, Šimkovicová M, Fresno DH, de Groot T, Tintor N, Rep M, Takken FLW. Pattern-triggered immunity restricts host colonization by endophytic fusaria, but does not affect endophyte-mediated resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:204-215. [PMID: 33205901 PMCID: PMC7814963 DOI: 10.1111/mpp.13018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 05/06/2023]
Abstract
Fusarium oxysporum (Fo) is best known as a host-specific vascular pathogen causing major crop losses. Most Fo strains, however, are root endophytes potentially conferring endophyte-mediated resistance (EMR). EMR is a mechanistically poorly understood root-specific induced resistance response induced by endophytic or nonhost pathogenic Fo strains. Like other types of induced immunity, such as systemic acquired resistance or induced systemic resistance, EMR has been proposed to rely on the activation of the pattern-triggered immunity (PTI) system of the plant. PTI is activated upon recognition of conserved microbe-associated molecular patterns (MAMPs) of invading microbes. Here, we investigated the role of PTI in controlling host colonization by Fo endophytes and their ability to induce EMR to the tomato pathogen Fo f. sp. lycopersici (Fol). Transgenic tomato and Arabidopsis plants expressing the Fo effector gene Avr2 are hypersusceptible to bacterial and fungal infection. Here we show that these plants are PTI-compromised and are nonresponsive to bacterial- (flg22) and fungal- (chitosan) MAMPs. We challenged the PTI-compromised tomato mutants with the EMR-conferring Fo endophyte Fo47, the nonhost pathogen Fom (a melon pathogen), and with Fol. Compared to wild-type plants, Avr2-tomato plants became hypercolonized by Fo47 and Fom. Surprisingly, however, EMR towards Fol, induced by either Fo47 or Fom, was unaffected in these plants. These data show that EMR-based disease resistance is independent from the conventional defence pathways triggered by PTI, but that PTI is involved in restricting host colonization by nonpathogenic Fo isolates.
Collapse
Affiliation(s)
- Francisco J. de Lamo
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Margarita Šimkovicová
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - David H. Fresno
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Tamara de Groot
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Nico Tintor
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Martijn Rep
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| | - Frank L. W. Takken
- Molecular Plant PathologyFaculty of ScienceSwammerdam Institute for Life SciencesUniversity of AmsterdamAmsterdamNetherlands
| |
Collapse
|
3
|
Constantin ME, Vlieger BV, Takken FLW, Rep M. Diminished Pathogen and Enhanced Endophyte Colonization upon CoInoculation of Endophytic and Pathogenic Fusarium Strains. Microorganisms 2020; 8:E544. [PMID: 32283705 PMCID: PMC7232452 DOI: 10.3390/microorganisms8040544] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 12/23/2022] Open
Abstract
Root colonization by Fusarium oxysporum (Fo) endophytes reduces wilt disease symptoms caused by pathogenic Fo strains. The endophytic strain Fo47, isolated from wilt suppressive soils, reduces Fusarium wilt in various crop species such as tomato, flax, and asparagus. How endophyte-mediated resistance (EMR) against Fusarium wilt is achieved is unclear. Here, nonpathogenic colonization by Fo47 and pathogenic colonization by Fo f.sp. lycopersici (Fol) strains were assessed in tomato roots and stems when inoculated separately or coinoculated. It is shown that Fo47 reduces Fol colonization in stems of both noncultivated and cultivated tomato species. Conversely, Fo47 colonization of coinoculated tomato stems was increased compared to single inoculated plants. Quantitative PCR of fungal colonization of roots (co)inoculated with Fo47 and/or Fol showed that pathogen colonization was drastically reduced when coinoculated with Fo47, compared with single inoculated roots. Endophytic colonization of tomato roots remained unchanged upon coinoculation with Fol. In conclusion, EMR against Fusarium wilt is correlated with a reduction of root and stem colonization by the pathogen. In addition, the endophyte may take advantage of the pathogen-induced suppression of plant defences as it colonizes tomato stems more extensively.
Collapse
Affiliation(s)
| | | | | | - Martijn Rep
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; (M.E.C.); (F.L.W.T.)
| |
Collapse
|
4
|
de Lamo FJ, Takken FLW. Biocontrol by Fusarium oxysporum Using Endophyte-Mediated Resistance. FRONTIERS IN PLANT SCIENCE 2020; 11:37. [PMID: 32117376 PMCID: PMC7015898 DOI: 10.3389/fpls.2020.00037] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/13/2020] [Indexed: 05/06/2023]
Abstract
Interactions between plants and the root-colonizing fungus Fusarium oxysporum (Fo) can be neutral, beneficial, or detrimental for the host. Fo is infamous for its ability to cause wilt, root-, and foot-rot in many plant species, including many agronomically important crops. However, Fo also has another face; as a root endophyte, it can reduce disease caused by vascular pathogens such as Verticillium dahliae and pathogenic Fo strains. Fo also confers protection to root pathogens like Pythium ultimum, but typically not to pathogens attacking above-ground tissues such as Botrytis cinerea or Phytophthora capsici. Endophytes confer biocontrol either directly by interacting with pathogens via mycoparasitism, antibiosis, or by competition for nutrients or root niches, or indirectly by inducing resistance mechanisms in the host. Fo endophytes such as Fo47 and CS-20 differ from Fo pathogens in their effector gene content, host colonization mechanism, location in the plant, and induced host-responses. Whereas endophytic strains trigger localized cell death in the root cortex, and transiently induce immune signaling and papilla formation, these responses are largely suppressed by pathogenic Fo strains. The ability of pathogenic strains to compromise immune signaling and cell death is likely attributable to their host-specific effector repertoire. The lower number of effector genes in endophytes as compared to pathogens provides a means to distinguish them from each other. Co-inoculation of a biocontrol-conferring Fo and a pathogenic Fo strain on tomato reduces disease, and although the pathogen still colonizes the xylem vessels this has surprisingly little effect on the xylem sap proteome composition. In this tripartite interaction the accumulation of just two PR proteins, NP24 (a PR-5) and a β-glucanase, was affected. The Fo-induced resistance response in tomato appears to be distinct from induced systemic resistance (ISR) or systemic acquired resistance (SAR), as the phytohormones jasmonate, ethylene, and salicylic acid are not required. In this review, we summarize our molecular understanding of Fo-induced resistance in a model and identify caveats in our knowledge.
Collapse
Affiliation(s)
| | - Frank L. W. Takken
- Molecular Plant Pathology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
5
|
Constantin ME, de Lamo FJ, Vlieger BV, Rep M, Takken FLW. Endophyte-Mediated Resistance in Tomato to Fusarium oxysporum Is Independent of ET, JA, and SA. FRONTIERS IN PLANT SCIENCE 2019; 10:979. [PMID: 31417594 PMCID: PMC6685397 DOI: 10.3389/fpls.2019.00979] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 07/11/2019] [Indexed: 05/21/2023]
Abstract
Root endophytes can confer resistance against plant pathogens by direct antagonism or via the host by triggering induced resistance. The latter response typically relies on jasmonic acid (JA)/ethylene (ET)-depended signaling pathways, but can also be triggered via salicylic acid (SA)-dependent signaling pathways. Here, we set out to determine if endophyte-mediated resistance (EMR), conferred by the Fusarium endophyte Fo47, against Fusarium wilt disease in tomato is mediated via SA, ET or JA. To test the contribution of SA, ET, and JA in EMR we performed bioassays with Fo47 and Fusarium oxysporum f. sp. lycopersici in tomato plants impaired in SA accumulation (NahG), JA biosynthesis (def1) or ET-production (ACD) and -sensing (Nr). We observed that the colonization pattern of Fo47 in stems of wildtype plants was indistinguishable from that of the hormone mutants. Surprisingly, EMR was not compromised in the lines affected in JA, ET, or SA signaling. The independence of EMR on SA, JA, and ET implies that this induced resistance-response against Fusarium wilt disease is distinct from the classical Induced Systemic Resistance (ISR) response, providing exciting possibilities for control of wilt diseases independent of conventional defense pathways.
Collapse
|
6
|
Genome-wide comparative analysis of pogo-like transposable elements in different Fusarium species. J Mol Evol 2011; 73:230-43. [PMID: 22094890 DOI: 10.1007/s00239-011-9472-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 11/07/2011] [Indexed: 10/15/2022]
Abstract
The recent availability of genome sequences of four different Fusarium species offers the opportunity to perform extensive comparative analyses, in particular of repeated sequences. In a recent work, the overall content of such sequences in the genomes of three phylogenetically related Fusarium species, F. graminearum, F. verticillioides, and F. oxysporum f. sp. lycopersici has been estimated. In this study, we present an exhaustive characterization of pogo-like elements, named Fots, in four Fusarium genomes. Overall 10 Fot and two Fot-related miniature inverted-repeat transposable element families were identified, revealing a diversification of multiple lineages of pogo-like elements, some of which accompanied by a gain of introns. This analysis also showed that such elements are present in an unusual high proportion in the genomes of F. oxysporum f. sp. lycopersici and Nectria haematococca (anamorph F. solani f. sp. pisi) in contrast with most other fungal genomes in which retroelements are the most represented. Interestingly, our analysis showed that the most numerous Fot families all contain potentially active or mobilisable copies, thus conferring a mutagenic potential of these transposable elements and consequently a role in strain adaptation and genome evolution. This role is strongly reinforced when examining their genomic distribution which is clearly biased with a high proportion (more than 80%) located on strain- or species-specific regions enriched in genes involved in pathogenicity and/or adaptation. Finally, the different reproductive characteristics of the four Fusarium species allowed us to investigate the impact of the process of repeat-induced point mutations on the expansion and diversification of Fot elements.
Collapse
|
7
|
Michielse CB, van Wijk R, Reijnen L, Manders EMM, Boas S, Olivain C, Alabouvette C, Rep M. The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Pathog 2009; 5:e1000637. [PMID: 19851506 PMCID: PMC2762075 DOI: 10.1371/journal.ppat.1000637] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 09/25/2009] [Indexed: 01/14/2023] Open
Abstract
Dimorphism or morphogenic conversion is exploited by several pathogenic fungi and is required for tissue invasion and/or survival in the host. We have identified a homolog of a master regulator of this morphological switch in the plant pathogenic fungus Fusarium oxysporum f. sp. lycopersici. This non-dimorphic fungus causes vascular wilt disease in tomato by penetrating the plant roots and colonizing the vascular tissue. Gene knock-out and complementation studies established that the gene for this putative regulator, SGE1 (SIX Gene Expression 1), is essential for pathogenicity. In addition, microscopic analysis using fluorescent proteins revealed that Sge1 is localized in the nucleus, is not required for root colonization and penetration, but is required for parasitic growth. Furthermore, Sge1 is required for expression of genes encoding effectors that are secreted during infection. We propose that Sge1 is required in F. oxysporum and other non-dimorphic (plant) pathogenic fungi for parasitic growth.
Collapse
Affiliation(s)
- Caroline B Michielse
- Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Luo JL, Bao K, Nie M, Zhang WQ, Xiao M, Li B. Cladistic and phenetic analyses of relationships among Fusarium spp. in Dongtan wetland by morphology and isozymes. BIOCHEM SYST ECOL 2007. [DOI: 10.1016/j.bse.2006.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Abstract
Vegetable crops are grown worldwide as a source of nutrients and fiber in the human diet. Fungal plant pathogens can cause devastation in these crops under appropriate environmental conditions. Vegetable producers confronted with the challenges of managing fungal pathogens have the opportunity to use fungi and yeasts as biological control agents. Several commercially available products have shown significant disease reduction through various mechanisms to reduce pathogen development and disease. Production of hydrolytic enzymes and antibiotics, competition for plant nutrients and niche colonization, induction of plant host defense mechanisms, and interference with pathogenicity factors in the pathogen are the most important mechanisms. Biotechnological techniques are becoming increasingly valuable to elucidate the mechanisms of action of fungi and yeasts and provide genetic characterization and molecular markers to monitor the spread of these agents.
Collapse
Affiliation(s)
- Zamir K Punja
- Center for Environmental Biology, Dept of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada V5A 1S6.
| | | |
Collapse
|
10
|
Olivain C, Trouvelot S, Binet MN, Cordier C, Pugin A, Alabouvette C. Colonization of flax roots and early physiological responses of flax cells inoculated with pathogenic and nonpathogenic strains of Fusarium oxysporum. Appl Environ Microbiol 2003; 69:5453-62. [PMID: 12957934 PMCID: PMC194917 DOI: 10.1128/aem.69.9.5453-5462.2003] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2003] [Accepted: 06/10/2003] [Indexed: 11/20/2022] Open
Abstract
Fusarium oxysporum includes nonpathogenic strains and pathogenic strains that can induce necrosis or tracheomycosis in plants. The objective of this study was to compare the abilities of a pathogenic strain (Foln3) and a nonpathogenic strain (Fo47) to colonize flax roots and to induce early physiological responses in flax cell culture suspensions. Both strains colonized the outer cortex of the root; however, plant defense reactions, i.e., the presence of wall appositions, osmiophilic material, and collapsed cells, were less frequent and less intense in a root colonized by Foln3 than by Fo47. Early physiological responses were measured in flax cell suspensions confronted with germinated microconidia of both strains. Both pathogenic (Foln3) and nonpathogenic strains (Fo47) triggered transient H(2)O(2) production in the first few minutes of the interaction, but the nonpathogenic strain also induced a second burst 3 h postinoculation. Ca(2+) influx was more intense in cells inoculated with Fo47 than in cells inoculated with Foln3. Similarly, alkalinization of the extracellular medium was higher with Fo47 than with Foln3. Inoculation of the fungi into flax cell suspensions induced cell death 10 to 20 h postinoculation, with a higher percentage of dead cells observed with Fo47 than with Foln3 beginning at 14 h. This is the first report showing that early physiological responses of flax cells can be used to distinguish pathogenic and nonpathogenic strains of the soil-borne fungus F. oxysporum.
Collapse
|
11
|
Recorbet G, Steinberg C, Olivain C, Edel V, Trouvelot S, Dumas-Gaudot E, Gianinazzi S, Alabouvette C. Wanted: pathogenesis-related marker molecules for Fusarium oxysporum. THE NEW PHYTOLOGIST 2003; 159:73-92. [PMID: 33873682 DOI: 10.1046/j.1469-8137.2003.00795.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Although Fusarium oxysporum pathogens cause severe wilts in about 80 botanical species, the mechanisms of pathogenicity and symptom induction are poorly understood. Knowledge about the genetic and biochemical pathways involved in the pathogenesis of F. oxysporum would be invaluable in getting targets for both fungicide development and search for biocontrol agents. In this respect, we described the main approaches that have been developed to identify some mechanisms underlying the pathogenesis of F. oxysporum. During the last decades, the potential functions triggering of F. oysporum pathogenicity have mainly been investigated by comparing soilborne pathogenic strains with nonpathogenic ones with regards to the analysis of the pre- and infection stages and of the resulting plant-fungus interactions. The relatively recent progress in the molecular biology of this fungus has allowed complementary approaches to be developed in order to identify key factors involved in F. oxysporum pathogenicity. Screening mutants of F. oxysporum for loss of virulence led to the successful identification of some pathogenesis-related factors, such as hydrophobicity or attachment of germlings. Taken together, the strategies described above support the idea that changes in fungal metabolism is also of importance in triggering of F. oxysporum pathogenesis.
Collapse
Affiliation(s)
- Ghislaine Recorbet
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Christian Steinberg
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Chantal Olivain
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Véronique Edel
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Sophie Trouvelot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Eliane Dumas-Gaudot
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Silvio Gianinazzi
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| | - Claude Alabouvette
- Unité Mixte de Recherche 1088, INRA/Université de Bourgogne: Biochimie, Biologie Cellulaire et Ecologie des Interactions Plantes/Micro-Organismes, INRA-CMSE, BP 86510, 21065 Dijon Cedex, France
| |
Collapse
|
12
|
Abstract
Fusarium oxysporum is well represented among the rhizosphere microflora. While all strains exist saprophytically, some are well-known for inducing wilt or root rots on plants whereas others are considered as nonpathogenic. Several methods based on phenotypic and genetic traits have been developed to characterize F. oxysporum strains. Results showed the great diversity affecting the soil-borne populations of F. oxysporum. In suppressive soils, interactions between pathogenic and nonpathogenic strains result in the control of the disease. Therefore nonpathogenic strains are developed as biocontrol agents. The nonpathogenic F. oxysporum strains show several modes of action contributing to their biocontrol capacity. They are able to compete for nutrients in the soil, affecting the rate of chlamydospore germination of the pathogen. They can also compete for infection sites on the root, and can trigger plant defence reactions, inducing systemic resistance. These mechanisms are more or less important depending on the strain. The nonpathogenic F. oxysporum are easy to mass produce and formulate, but application conditions for biocontrol efficacy under field conditions have still to be determined.
Collapse
Affiliation(s)
- D Fravel
- USDA, ARS, Vegetable Laboratory, Building 010 A, BARC-West, Beltsville, MD 20705, USA
| | - C Olivain
- INRA-CMSE, UMR BBCE-IPM, BP 85610, F-21065 Dijon Cedex, France
| | - C Alabouvette
- INRA-CMSE, UMR BBCE-IPM, BP 85610, F-21065 Dijon Cedex, France
| |
Collapse
|